
Supporting Information

Contents

1 Motivating examples 2
1.1 The EuroSCORE II model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 The Framingham Risk Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Data preparation of model discrimination 8
2.1 Estimating the standard error of the c-statistic . . . . . . . . . . . . . . . . . . . . . 8
2.2 Estimating the c-statistic from a reported D statistic . . . . . . . . . . . . . . . . . . 9

2.2.1 Theoretical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Data preparation of model calibration 12
3.1 Deriving event rates for prediction models with time-to-event outcomes . . . . . . . 12
3.2 Extrapolation of event rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Bayesian Meta-analysis 18
4.1 Empirical estimates of between-study heterogeneity . . . . . . . . . . . . . . . . . . . 18
4.2 Influence of between-study heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Construction of prior distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 Meta-analysis models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.4.1 Meta-analysis of the c-statistic . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4.2 Meta-analysis of the total O:E ratio . . . . . . . . . . . . . . . . . . . . . . . 25
4.4.3 Meta-analysis of the calibration slope . . . . . . . . . . . . . . . . . . . . . . 29
4.4.4 Evaluation of convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.5 Performance in sparse data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Additional Results 34
5.1 Meta-analysis of EuroSCORE II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2 Meta-analysis of the Framingham Risk Score . . . . . . . . . . . . . . . . . . . . . . 35
5.3 Meta-regression EuroSCORE II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1



1 Motivating examples

1.1 The EuroSCORE II model

Table S1: Multivariable regression coefficients of the EuroSCORE II model

Risk factor Coefficient

New York Heart Association class
II 0.1070545
III 0.2958358
IV 0.5597929

Canadian Cardiovascular Society class 4 angina 0.2226147
Insulin-dependent diabetes mellitus 0.3542749
Age 0.0285181
Female 0.2196434
Extracardiac arteriopathy 0.5360268
Chronic pulmonary dysfunction 0.1886564
N/M mob 0.2407181
Previous cardiac surgery 1.1185990
Renal dysfunction

On dialysis 0.6421508
Creatinine clearance ≤ 50 0.8592256
Creatinine clearance 50–85 0.3035530

Active endocarditis 0.6194522
Critical 1.0865170
Left ventricle function

Moderate (31 – 50%) 0.3150652
Poor (21 – 30%) 0.8084096
Very poor (21% or less) 0.9346919

Recent myocardial infarction 0.1528943
Pulmonary artery systolic pressure

31 – 55 mmHg 0.1788899
≥ 55 0.3491475

Urgency
Urgent 0.3174673
Emergency 0.7039121
Salvage 1.3629470

Weight of procedure
1 non-CABG 0.0062118
2 0.5521478
3+ 0.9724533

Thoracic aorta 0.6527205
Constant −5.3245370

N/M mob: neurological or musculoskeletal dysfunction severely affecting mobility; ‘1 non-CABG’:
single major cardiac procedure which is not isolated CABG; 2: two major cardiac procedures; 3+:
three or more major cardiac procedures. For age, Xi = 1 if patient age ≤ 60; Xi increases by one
point per year thereafter (age 60 or less Xi = 1; age 61 if Xi = 2; age 62 if Xi = 3 and so on). More
information can be found in the original publication [1].
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Table S2: Summarised results of the 22 validation studies of the EuroSCORE II model included in
our meta-analysis

Study Country Enrolment
(Years)

Number
of

patients

Observed
in-hospital
mortality

Expected
in-hospital
mortality

C statistic

Nashef∗ 43 countries 2010 5553 232 219.34 0.8095 (0.014)
Biancari Finland 2006-2011 1027 28 46.22 0.867 (0.035)
Di Dedda Italy 2006-2011 1090 41 33.79 0.81 (0.036)
Chalmers UK 2006-2010 5576 191‡ 206.96 0.79 (0.010)
Grant UK 2010-2011 23740 746 809.53 0.808 (0.008)
Carneo-Alcazar Spain 2005-2010 3798 215 169.39 0.85 (0.010)
Kunt Turkey 2004-2012 428 34 7.28 0.72 (0.051)
Kirmani UK 2001-2010 15497 547 392.07 0.818 (0.007)
Howell UK/NL 2006-2011 933 90 105.43† 0.67 (0.030)†

Wang (a) China 2008-2011 11170 226 290.42† 0.72 (0.015)
Borde India 2011-2012 498 8 10.01 0.72 (0.090)†

Qadir Pakistan 2006-2010 2004 76 74.55 0.84 (0.023)†

Spiliopoulos Germany 1999-2005 216 14 8.62 0.77 (0.067)
Wendt Germany 1999-2012 1066 45 34.11 0.72 (0.034)
Laurent France 2009-2011 314 18 7.22 0.77 (0.061)
Wang (b) New Zealand 2010-2012 818 13 13.09† 0.642 (0.071)
Nishida Japan 1993-2013 461 33 34.11 0.7697 (0.042)†

Barili (a) Italy 2006-2012 12201 210 305.03 0.8 (0.015)
Barili (b) Italy 2006-2012 1670 125 103.54 0.82 (0.020)
Paparella Italy 2011-2012 6191 300 272.40 0.83 (0.012)
Carosella Argentina 2008-2012 250 9 4.10 0.76 (0.056)
Borracci Argentina 2012-2013 503 21 16.00 0.856 (0.033)
Osnabrugge US 2003-2012 50588 1071 1568.23 0.77 (0.010)
∗ Original development study
† The standard error of the c-statistic was estimated using a method proposed by Newcombe
(method 4 in [2])
For the concordance statistic, estimates are presented with corresponding standard error; UK =
The United Kingdom; NL = The Netherlands; US = The United States
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1.2 The Framingham Risk Score

The Framingham Risk Score was developed in 1998 using data from 2489 men and 2856 women to
predict the risk of initial coronary heart disease (CHD) in a free-living population not on medication
[3]. The Framingham Risk Score consists of several models that combine information on blood
pressure, smoking history, TC and HDL-C levels, diabetes, and left ventricular hypertrophy on the
ECG. The regression coefficients of these models are presented in Table S3.

We recently performed a systematic review to assess the performance of the Framingham Risk Score,
as well as two other common cardiovascular risk prediction models, in a general population setting
[4, 5]. The search identified 820 references, of which 211 were screened in full text (Figure S1). Here,
we focus on the studies that assessed the predictive performance of the Framingham Risk Score in
male populations. Results from the corresponding 23 validations are presented in Table S4, together
with the results from the original development study.

Table S3: Multivariable regression coefficients of the Framingham Risk Score

Risk factor Coefficient Coefficient
Men Women Men Women

Age,y 0.04826 0.33766 0.04808 0.33994
Age squared, y −0.00268 −0.0027
TC, mg/dL

< 160 −0.65945 −0.26138
160 – 199 Referent Referent
200 – 239 0.17692 0.20771
240 – 279 0.50539 0.24385
≥ 280 0.65713 0.53513

LDL-C, mg/dL
< 100 −0.69281 −0.42616
100 – 129 Referent Referent
130 – 159 0.00389 0.01366
160 – 189 0.26755 0.26948
≥ 190 0.56705 0.33251

HDL-C, mg/dL
< 35 0.49744 0.84312 0.48598 0.88121
35 – 44 0.24310 0.37796 0.21643 0.36312
45 – 49 Referent 0.19785 Referent 0.19247
50 – 59 −0.05107 Referent −0.04710 Referent
≥ 60 −0.48660 −0.42951 −0.34190 −0.35404

Blood pressure
Optimal −0.00226 −0.53363 −0.02642 −0.51204
Normal Referent Referent Referent Referent
High normal 0.28320 −0.06773 0.30104 −0.03484
Stage I hypertension 0.52168 0.26288 0.55714 0.28533
Stage II–IV hypertension 0.61859 0.46573 0.65107 0.50403

Diabetes 0.42839 0.59626 0.42146 0.61313
Smoker 0.52337 0.29246 0.54377 0.29737
Baseline survival function at 10 years, S(t) 0.90015 0.96246 0.90017 0.9628

The regression coefficients given are used to compute a linear function. The latter is corrected for
the averages of the participants’ risk factors, and the subsequent result is exponentiated and used
to calculate a 10-year probability of CHD after insertion into a survival function. More information,
as well as a worked out example, can be found in the original publication [3].
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Figure S1: Flow diagram of selected studies

Two searches were performed; one in Medline and Embase and one in Scopus and Web of Science.
Studies identified by both searches were screened for eligibility. In the bottom part of the figure,
external validations are excluded because cohorts were used more than once to validate the same
model.
* E.g. no cardiovascular outcome, not written in English.
† The Wilson and ATPIII model are developed to predict the risk of fatal or nonfatal CHD and the
PCE are developed to predict the risk of fatal or nonfatal CVD. External validations that used a
different outcome were excluded from the analyses.
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Table S4: Summarised results of the included validation studies of the Framingham Risk Score when applied in male populations.

