
Supplemental Material
Sibe: a computation tool to apply protein sequence

statistics to predict folding and design in silico

N. J. Cheung, W. Yu

Methods and materials
Sibe is a software suite rooting in statistical models, optimization solvers and energy functions for
both protein studies and data mining. In this study, within Sibe statistical information inferred from
multiple sequence alignment is generated and applied to protein folding, structure prediction and
design. Two main tasks were presented by two instructive examples, in which we are to show the
ability of Sibe in folding and designing a protein.

Analysis on protein sequences
First of all, we search a query sequence against the UniRef90 database [1] by HMMER [2] and then
prepare its sequence alignment. The aligned sequence can be directly used to infer evolutionary
information, since the HMMER tool provides the best ContTest score [3] and comparable score in
the QuanTest [4]. The following command lines are used to collect the aligned sequences,

jackhmmer \
-N 5 \
--notextw \
-A out.sto \
--tblout out_tbl.out \
--domtblout out_domtbl.out \
-E 0.01 \
--popen 0.25 \
--pextend 0.4 \

query_fasta \
uniref90.fasta

We prepared a wild type sequence of the human β2AR protein as the example for protein se-
quence analysis. By running jackhmmer, we got a raw sequence alignment and then trimmed
them by a command line as follows,

sibe sequence_trim \
-msa=raw_sequence_alignment.msa

The command line is to trim the aligned sequences according to the first sequence (query sequence)
in the input sequence alignment.

1

Sequence index

S
eq

u
en

ce
 i

n
d

ex

1.0

0.8

0.6

0.4

0.2

0.0

Figure S1: Similarity between pairs of sequences.

At the begin of sequence analysis, we use command sequence stats in Sibe to conduct a
naive examination of the sequence space described by the alignment. Sibe will also present a Shell
script for plotting figures of the output. By running the script, the computed a matrix of similarity
between pairs of sequences can be plotted as illustrated in Fig. S5. The matrix representation
gives the fraction of amino acids that are common between the pairwise sequences. As another
computational results, the bar representation of positional conservation is shown in Fig. 3.

sibe sequence_stats \
-msa=raw_sequence_alignment.msa

Computational protein design
Validations of the calculations

In computational protein design, we first demonstrate that the estimated sequence potential from
MSA can distinguish the mesophilic and thermophilic proteins. Likewise, we prepared a MSA for
each family and then inferred the energy-like potential from the MSA by running command line as
follows,

sibe sequence_coupling \
-msa=sequence_alignment_trimed.aln

Based the obtained potential, we calculated the energies of the sequences using the same es-
timated potential if the sequences are in the same family. The command line is to compute the
sequence energy as follows,

sibe sequence_energy \
-msa=the_sequences_require_energy_calculation.aln \
-mat=sequence_potential.mat

The calculations are shown in Fig. 6. We demonstrated that the computational results have
high correlation (Pearson correlation coefficient ∼ −0.74) with the experimental data [5], and the

2

estimated potential and the model were validated to be efficient in distinguishing the mesophilic
from thermophilic proteins, 24 of all protein families as listed in Table S1, others can be find in
ref. [6].

Table S1: Meso- & thermo-philic proteins used in this study

No. Family name PDB ID Source organism (meso-/thermo-philic)
1 Transcription initation 1volA Human (meso)

factor IIb 1aisB Pyrococcus woesei (thermo/100◦C)
2 Superoxide dismutase 1ar4A Propionibacterium freudenreichii (meso)

(Mn- or Fe-dependent) 3mdsA Thermus thermophilus (thermo/75◦C)
3 Glutamate dehydrogenase 1hrdA Clostridium symbiosum (meso)

1gtmA Pyrococcus furiosus (thermo/100◦C)
4 Malate dehydrogenase 4mdhA Pig heart (meso)

1bmdA Thermus flavus (thermo/72.5◦C)
5 Phycocyanin alpha chain 1cpcA Fremyella diplosiphon (meso)

1liaA Polysiphonia urceolata (meso)
1phnA Cyanidium caldarium (thermo/45◦C)