Study Country Enrolment
(Years)

Number
of

patients

Number
of

events

Observed
10y CHD

risk

Predicted
10y CHD

risk

C statistic

Est. SE

Buitrago [6] Spain 1994-2004 201 22 10.9% 16.9% 0.63 0.059
Comin [7] Spain 1995-1998 2447 137 7.7%‡◦ 19.8%‡◦ 0.679‡ 0.023‡

D’Agostino [8] US 1987-1988 4705 149 6.5%◦ 7.0%◦ 0.75 0.020†

D’Agostino [8] US 1987-1988 1428 46 6.6%◦ 7.4%◦ 0.67 0.040†

D’Agostino [8] US 1982 901 182 0.63 0.023†

D’Agostino [8] US 1980-1982 2755 77 5.8%◦ 12.4%◦ 0.72 0.029†

D’Agostino [8] Puerto Rico 1965-1968 8713 107 2.6%◦ 7.3%◦ 0.69 0.026†

D’Agostino [8] US 1989-1991 1527 46 6.5%◦ 9.3%◦ 0.69 0.039†

D’Agostino [8] US 1989-1990 956 71 0.63 0.034†

DeFilippis [9] US 2000-2002 1961 164 8.36% 12.8% 0.69 0.02‡

Empana [10] Northern Ireland 1991-1993 2399 120 9.8%◦ 13.4%◦ 0.66 0.025†

Empana [10] France 1991-1993 7359 197 5.3%◦ 12.6%◦ 0.68 0.019†

Ferrario [11] Italy 1983-1996 6865 312 5%‡ 14.3%‡ 0.723 0.028
Jee [12] South Korea 1996-2001 164005 2086
Lloyd-Jones [13] US 1971 2716
Mainous [14] US 1987-1989 6239 0.691 0.011
Marrugat [15] Spain 1995-1998 2447 98 15.4%◦ 35.6%◦ 0.68 0.024‡

Reissigova [16] Czech Republic 1975-1979 646 83 2.4% 10.8% 0.638 0.027
Rodondi [17] US 1997-1998 981 205 26.6%◦ 24.5%◦ 0.583 0.024
Ryckman [18] US 2004-2005 284 19
Simmons [19] United Kingdom 1993-1998 4513 430 9.7%‡ 17.7%‡ 0.71 0.010
Suka [20] Japan 1991-1993 5611 80 3.7% 0.71 0.029†

Vaidya [21] US 1983-1996 404 81 19.8% 11.6% 0.698‡ 0.03‡

Wilson∗ [3] US 1971-1974 2489 383 0.79 0.013†

∗ Original development study
† The standard error of the c-statistic was estimated using a method proposed by Newcombe (method 4 in [2])
‡ Information provided by the study authors
◦ Risk estimates were extrapolated using the exponential distribution such that 10y survival S10 = exp(ln(St)× 10/t)
For the concordance statistic, estimates are presented with corresponding standard error; UK = The United Kingdom; NL = The Netherlands; US = The United
States
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Figure S2: Extracted risk estimates for the Framingham Risk Score when applied to male populations
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The diagonal line indicates perfect calibration. Risk estimates were reported for 5 years follow-up
(dashed lines), 7.5 years follow-up (dotted lines) and 10 years follow-up (full lines).

Figure S3: Extrapolated risk estimates for the Framingham Risk Score when applied to male popu-
lations
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The diagonal line indicates perfect calibration. Note that some risk estimates were extrapolated
from 5 years (dashed lines) or 7.5 years (dotted lines) to 10 years by assuming a Poisson distribution
(see section 3.2).
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2 Data preparation of model discrimination

2.1 Estimating the standard error of the c-statistic

When no standard errors are available for reported c-statistics, they can be approximated using the
equations described by Newcombe [2]. We here consider so-called method 4, which is based on a
suggestion by Hanley and McNeil [22]. In this method, the error variance of the c-statistic is given
by:

V̂ar(ĉ) =
ĉ (1− ĉ)

[
1 + n∗ 1−ĉ2−ĉ + m∗ĉ

1+ĉ

]
mn

(1)

with ĉ the estimated c-statistic, n = O (the number of observed events), m = N − O (the total
number of non-events) and m∗ = n∗ = 1

2 (m+ n)− 1.

To assess the accuracy of equation 1 in binary and time-to-event data, we estimated the standard
error of the c-statistic for all validation studies of EuroSCORE II and Framingham Wilson (male,
female and mixed populations) where the actual standard error was reported. The resulting dis-
crepancies between estimated and reported standard errors are presented in Figure S4.

Figure S4: Comparison of estimated and reported standard error of the c-statistic in the empirical
examples
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Estimates for the standard error of the c-statistic were obtained using method 4 proposed by New-
combe.

For the EuroSCORE II model, outliers appear for Carosella [23] and Borde [24]. Both of these
studies have fewer than 10 observed events, which might explain the poor accuracy of estimated
standard errors. For the Framingham Risk Score, no substantial differences between the estimated
and reported standard errors were found. It is, however, important to note that Ferrario [11]
adopted a split-sample approach to calculate the c-statistic, and that we therefore used half of the
6865 participants and 312 events for estimating the standard error of the c-statistic.
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2.2 Estimating the c-statistic from a reported D statistic

In some situations, validation studies report Royston and Sauerbrei’s D statistic instead of the c-
statistic. Because both measures are based on the standard deviation of the linear predictor (LP),
they can be related to each other by assuming that the LP is Normally distributed.

2.2.1 Theoretical background

The following approximations were kindly provided by Prof. Ian White, and were derived from [25]:

1. Suppose that the LP is distributed according to LP ∼ N (µLP, σ
2
LP).

2. Then the natural log hazard ratio (HR) for person j vs person i, assuming i and j are randomly
selected, is distributed according to ln(HR) ∼ N (0, 2σ2

LP). So we can write

ln(HR) =
√

2σLP z (2)

with z ∼ N (0, 1).

3. Under a proportional hazards model, the probability that j’s event occurs before i’s event is
given as Pr(Tsurv,j < Tsurv,i) = HR/(HR + 1) where HR is for j compared to i.

4. This probability is the expit of ln(HR):

HR/(HR + 1) =
exp (ln(HR))

exp (ln(HR)) + 1
(3)

= expit (ln(HR)) (4)

5. Hence the probability that a randomly selected pair are concordant is the average of expit(
√

2σLP z)
over z ∼ N (0, 1) restricted to z > 0. Note that the restriction to z > 0 is necessary to obtain
the probability of concordance (rather than discordance, for z ≤ 0). This can also be rewritten
as follows:

Pr(Tsurv,j < Tsurv,i) =

∫ ∞
−∞

expit
(√

2σLP abs(z)
)
φ(z) ∂z (5)

= 2

∫ ∞
0

expit
(√

2σLP z
)
φ(z) ∂z (6)

where φ(z) is the standard normal density function. This then yields the c-statistic as defined
in equation (2) by White et al [25].