6 Signal recognition particle 1fts Escherichia coli (meso)
(receptor) 1ffh Thermus aquaticus (thermo/72.5◦C)

7 Ferredoxin 1fxd Desulfovibrio gigas (meso)
1fxrA Desulfovibrio africanus (meso)
1vjw Thermotoga maritima (thermo/80◦C)

8 Subtilisin 2pkc Tritirachium album limber (meso)
1thm Thermoactinomyces vulgaris, 60◦C)

9 Neutral protease 1npc Bacillus cereus (meso)
(thermolysin) 1lnfE Bacillus thermoproteolyticus (thermo/52.5◦C)

10 Rubredoxin 6rxn Desulfovibrio desulfuricans (meso)
1caa Pyrococcus furiosus (thermo/100◦C)

11 Cyclodextrin 1cdg Bacillus circulans strain 251 (meso)
glycosyltransferase 1cgt Bacillus circulans strain 8 (meso)

1pamA Bacillus sp. 1011 (meso)
1ciu Thermoanaerobacterium

thermosulfurigenes (thermo/60◦C)
1cyg Bacillus stearothermophilus (thermo/52.5◦C)

12 Phycocyanin beta chain 1cpcB Fremyella diplosiphon (meso)
1liaB Polysiphonia urceolata (meso)
1phnB Cyanidium caldarium (thermo/45◦C)

13 3-Phosphoglycerate kinase 1qpg Yeast (meso)
1vpe Thermotoga maritima (thermo/80◦C)

14 Glyceraldehyde-3-phosphate 1a7kA Leishmania mexicana (meso)
dehydrogenase 1hdgO Thermotoga maritima (thermo/80◦C)

15 Xylanase (I) 1ukrA Aspergillus niger (meso)
1yna Thermomyces lanuginosus (thermo/45◦C)

16 Xylanase (II) 1clxA Pseudomonas fluorescens (meso)
1xyzA Clostridium thermocellum (thermo/60◦C)

17 TATA box binding protein 1cdwA Human (meso)
1vokA Arabidopsis thaliana (meso)
1pczA Pyrococcus woesei (thermo/100◦C)

3

18 Adenylate kinase 2ak3A Bovine (meso)
1ukz Yeast (meso)
1zip Bacillus stearothermophilus (thermo/52.5◦C)

19 Carboxypeptidase 1nsa Pig (meso)
1pca Pig (meso)
1obr Thermoactinomyces vulgaris (thermo/55◦C)

20 Ornithine 2otcA Escherichia coli (meso)
carbamoyltransferase 1a1s Pyrococcus furiosus (thermo/100◦C)

21 Pyrophosphatase 1obwA Escherichia coli (meso)
2prd Thermus thermophilus (thermo/72.5◦C)

22 CheY protein 3chy Escherichia coli (meso)
2chf Salmonella typhimurium (meso)
1tmy Thermotoga maritima (thermo/80◦C)

23 Phosphofructokinase 1pfkA Escherichia coli (meso)
4pfk Bacillus stearothermophilus (thermo/52.5◦C)

24 Triacylglycerol acylhydrolase 1lgyA Rhizopus niveus (meso)
1tib Humicola lanuginosa (thermo/50◦C)
3tgl Rhizomucor miehei (thermo/45◦C

The effects of point mutations were computed from the potential by running following com-
mand line. The matrix representation of the computational results is shown in Fig. 7.

sibe point_mutation \
-fastx=query_fasta_WT.fasta \
-mat=input_sequence_potential.mat

Protein design protocol

Using the algorithm described by Desmet et al. [7], the DEE procedure for each trajectory starts
with a given wild type sequence. The sequence converges to a local energy minimum by grad-
ually decreasing the temperature. As illustrated in Fig. S2, starting from a given wild type se-
quence (WT sequence), we launched a DEE algorithm to optimize the mutant sequence base on
the energy-like potential (sequence potential) inferred from the MSA. According to the
Metropolis criterion, the design protocol will accept or reject a new mutant that may occur in the
wild type sequence, and the change is accepted with probability,

P = min{rp, e−∆E/t} (1)

where rp = 1, and ∆E is the energy difference between the new and old designed sequences.
By running the following command line, we can get a trajectory (the designed sequence

.trajct) of mutant sequences starting from the wild type sequence.

sibe sequence_design \
-fastx=WT_sequence \
-mat=sequence_potential.mat \
-dseq=the_designed_sequence.trajct \
-iterations=100000

From the design protocol, we got five hundreds trajectories of the designed sequences, and the
sequence with lowest energy in each trajectory was collected for visualization as shown in Fig. S4.