The relation between the standard deviation of the LP and Royston’s D is as follows:

D =

√
8

π
σLP (7)

Hence, we can transform reported D values to estimates for the c-statistic by replacing σLP with
D
√
π/8 in equation 6, yielding:

2

∫ ∞
0

expit

(√
π

4
D z

)
φ(z) ∂z (8)

or simply

2

∫ ∞
0

φ(z)

1 + exp (−0.5
√
πD z)

∂z (9)
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2.2.2 Simulation Study

We conducted a simulation study to evaluate the accuracy of equation 6 in a logistic regression
framework.

We take the approach of Austin and Steyerberg [26] and simulated a continuous explanatory variable
xi ∼ N (0, σmc) for each of i = 1, . . . , 1000 subjects. The linear predictor is determined as follows:

logit(pi) = β0 + β1x1i

where pi denotes the probability of a binary condition occurring, Pr(yi = 1|x1i). For each subject,
we then randomly generated a binary condition according to yi ∼ Bernoulli(pi). Afterwards, we fit a
univariable logistic regression model (in which the binary condition was regressed on the continuous
explanatory variable x1) in the simulated dataset and estimated the c-statistic of the fitted model,
which we refer to as the empirical c-statistic. We also determined the predicted c-statistic according
to equation 6:

ĉ† = 2

∫ ∞
0

expit
(√

2 σ̂LP z
)
φ(z) ∂z (Approximation 1)

and according to the equation previously described by Austin and Steyerberg [26]:

ĉ‡ = Φ

(
µ̂A − µ̂U√
σ̂2
A + σ̂2

U

)
(Approximation 2)

where µ̂A and µ̂U denote the estimated means, and where σ̂2
A and σ̂2

U denote the estimated variances
of the linear predictor in the affected (Y = 1) and unaffected (Y = 0) populations, respectively. The
estimated standard deviation of the linear predictor in the entire population is denoted as σ̂LP. Note
that φ() and Φ() denote the density and, respectively, cumulative function of the standard normal
distribution.

We performed a simulation study with a full factorial design in which the following factors were
allowed to vary: β0 (which influences the overall probability of the condition occurring), exp(β1),
and σmc. Hereby, we let β0 to take on the values -2, -1, 0, 1, and 2; exp(β1) to vary from 1 to 4 in
increments of 0.2; and σmc to vary from 0.2 to 4 in increments of 0.2. In each of the 1,600 (5 Ö 16
Ö 20) different scenarios, we determined the mean of the empirical and predicted c-statistics in 100
simulated datasets.

The relationship between the predicted c-statistics and the empirical c-statistics across the scenar-
ios is described in Figure S5. Approximation 1, which only requires information on the standard
deviation of the linear predictor, provided accurate prediction of the c-statistic when the predicted
c-statistic was less than 0.70. Conversely, when utilizing more detailed information on the distribu-
tion of the linear predictor, as done by Approximation 2, accurate prediction of the c-statistic were
obtained when the predicted c-statistic was less than 0.90.
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Figure S5: Comparison of empirical and predicted c-statistics
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3 Data preparation of model calibration

3.1 Deriving event rates for prediction models with time-to-event out-
comes

Let SKM,t denote the Kaplan-Meier estimate of the observed t-year cumulative survival probability,
and SE,t denote the expected (cumulative) survival at t years. Note that SE,t can also be derived
from the expected number of events and the total sample size. The total O:E ratio at t years is then
given as:

(O:E)t =
1− SKM,t

1− SE,t
⇔ (10)

=
1− SKM,t

PE,t
(11)

where PE,t represents the expected t-year cumulative event probabilities. If we treat the expected
survival as a known quantity, we can approximate the error variance (Var) and the standard error
(SE) of (O:E)t as follows:

Var(O:E)t = Var

(
1− SKM,t

1− SE,t

)
⇔ (12)

=
1

(1− SE,t)2
Var (1− SKM,t) ⇔ (13)

=
1

(1− SE,t)2
Var(SKM,t) ⇔ (14)

=
1

(PE,t)2
Var(SKM,t) ⇔ (15)

SE(O:E)t =
1

PE,t
SE(SKM,t) (16)

such that:

Var(ln(O:E)t) = Var

(
ln

(
1− SKM,t

1− SE,t

))
⇔ (17)

= Var (ln (1− SKM,t)− ln(1− SE,t)) ⇔ (18)

= Var (ln (1− SKM,t)) + Var(ln(1− SE,t)) ⇔ (19)

= Var (ln (1− SKM,t)) ⇔ (20)

≈
(
∂ [ln (1− SKM,t)]

∂ [SKM,l]

)2

Var(SKM,l) ⇔ (21)

≈ 1

(1− SKM,l)2
Var(SKM,l) ⇔ (22)

SE(ln(O:E)t) ≈
1

1− SKM,l
SE(SKM,l) (23)

If SE(SKM,t) is not reported, we can use the standard error for a population proportion:

SE(SKM,t) ≈

√
SKM,t(1− SKM,t)

Nt
(24)

with Nt the number of participants with complete outcome information (i.e. whether an event
occurred or not) after t years of follow-up.
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3.2 Extrapolation of event rates

In some situations, we do not have survival estimates at specific time points of interest. For instance,
we may have survival estimates for l (e.g. 5 years) instead of t (e.g. 10 years). Below, we describe
how to extrapolate Kaplan-Meier event rates across different time points. If we assume that events
occur according to a Poisson distribution, we have for a given l:

SKM,t = Poisson(0;λ) ⇔ (25)

= Poisson(0;φt) ⇔ (26)

= exp(−φt) ⇔ (27)

= exp (t ln(SKM,l)/l) (28)

where λ represents the shape parameter which indicates the average number of events in the given
time interval t. The parameter φ then represents the “normalized rate” in time units of t (e.g., per
year, month or second ).

For instance, the observed 5-year cumulative survival probability SKM,5 can be extrapolated to the
10-year cumulative survival probability using:

SKM,10 = exp

(
10 ln(SKM,5)

5

)
(29)

We can approximate the standard error of extrapolated event rates using the Delta method:

SE(SKM,t) ≈

√(
∂ [exp (t ln(SKM,l)/l)]

∂ [SKM,l]

)2

SE(SKM,l) ⇔ (30)

≈

√(
t exp (t ln(SKM,l)/l)

l SKM,l

)2

SE(SKM,l) ⇔ (31)

≈ t exp (t ln(SKM,l)/l)

l SKM,l
SE(SKM,l) (32)

The total O:E ratio at t years can then be calculated as:

(O:E)t =
1− SKM,t

1− SE,t
⇔ (33)

=
1− exp(t ln(SKM,l)/l)

1− exp(t ln(SE,l)/l)
(34)

The error variance of (O:E)t can be approximated as follows:

Var(O:E)t = Var

(
1− exp(t ln(SKM,l)/l)

1− exp(t ln(SE,l)/l)

)
⇔ (35)

=

(
1

1− exp(t ln(SE,l)/l)

)2

Var (1− exp(t ln(SKM,l)/l)) ⇔ (36)

≈ 1

(1− exp(t ln(SE,l)/l))2

(
∂ [(1− exp(t ln(SKM,l)/l))]

∂ [SKM,l]

)2

Var(SKM,l) ⇔ (37)

≈ 1

(1− exp(t ln(SE,l)/l))2

(
− t exp(t ln(SKM,l)/l)

lSKM,l

)2

Var(SKM,l) ⇔ (38)

≈ t2 exp(2t ln(SKM,l)/l)

l2(SKM,l)2(1− exp(t ln(SE,l)/l))2
Var(SKM,l) ⇔ (39)

SE(O:E)t ≈
t exp(t ln(SKM,l)/l)

lSKM,l(1− exp(t ln(SE,l)/l))
SE(SKM,l) (40)
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which can further be simplified to:

Var(O:E)t ≈
t2 exp(2t ln(SKM,l)/l)

l2(SKM,l)2(1− exp(t ln(SE,l)/l))2
Var(SKM,l) ⇔ (41)

≈ t2 exp(2t ln(SKM,l)/l)

l2(SKM,l)2(1− exp(t ln(SE,l)/l))2

(
SKM,l(1− SKM,l)

Nl

)
⇔ (42)

≈ t2 exp(2t ln(SKM,l)/l)(1− SKM,l)

l2NlSKM,l(1− exp(t ln(SE,l)/l))2
⇔ (43)

SE(O:E)t ≈
t
√

(1− SKM,l) exp(t log(SKM,l)/l)

l
√
NlSKM,l (1− exp(t log(SE,l)/l))

(44)

For the natural logarithm of the total O:E ratio we have:

ln(O:E)t = ln

(
1− exp(t ln(SKM,l)/l)

1− exp(t ln(SE,l)/l)

)
⇔ (45)

= ln (1− exp(t ln(SKM,l)/l))− ln (1− exp(t ln(SE,l)/l)) (46)

with

Var(ln(O:E)t) = Var (ln (1− exp(t ln(SKM,l)/l))− ln (1− exp(t ln(SE,l)/l))) ⇔ (47)

= Var (ln (1− exp(t ln(SKM,l)/l))) ⇔ (48)

≈
(
∂ [ln (1− exp(t ln(SKM,l)/l))]

∂ [SKM,l]

)2

Var(SKM,l) ⇔ (49)

≈ t2 exp (2t ln(SKM,l)/l)

l2(SKM,l)2(1− exp (t ln(SKM,l)/l))2
Var(SKM,l) ⇔ (50)

SE(ln(O:E)t) ≈
(

t

lSKM,l

)(
exp (t ln(SKM,l)/l)

1− exp (t ln(SKM,l)/l)

)
SE(SKM,l) (51)

Note that the SE of the observed cumulative l-year survival, SE(SKM,l), is equal to the SE of the
observed cumulative l-year risk, SE(1 − SKM,l). If both quantities are unavailable, aforementioned
equations can again be simplified:

Var(ln(O:E)t) ≈
t2 exp (2t ln(SKM,l)/l)

l2(SKM,l)2(1− exp (t ln(SKM,l)/l))2
Var(SKM,l) ⇔ (52)

≈ t2 exp (2t ln(SKM,l)/l)

l2(SKM,l)2(1− exp (t ln(SKM,l)/l))2

(
SKM,l(1− SKM,l)

Nl

)
⇔ (53)

≈ t2(1− SKM,l) exp (2t ln(SKM,l)/l)

l2NlSKM,l(1− exp (t ln(SKM,l)/l))2
⇔ (54)

SE(ln(O:E)t) ≈
t
√

(1− SKM,l) exp(t log(SKM,l)/l)

l
√
NlSKM,l (1− exp(t log(SKM,l)/l))

(55)
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3.3 Examples

For all examples, we consider validation of Framingham Wilson in a male population.

Example 1: DeFilippis 2015

In the first example [9], we consider the situation where Ot=10 = 164, Et=10 = 251.1 and PO,t=10 =
0.084 have been reported (see Table 3 in the publication). Hence, we can calculate (O:E)t=10 fairly
straightforward:

(O:E)t=10 = 164/251.1 = 0.65 (56)

such that

ln(O:E)t=10 = ln(164)− ln(251.1) = −0.426 (57)

The standard error of ln(O:E)t=10 is given as [27]:

SE(ln(O:E)t=10) =
√

(1− 0.084)/164 = 0.075 (58)

Alternatively, if PO,t=10 was not reported, the standard error could be approximated as [27]:

SE(ln(O:E)t=10) =
√

1/164 = 0.078 (59)

Example 2: Buitrago 2011

In the validation by [6], the observed and predicted 10-year risk estimates were reported (Table 2),
as well as the total number of observed events (Table 1). The resulting summary data is given as
PO,t=10 = 0.109, PE,t=10 = 0.169 and Ot=10 = 22. Hence, we have:

(O:E)t=10 = 0.109/0.169 = 0.645 (60)

such that

ln(O:E)t=10 = ln(0.109)− ln(0.169) = −0.439 (61)

with

SE(ln(O:E)t=10) =
√

(1− 0.109)/22 = 0.201 (62)

Example 3: Rodondi 2012

In the third example [17], event rates are only reported for a follow-up of 7.5 rather than 10 years.
In particular, we have have PO,t=7.5 = 0.2071 and PE,t=7.5 = 0.1903 (Table S1). We can extrapolate
these event rates as follows:

SKM,t=10 = exp (10 ln(1− 0.2071)/7.5) = 0.734 (63)

SE,t=10 = exp (10 ln(1− 0.1903)/7.5) = 0.755 (64)

such that:

(O:E)t=10 = (1− 0.734)/(1− 0.755) = 1.08 (65)

(O:E)t=7.5 = 0.2071/0.1903 = 1.09 (66)

and

ln(O:E)t=10 = ln(1− 0.734)− ln(1− 0.755) = 0.082 (67)
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The standard error is given as:

SE(ln(O:E)t=10) =

(
10

7.5 (1− 0.2071)

)(
exp (10 ln(1− 0.2071)/7.5)

1− exp (10 ln(1− 0.2071)/7.5)

)
SE(SKM,l) (68)

= 1.681591× 2.757691× SE(SKM,l) (69)

≈ 1.681591× 2.757691×

√
(1− 0.2071)× 0.2071

Nt=7.5
(70)

Although Nt=7.5 is not directly reported, we here assume that Nt=7.5 = N = 981. This assumption
seems reasonable because the number of observed events over the entire follow-up (O = 205) is similar
to what can be estimated from PO,t=7.5 assuming that there is no drop-out (0.2071 × 981 = 203).
We can therefore approximate SE(ln(O:E)t=10) as follows:

SE(ln(O:E)t=10) ≈ 1.681591× 2.757691×
√

(1− 0.2071)× 0.2071

981
(71)

≈ 1.681591× 2.757691× 0.01293793 (72)

≈ 0.06 (73)

Note that estimate is almost identical to the binomial approximation ignoring extrapolation of PO,t

(eq. 27 from [27]):

SE(ln(O:E)t=10) ≈
√

1− (1− 0.734)

203
(74)

≈ 0.06 (75)

Finally, note that in studies with substantial drop-out of participants, it is still possible to estimate
Nl by assuming that patients are censored at a constant rate [28, 29].

Example 4: Empana 2003

In the fourth example by Empana [10], 5-year event rates are depicted graphically for tenths of
predicted risk (see Figure S6). The total sample size was of the validation study was 2399. If we
extract the different calibration points (see Table S5), we can estimate the total O:E ratio as follows:

PO,t=5 =
2 + 5 + 11 + 9 + 6 + 10 + 15 + 15 + 26 + 21

2399
= 0.05002084 (76)

PE,t=5 =
6 + 9 + 11 + 12 + 14 + 16 + 18 + 21 + 24 + 35

2399
= 0.0691955 (77)

such that (O:E)t=5 = 120/166 = 0.72, which is very close to the ratio reported in the original
validation study (as indicated in Figure 1 of [10], this ratio was 1/1.34 = 0.75). We can extrapolate
this calibration statistic to a 10-year follow-up period as follows:

(O:E)t=10 =
1− exp (10 ln(1− 0.05002084)/5)

1− exp (10 ln(1− 0.0691955)/5)
=

0.0975

0.1336
= 0.73 (78)

such that ln(O:E)t=10 = −0.315. The standard error can be approximated using equation (27) from
the Appendix of [27], such that:

SE(ln(O:E)t=10) ≈
√

1− 0.0975

120
≈ 0.087 (79)

or, more accurately (assuming that Nt=5 = 2399):

SE(ln(O:E)t=10) =

(
10

5 (1− 0.0975)

)(
exp (10 ln(1− 0.0975)/5)

1− exp (10 ln(1− 0.0975)/5)

)√
(1− 0.0975) 0.0975

2399
(80)

= 0.087 (81)

As an illustration, estimates for SE(ln(O:E)t=10) are plotted against values for Nt=5 in Figure S7.
For instance, if Nt=5 would be 2000 rather than 2399 (e.g. due to drop-out of study participants),
the SE increases from 0.087 to 0.095.
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Figure S6: Calibration of the Framingham risk function
in Belfast for tenths of predicted risk, as obtained from
Empana 2003.

Total Observed Predicted

N N % N %

1 240 2 (0.83 %) 6 (2.50 %)
2 240 5 (2.08 %) 9 (3.75 %)
3 240 11 (4.59 %) 11 (4.59 %)
4 240 9 (3.75 %) 12 (5.00 %)
5 240 6 (2.50 %) 14 (5.84 %)
6 240 10 (4.17 %) 16 (6.67 %)
7 240 15 (6.25 %) 18 (7.50 %)
8 240 15 (6.25 %) 21 (8.75 %)
9 240 26 (10.84 %) 24 (10.00 %)

10 239 21 (8.75 %) 35 (14.59 %)

Table S5: Extracted event rates for
the validation of Framingham Wilson in
Empana 2003.

Figure S7: Estimates for SE(ln(O:E)t=10) in example 4.
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4 Bayesian Meta-analysis

4.1 Empirical estimates of between-study heterogeneity

Table S6: Empirical estimates of between-study heterogeneity for meta-analysis of the c-statistic

Study Meta-analysis scale

Original Logit
Mean BSSD Mean BSSD

Kengne 2004 † [30] 0.80 0 1.39 0
Thompson 2014 [31] 0.60 0.001 0.41 0.00
Ford 2010 [32] 0.64 0.018 0.57 0.00
Thompson 2014 [31] 0.62 0.022 0.48 0.09
Snell 2015 † [33] 0.71 0.019 0.80 0.11
Ford 2010 [32] 0.76 0.011 1.08 0.11
Debray 2017 [27] 0.79 0.029 1.31 0.15
Gagne 2015 [34] 0.83 0.027 1.57 0.18
Kengne 2004 † [30] 0.76 0.037 1.15 0.21
Kengne 2004 † [30] 0.77 0.045 1.21 0.25
Kengne 2004 † [30] 0.79 0.044 1.31 0.26
Guida 2014 [35] 0.79 0.045 1.32 0.26
Kengne 2004 † [30] 0.79 0.046 1.31 0.28
Kengne 2004 † [30] 0.79 0.046 1.31 0.28
Meads 2011 † [36] 0.63 0.068 0.53 0.29
Chalmers 2011 [37] 0.78 0.050 1.27 0.29
Shen 2016 [38] 0.69 0.068 0.79 0.30
Chalmers 2011 [37] 0.66 0.066 0.68 0.31
Shen 2016 [38] 0.78 0.057 1.23 0.32
Chalmers 2011 [37] 0.79 0.052 1.34 0.33
Chalmers 2011 [37] 0.67 0.075 0.71 0.33
Marques 2015 [39] 0.79 0.062 1.34 0.36
Ford 2010 [32] 0.65 0.095 0.64 0.44
Gagne 2015 [34] 0.83 0.063 1.68 0.45
van Klaveren 2014 † [40] 0.77 0.085 1.21 0.48
Marques 2015 [39] 0.74 0.090 1.08 0.49

Mean = random effects summary estimate; BSSD = between-study standard deviation
† Estimates for the BSSD on the transformed scale were obtained by applying the Delta method:
Var(logit(c)) = Var(c)/(c (1− c)2), where we assumed that Var(c) is the between-study variance of
the c-statistic.
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Table S7: Empirical estimates of between-study heterogeneity for meta-analysis of the total O:E
ratio.

Review Meta-analysis scale

Original Log
N Mean BSSD Mean BSSD

Ohle 2011 [41] 5 0.12 0 -1.61 0
Zhu 2015 [42] 5 0.75 0 -0.11 0
Ohle 2011 [41] 6 0.62 0.36 -0.04 0
Ohle 2011 [41] 7 1.01 0.05 0.01 0.05
Meads 2011 [36] 10 1.05 0.09 0.06 0.09
Ohle 2011 [41] 10 0.90 0.14 -0.12 0.16
Ohle 2011 [41] 4 0.93 0.15 -0.05 0.18
Ohle 2011 [41] 8 0.92 0.20 -0.09 0.20
Zhu 2015 [42] 6 1.12 0.27 0.14 0.20
Meads 2011 [36] 3 0.90 0.24 -0.12 0.26
Ohle 2011 [41] 4 0.53 0.17 -0.59 0.31
Zhu 2015 [42] 6 1.40 0.54 0.32 0.37
Guida 2014 [35] 23 0.99 0.00 0.10 0.44
Debray 2017 [27] 19 0.57 0.25 -0.64 0.47
Ohle 2011 [41] 7 0.54 0.20 -0.49 0.55
Ohle 2011 [41] 5 0.47 0.62 -1.15 1.39

N = number of included studies; Mean = random effects summary estimate; BSSD = between-study
standard deviation
Summary estimates were obtained using random effects meta-analysis using restricted maximum
likelihood estimation.
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4.2 Influence of between-study heterogeneity

Figure S8: Prediction intervals for varying degrees of between-study heterogeneity
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Prediction intervals were generated by adopting a Bayesian estimation framework where we assumed
fixed values for the presence of between-study heterogeneity, according to τ = 0.1 (dash), τ = 0.5
(dot), τ = 1 (dot-dash) and τ = 2 (long dash).
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4.3 Construction of prior distributions

Based on the empirical data presented in Section 4.1, we consider the construction of weakly in-
formative prior distributions for the between-study standard deviation of the logit c-statistic(τdiscr)
and of the log O:E ratio (τcal.OE). Results in Section 4.2 demonstrate that for the logit c-statistic
and the log O:E ratio, it is unlikely that τdiscr > 2 and, respectively, τcal.OE > 2. Hence, we propose
the following priors adopting a Uniform distribution:

� τdiscr ∼ Unif(0, 2)

� τcal.OE ∼ Unif(0, 2)

� τcal.slope ∼ Unif(0, 2)

Because the uniform distribution tends to unduly favor presence of heterogeneity in discrimination
and calibration estimates across studies [43, 44], we also consider a half Student-t distribution with
location m, scale σ and ν degrees of freedom:

� τdiscr ∼ Student-t(m = 0, σ = 0.5, ν = 3)T [0, 10]

� τcal.OE ∼ Student-t(m = 0, σ = 1.5, ν = 3)T [0, 10]

� τcal.slope ∼ Student-t(m = 0, σ = 0.5, ν = 3)T [0, 10]

The resulting priors are depicted in the figure below for meta-analysis of the Framingham Risk Score.
Hereby, we assumed within-study Normality for the logit c-statistic and, respectively, log O:E ratio.

Figure S9: Histograms of posterior simulations of the between-study standard deviation in the
empirical examples.
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The histogram represents the posterior on τ , whereas the solid line indicates the prior density. In
the top figures, a Uniform prior is used. In the bottom figures, a truncated Student-t prior is used.
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4.4 Meta-analysis models

Below, we describe the meta-analysis models for obtaining summary estimates of the c-statistic,
the total O:E ratio, and the calibration slope. To facilitate their implementation, we integrated
all methods in the R package metamisc. This package currently supports restoring of missing
information (e.g. standard error of the c-statistic), necessary data transformations, and frequentist
and Bayesian meta-analysis of the c-statistic and total O:E ratio. Methods for summarizing the
calibration slope will be implemented in the future, however, corresponding source code is already
available from the supporting information.

To use the package metamisc, apply the following commands in R:

install.packages("metamisc")

library("metamisc")

packageVersion("metamisc") # Verify package version

The examples below were performed using metamisc version 0.1.8.

4.4.1 Meta-analysis of the c-statistic

The marginal model for a frequentist meta-analysis of the c-statistic is given as follows:

logit(ci) ∼ N (θi,Var (logit(ci)))

θi ∼ N
(
µdiscr, τ

2
discr

) (Model 1)

The corresponding R code to summarize the discrimitive performance of EuroSCORE II is given
below.

data(EuroSCORE)

fit <- with(EuroSCORE, valmeta(cstat=c.index, cstat.se=se.c.index,

cstat.95CI=cbind(c.index.95CIl,c.index.95CIu),

N=n, O=n.events, slab=Study))

By default, metamisc adopts restricted maximum likelihood estimation and uses the Sidik-Jonkman
Hartung-Knapp method for constructing confidence intervals. This results in the following estimates
for the meta-analysis of EuroSCORE II:

> fit

Model results for the c-statistic:

estimate 95CIl 95CIu 95PIl 95PIu

0.7888603 0.7648784 0.8110005 0.6795982 0.8680942

Number of studies included: 23

Note: For 4 validation(s), the standard error of the concordance statistic

was estimated using method 'Newcombe.4'.

When some studies did not provide a standard error for the (logit) c-statistic, it is often helpful to
inspect how this quantity was estimated using the valmeta command. This information, together
with the data used for meta-analysis, is available from fit$data.

> head(fit$data)

theta theta.se theta.CIl theta.CIu theta.blup theta.se.source

1 1.446765 0.08964514 1.277360 1.628762 1.433523 Confidence Interval

2 1.874690 0.33390703 1.373841 2.682732 1.532874 Confidence Interval

3 1.450010 0.24144872 1.045969 1.992430 1.390088 Confidence Interval

4 1.324925 0.06027728 1.206784 1.443067 1.324587 Standard Error

5 1.437067 0.05156766 1.335996 1.538137 1.432715 Standard Error

6 1.734601 0.07843137 1.580878 1.888324 1.700983 Standard Error

Finally, it is possible to generate a forest plot (see Figure S10).

plot(fit)
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Figure S10: Forest plot of the discrimination performance of EuroSCORE II
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We can consider a Bayesian meta-analysis to account for uncertainty in the estimation of τdiscr. By
default, it is assumed that µdiscr ∼ N (0, 106) and τdiscr ∼ Unif(0, 2). This model can be implemented
as follows:

fit <- with(EuroSCORE, valmeta(cstat=c.index, cstat.se=se.c.index,

cstat.95CI=cbind(c.index.95CIl,c.index.95CIu),

N=n, O=n.events, slab=Study, method="BAYES"))

Note that meta-analysis results are very similar to the ones obtained with REML estimation:

> fit

Summary c-statistic with 95% credibility and 95% prediction interval:

estimate CIl CIu PIl PIu

0.7884944 0.7639814 0.8115765 0.6826630 0.8809185

Penalized expected deviance: 97.49

Number of studies included: 23

Note: For 4 validation(s), the standard error of the concordance statistic

was estimated using method 'Newcombe.4'.

The fitted JAGS model can be retrieved from fit$runjags. This object can subsequently be used
to investigate convergence in more detail, or to print various characteristics:

> print(fit$runjags$model)

JAGS model syntax:
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1 | model{

2 | for (i in 1:Nstudies)

3 | {

4 | theta[i] ~ dnorm(alpha[i], wsprec[i])

5 | alpha[i] ~ dnorm(mu.tobs, bsprec)

6 | wsprec[i] <- 1/(theta.var[i])

7 | }

8 | bsprec <- 1/(bsTau*bsTau)

9 | bsTau ~ dunif(0,2)

10 | mu.tobs ~ dnorm(0,1e-06)

11 | mu.obs <- 1/(1+exp(-mu.tobs))

12 | pred.obs <- 1/(1+exp(-pred.tobs))

13 | pred.tobs ~ dnorm(mu.tobs, bsprec)

14 | }

> fit$runjags$data

JAGS data:

1 | "theta" <- c(1.44676457855093, 1.87468984855879, 1.450010175506,

1.3249254147436, 1.43706668649331, 1.73460105538811, 0.944461608840851,

1.50285564952595, 0.708185057924486, 0.944461608840851, 0.944461608840851,

1.65822807660353, 1.20831120592453, 0.944461608840851, 1.20831120592453,

0.584055317289261, 1.20661802171363, 1.38629436111989, 1.51634748936809,

1.58562726374038, 1.15267950993839, 1.78245707656574, 1.20831120592453)

2 | "theta.var" <- c(0.00803625185405368, 0.111493902485701, 0.0582974867155871,

0.00363334993774255, 0.00265922322430263, 0.00615148019992311, 0.0639969529478458,

0.00221078595421536, 0.0180780965840686, 0.00553606859410431, 0.201277475968239,

0.0302664009358649, 0.14312400583974, 0.0284430901990426, 0.118637653314697,

0.0954290472715787, 0.0574270742259427, 0.0087890625, 0.0183606172105081,

0.00723283344743463, 0.0942597722376116, 0.071672964220553, 0.00318832715169838)

3 | "Nstudies" <- 23

4 |

We proposed τdiscr ∼ Student-t(0, 0.52, 3)T [0, 10] as an alternative prior for the between-study stan-
dard deviation. This prior can be implemented as follows:

pars.model <- list(hp.tau.dist="dhalft",

hp.tau.sigma=0.5,

hp.tau.min=0,

hp.tau.max=10,

hp.tau.df=3)

with(EuroSCORE, valmeta(cstat=c.index, cstat.se=se.c.index, N=n, O=n.events,

cstat.95CI=cbind(c.index.95CIl, c.index.95CIu),

slab=Study, method="BAYES", pars=pars.model))
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4.4.2 Meta-analysis of the total O:E ratio

For meta-analysis of the total O:E ratio we have:

ln(O:E)i ∼ N (ζi,Var (ln(O:E)i))

ζi ∼ N
(
µcal.OE, τ

2
cal.OE

) (Model 2)

with ln(O:E)i the natural log of the estimated O:E ratio in the ith study, and Var (ln (O:E)i) its error
variance. It is, however, also possible to use a discrete likelihood for modeling the total number of
observed events in each study (Oi):

Oi ∼ Binom (Ni, pO,i)

ln

(
pO,i

pE,i

)
∼ N

(
µcal.OE, τ

2
cal.OE

) (Model 2*)

Alternatively, if the total sample size is unknown, we can model the within-study variation using a
Poisson distribution:

Oi ∼ Poisson (Ei exp(ηi))

ηi ∼ N
(
µcal.OE, τ

2
cal.OE

) (Model 2**)

Note that the prior µcal.OE ∼ N (0, 102) is somewhat restricted due to exponentiation of ηi. For all
models, the summary O:E ratio is simply given by exp(µ̂cal.OE).

Figure S11: Forest plot of the calibration performance of EuroSCORE II
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For instance, the total O:E ratio of EuroSCORE II can be summarized as follows:

fit <- with(EuroSCORE, valmeta(measure="OE", O=n.events, E=e.events, N=n))

The corresponding forest plot is depicted in Figure S11. By default, Model 2 will be used for meta-
analysis of the total O:E ratio. Missing information will be estimated from the available data. We
can easily verify this in R :

> head(fit$data)

theta theta.se theta.CIl theta.CIu theta.source

1 0.04405999 0.06426711 -0.08190124 0.17002122 O, E and N

2 -0.49643689 0.18638824 -0.86175112 -0.13112265 O, E and N

3 0.18721154 0.15320840 -0.11307140 0.48749448 O, E and N

4 -0.31224698 0.07110740 -0.45161492 -0.17287904 O, E and N

5 -0.08180235 0.03603276 -0.15242525 -0.01117944 O, E and N

6 0.22897447 0.06624097 0.09914455 0.35880439 O, E and N

where theta and theta.se represent estimates for ln(O:E)i and, respectively, its standard error.

Since all studies provide information on the total number of observed and expected events, it is usu-
ally more appropriate to adopt a discrete within-study likelihood. We can, for instance, implement
Model 2* as follows:

fit <- with(EuroSCORE, valmeta(measure="OE", O=n.events, E=e.events, N=n,

pars=list(model.oe="poisson/log")))

Finally, when performing a Bayesian meta-analysis, we can tailor the within-study likelihood of the
log O:E ratios ζ∗i :

ζ∗i ∼ N
(
µcal.OE, τ

2
cal.OE

)
where

� Oi ∼ Binom (Ni, pO,i) and ζ∗i = ln (pO,i/pE,i) if Oi, pE,i (or Ei) and Ni are reported.

� Oi ∼ Poisson (Ei exp(ζ∗i )) if only Oi and Ei are reported.

� ln(O:E)i ∼ N (ζ∗i ,Var (ln(O:E)i)) if the total O:E ratio and its confidence interval or standard
error are reported.

This approach is also known as hierarchical related regression, as different regression models are
specified and linked by shared parameters (here µcal.OE and τcal.OE). By default, metamisc assumes
that µcal.OE ∼ N (0, 100) and τcal.OE ∼ Unif(0, 2). The model can be implemented as follows:

fit <- with(EuroSCORE, valmeta(measure="OE", O=n.events, E=e.events, N=n,

method="BAYES"))

This should yield the following results:

> fit

Summary O:E ratio with 95% credibility and 95% prediction interval:

estimate CIl CIu PIl PIu

1.0975083 0.8844918 1.3381688 0.2871161 2.4691098

Penalized expected deviance: 368.14

Number of studies included: 23

Since all studies provide information on Oi, Ei and Ni, a binomial likelihood has been used to model
all within-study variation. We can inspect this as follows:

> fit$runjags$model

JAGS model syntax:
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1 | model{

2 | for (j in 1:23)

3 | {

4 | O[s1[j]] ~ dbinom(pobs[j], N[s1[j]])

5 | OE[j] <- exp(theta[s1[j]])

6 | pobs[j] <- min(OE[j], N[s1[j]]/(E[s1[j]]+1)) * E[s1[j]]/N[s1[j]]

7 | }

8 | for (j in 1:23)

9 | {

10 | theta[j] ~ dnorm(mu.logoe, bsprec.logoe)

11 | }

12 | bsprec.logoe <- 1/(bsTau*bsTau)

13 | bsTau ~ dunif(0,2)

14 | mu.logoe ~ dnorm(0,0.01)

15 | mu.oe <- exp(mu.logoe)

16 | pred.oe <- exp(pred.logoe)

17 | pred.logoe ~ dnorm(mu.logoe, bsprec.logoe)

18 | }

To further explore the potential advantages of Bayesian meta-analysis, we can introduce some missing
values in the reported study size.

EuroSCORE.new <- EuroSCORE

EuroSCORE.new$n[c(1, 2, 5, 10, 20)] <- NA

fit <- with(EuroSCORE.new, valmeta(measure="OE", O=n.events, E=e.events, N=n,

method="BAYES"))

Notice that results are very similar:

> fit

Summary O:E ratio with 95% credibility and 95% prediction interval:

estimate CIl CIu PIl PIu

1.0976945 0.8750624 1.3237027 0.2757592 2.4640205

Penalized expected deviance: 377.3

Number of studies included: 23

However, we now have a Poisson likelihood for the 5 studies where the total sample size is missing:

> fit$runjags$model

JAGS model syntax:

1 | model{

2 | for (j in 1:18)

3 | {

4 | O[s1[j]] ~ dbinom(pobs[j], N[s1[j]])

5 | OE[j] <- exp(theta[s1[j]])

6 | pobs[j] <- min(OE[j], N[s1[j]]/(E[s1[j]]+1)) * E[s1[j]]/N[s1[j]]

7 | }

8 | for (j in 1:5)

9 | {

10 | O[s2[j]] ~ dpois(lambda[j])

11 | lambda[j] <- exp(theta[s2[j]])*E[s2[j]]

12 | }

13 | for (j in 1:23)

14 | {

15 | theta[j] ~ dnorm(mu.logoe, bsprec.logoe)

16 | }

17 | bsprec.logoe <- 1/(bsTau*bsTau)

18 | bsTau ~ dunif(0,2)
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19 | mu.logoe ~ dnorm(0,0.01)

20 | mu.oe <- exp(mu.logoe)

21 | pred.oe <- exp(pred.logoe)

22 | pred.logoe ~ dnorm(mu.logoe, bsprec.logoe)

23 | }
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4.4.3 Meta-analysis of the calibration slope

When validating a previously developed prediction model in new patient data, the calibration slope
is calculated as follows:

yk ∼ Bernoulli(pk)

logit(pk) = α+ βLPk

where yk is the observed (binary) outcome for individual k and LPk is the linear predictor for that
individual. The LP summarizes the effects of the predictors X, and is related to the predicted
probability P (yk = 1) = PE,k, as logit(PE,k) = LPk. The calibration slope is then simply given by
β.

As discussed in the main article, the standard meta-analysis model for obtaining a summary estimate
of the calibration slope is given as:

Oij ∼ Binom(Nij , pO,ij)

logit(pO,ij) = αi + βilogit(PE,ij)

βi ∼ N (µcal.slope, τ
2
cal.slope)

µcal.slope ∼ N (0, 106)

(Model 3)

with τcal.slope ∼ Unif(0, 2) or τcal.slope ∼ Student-t(0, 0.52, 3)T [0, 10]. We use a Binomial distribution,
rather than a Bernoulli distribution, to account for the fact that information on observed and
expected events is only available for groups of individuals.

Note that when including validation studies with different follow-up lengths, estimates for Oij and
PE,ij can be extrapolated. When operating under a Bayesian estimation framework, we can integrate
uncertainty due to extrapolation in the meta-analysis model.

Suppose that t represents the time period for which calibration performance is of primary interest
(e.g. t = 10 years for Framingham Wilson). Further, suppose that li represents the actual time
period for which Oij and Eij were available in study i. For instance, when reviewing the validation
studies of Framingham Wilson, some studies assessed calibration performance after li = 5 years. We
then have:

pt = 1− SKM,t = 1− exp

(
t ln(1− pl)

l

)

Further, we can account for sampling error in PE,ij by specifying a binomial distribution for Eij .
Model 3 then becomes:

Oij ∼ Binom(Nij , ζO,ij)

Eij ∼ Binom(Nij , ζE,ij)

ζO,ij = 1− exp

(
li ln(1− pO,ij)

t

)
ζE,ij = 1− exp

(
li ln(1− pE,ij)

t

)
logit(pO,ij) = αi + βilogit(pE,ij)

logit(pE,ij) ∼ N (0, 106)

βi ∼ N (µcal.slope, τ
2
cal.slope)

µcal.slope ∼ N (0, 106)

(Model 3*)

with τcal.slope ∼ Unif(0, 2) or τcal.slope ∼ Student-t(0, 0.52, 3)T [0, 10].
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As mentioned, t represents the time period for which calibration performance is of primary interest,
and li the actual time period for which Oij and Eij were available in study i. For most validation
studies, it is likely that li = t, in which case the Poisson extrapolation will be omitted (as ζO,ij then
collapses to pO,ij , and respectively, ζE,ij to pE,ij).

4.4.4 Evaluation of convergence

The convergence of all estimated Bayesian meta-analysis models is verified by calculating the po-
tential scale reduction factor (psrf) of the Gelman-Rubin statistic autocorrelation of the sample. If
the psrf is greater than 1.05, a warning will be printed. For instance, consider the following model
where only 100 MCMC samples are generated from the posterior distribution:

data(EuroSCORE)

with(EuroSCORE, valmeta(cstat=c.index, cstat.se=se.c.index,

cstat.95CI=cbind(c.index.95CIl, c.index.95CIu),

N=n, O=n.events, method="BAYES",

pars=list(hp.tau.dist="dhalft"), sample=100))

This will yield:

Note: Unable to calculate the multivariate psrf

Finished running the simulation

Model results for the c-statistic:

estimate 95CIl 95CIu 95PIl 95PIu

0.7865492 0.7611015 0.8071919 0.6885138 0.8757514

Penalized expected deviance: 83.7

Number of studies included: 23

Note: For 4 validation(s), the standard error of the concordance statistic was estimated

using method 'Newcombe.4'.

Warning message:

In print.valmeta(x) :

Model did not properly converge! The upper bound of the convergence diagnostic (psrf)

exceeds 1.05 for the parameters bsTau (psrf=1.68) . Consider re-running the analysis

by increasing the optional arguments 'adapt', 'burnin' and/or 'sample'.
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4.5 Performance in sparse data

We conducted a small simulation study to investigate the performance of frequentist and Bayesian
estimation methods in sparse data. Hereto, we assessed to what extent estimates for the between-
study standard deviation are affected when few studies are available for meta-analysis.

We first performed a meta-analysis of 23 studies reporting the discrimination and calibration per-
formance of EuroSCORE II. We also performed a meta-analysis of the discrimination (K = 21) and
calibration (K = 17) performance of the Framingham Risk Score. Results in Table S8 indicate that
estimates for the between-study standard deviation (defined as τdiscr and τcal.OE) are fairly stable,
regardless the estimation method. Hence, we will use these as reference values in our simulation
study.

Table S8: Meta-analysis estimates from the empirical examples

Example Estimation τdiscr τcal.OE

Estimate 2.5% CI 97.5% CI Estimate 2.5% CI 97.5% CI

ES2 ML 0.2557 0.1753 0.4226 0.4323 0.3325 0.6696
REML 0.2647 0.1753 0.4226 0.4444 0.3325 0.6696
Bayesian † 0.2792 0.1736 0.4178 0.4541 0.3057 0.6386
Bayesian ‡ 0.2725 0.1684 0.4034 0.4521 0.2958 0.6318

FRS ML 0.1917 0.1283 0.2917 0.5110 0.3862 0.8072
REML 0.1975 0.1283 0.2917 0.5272 0.3862 0.8072
Bayesian † 0.2074 0.1348 0.3083 0.5553 0.3711 0.8081
Bayesian ‡ 0.2053 0.1306 0.2986 0.5519 0.3761 0.7975

ES2 = EuroSCORE II; FRS = Framingham Risk Score; ML = Maximum Likelihood; REML =
Restricted Maximum Likelihood; CI = confidence (for ML and REML) or credibility (for Bayesian
meta-analysis) interval. For meta-analysis of calibration performance, we assumed within-study
Normality for the log O:E ratio.
† It was assumed that τdiscr ∼ Unif(0, 2) and τdiscr, τcal.OE ∼ Unif(0, 2)
‡ It was assumed that τdiscr ∼ Student-t(0, 0.52, 3)T [0, 10] and τcal.OE ∼ Student-t(0, 1.52, 3)T [0, 10]

We adopted a full factorial design to form unique study subsets for meta-analysis. For EuroSCORE II,
this approach allows to perform a total of 23!/(2!(23 − 2)!) = 253 meta-analyses that are based on
K = 2 studies. Similarly, a total of 1771 and 8855 meta-analyses can be performed for K = 3 and,
respectively, K = 4. The same approach was used for FRS, yielding 210 (for K = 2), 1330 (for
K = 3) and 5985 (for K = 4) estimates for τdiscr.

Results in Figure S12 indicate that (restricted) maximum likelihood estimation tends to underes-
timate the presence of between-study heterogeneity when meta-analyses are based on few studies.
Conversely, when adopting Bayesian estimation with the proposed prior distributions, estimates of
τdiscr are much closer to the reference values, particularly when using a Student-t prior.
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Figure S12: Estimates of τdiscr
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Figure S13: Estimates of τcal.OE
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5 Additional Results

5.1 Meta-analysis of EuroSCORE II

Table S9: Meta-analysis estimates for the EuroSCORE II model

Performance Estimation Model K µ̂ (95% CI) τ̂ (95% CI)

c-statistic REML Model 1 23 1.32 (1.18 ; 1.46) 0.26 (0.18 ; 0.42)
Bayesian† Model 1 23 1.32 (1.17 ; 1.46) 0.28 (0.18 ; 0.42)
Bayesian‡ Model 1 23 1.32 (1.17 ; 1.45) 0.27 (0.17 ; 0.40)

Total O:E ratio REML Model 2 23 0.10 (-0.11 ; 0.31) 0.44 (0.33 ; 0.67)
Bayesian† Model 2* 23 0.09 (-0.12 ; 0.30) 0.45 (0.31 ; 0.64)
Bayesian‡ Model 2* 23 0.09 (-0.12 ; 0.29) 0.45 (0.30 ; 0.64)
ML• Model 2** 23 0.09 (-0.10 ; 0.29) 0.42 (0.24 ; 0.56)
Bayesian† Model 2** 23 0.09 (-0.12 ; 0.29) 0.45 (0.30 ; 0.64)
Bayesian‡ Model 2** 23 0.09 (-0.12 ; 0.29) 0.45 (0.30 ; 0.63)

K = Number of studies included in the meta-analysis; REML = Restricted Maximum Likelihood;
ML = Maximum Likelihood; CI = confidence (in case of REML) or credibility (for Bayesian models)
interval
† A uniform prior was used for modeling the between-study standard deviation
‡ A truncated Student-t distribution was used for modeling the between-study standard deviation
• Confidence intervals were approximated using parametric bootstrapping.
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5.2 Meta-analysis of the Framingham Risk Score

As a sensitivity analysis, we conducted a meta-analysis of calibration performance where we omit-
ted studies with inappropriate follow-up. We also conducted a meta-analysis where observed and
expected event rates were extrapolated using a Poisson distribution.

For the calibration slope, we found that inclusion of validation studies with calibration performance
reported for 5 or 7.5 years follow-up facilitated estimation of the meta-analysis models. In particular,
this strategy helped to increase the precision of the summary estimate, and to identify τcal.slope (which
was 0 for K = 3, but increased to 0.2 when estimated using a Bayesian framework with K = 11).

Table S10: Meta-analysis estimates for the Framingham Risk Score

Performance Estimation Model K Summary 95% CI 95% PI

Total O:E ratio REML Model 2 6 0.56 0.28 – 1.16 0.09 – 3.62
Bayesian† Model 2 6 0.61 0.19 – 1.08 0.00 – 2.84
Bayesian‡ Model 2 6 0.61 0.20 – 1.07 0.00 – 2.63
ML Model 2* 6 0.56 0.25 – 1.26 0.03 – 11.29 ?
Bayesian† Model 2* 7 0.60 0.19 – 1.09 0.00 – 2.91
Bayesian‡ Model 2** 7 0.60 0.18 – 1.05 0.00 – 2.67
REML• Model 2 16 0.58 0.44 – 0.76 0.19 – 1.72
Bayesian†• Model 2 16 0.58 0.42 – 0.75 0.09 – 1.49
Bayesian‡• Model 2 16 0.58 0.42 – 0.75 0.09 – 1.48
ML• Model 2** 16 0.57 0.35 – 0.94 0.06 – 5.25 ?
Bayesian†• Model 2** 17 0.58 0.43 – 0.75 0.09 – 1.46
Bayesian‡• Model 2** 17 0.58 0.42 – 0.74 0.10 – 1.48

Calibration slope ML Model 3 3 1.03 0.90 – 1.16 0.20 – 1.87
Bayesian† Model 3 3 1.05 0.47 – 1.64 -0.01 – 2.22
Bayesian‡ Model 3 3 1.05 0.51 – 1.65 -0.06 – 2.17
Bayesian†• Model 3* 11 0.98 0.80 – 1.17 0.48 – 1.51
Bayesian‡• Model 3* 11 0.99 0.81 – 1.16 0.51 – 1.47

Summary estimates for calibration performance (Total O:E ratio and calibration slope) were derived
for a time period of 10 years. Where necessary, observed and expected event rates were extrapolated
using a Poisson distribution (•).
K = Number of studies included in the meta-analysis; REML = Restricted Maximum Likelihood;
ML = Maximum Likelihood; CI = confidence (in case of REML) or credibility (for Bayesian models)
interval; PI = (approximate) prediction interval
† A uniform prior was used for modeling the between-study standard deviation
‡ A truncated Student-t distribution was used for modeling the between-study standard deviation
? statistical model not converged
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5.3 Meta-regression EuroSCORE II

Figure S14: Results from random-effects meta-regression models for EuroSCORE II. Full lines indi-
cate the bounds of the 95% confidence interval around the regression line. Dots indicate the included
validation studies.
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