4

ASLYVGDLHPDVTEAMLYEKFS

Randomly select a position
and substitute the residue

ASLYVGDLHWDVTEAMLYEKFS

P = min{rp, e−∆E/kT }
∆E < 0 or

U
pd

at
e

te
m

pe
ra

tu
re

 e
ve

ry
 1

00
 s

te
ps

Rejected

ASLYVGDLHWDVTEAMLYEKFS

Accepted

Convergence?
or

Max steps?

N

Y

Output final sequnce

Figure S2: Flowchart of the computational protein design.

Figure S3: Visualization of the computationally designed sequences with the lowest energy in each
trajectory.

Protein folding and structure prediction
In Sibe, MCMC algorithm is used for protein conformation sampling from individual (φ, ψ) dis-
tributions (Ramachandran maps), while all other angles and bond lengths are fixed at their ideal

5

values. A single round involves 500 individual MCMC folding simulations that are run using spe-
cialized (φ, ψ) backbone sampling procedures and the energy functions (as described in ref. [8]) in a
protein representation containing the backbone and Cβ atoms. Within the simulation, MCMC pro-
vides a general solution to protein folding and structure prediction prevalent in scientific research.
As described in ref. [8], Sibe utilizes the same moving sets and energy functions. Additionally, Sibe
employed predicted angles (φ, ψ) to increase the sampling probabilities in the Ramachandran map
distribution, which also efficiently enhance the ability of the MCMC method during the simulation.
The passing of constraints of torsion angles (φ, ψ) and residue-contacts from one round to another
is repeated until convergence as illustrated in Fig. S4.

Input
sequence

Generate
Rama maps

Select 20%
structs. with

lowest energy

Compute average
CM & HB matrix

Obtain consensus
secondary struct.

Update Rama
map (MCMC)

Stage 1
(MCMC)

Convergence?

Stage 2
(MCMC)

Randomize struct
using phi, psi pairs

Choose a random
residue & make a

pivot move

Evaluate energy
(Metropolis criteria)

Stop?
Update

Temperature

Refine using
double-crank

moves

Save struct. with
the lowest energy

N

N

Single MCMC Run

Run MCMC
(Initialization)
w/ constraints

R1S1 R2S1

R2S2 R3S1

R3S2 R4S1

HEC

HEC

HEC

…

HECOQ

HECOQ

……

H
E

C
O

Q
H

E
C

O
Q

Exploration

Exploitation

ClusteringPredicted
(φ,ψ)

Predicted
(φ,ψ)

Phsior

Phsior

Output

Figure S4: Flowchart of a single round in the iterative protein folding.

Constraints-guided sampling

In Sibe, we used the Phsior [9] to predict torsion angles (φ, ψ), which were applied to shift the
Ramachandran map distribution and increase the probabilities p of (φ, ψ) of the ith residue located
in circle [φi − φpredi]2 + [ψ − ψpredi]2 = [25◦]2 by increment of 0.75 ∗ p. In each round, a consensus
secondary structure is obtained at every amino acid position, which is used to alter the Ramachan-
dran map distribution. Combining with the predicted torsion angles (φ, ψ), we can make changes
in the probabilities in each map of amino acids. This strategy leads to efficient sampling in the
MCMC algorithm and accelerate the folding of a protein structure.

The residue-contacts (estimated by evolutionary couplings [10, 11]) are used as constraints in
iterative simulations as illustrated in Fig. 10. The top L/3, L/2, L, 3L/2 (L is the length of a protein
sequence) predicted contacts are used for 500 simulations in initial stage. Every 125 simulations
utilize the same initial constraints of residue-contacts, e.g. top L/3 residue-contacts are used in the
first 125 simulations while top L/2 residue-contacts are employed by another 125 simulations. This
hierarchical application of constraints from residue-contacts is to help the Markov chain sample
efficiently in conformation space.

Metropolis-Hastings sampling

In Sibe, we use a Markov chain to sample from Ramachandran maps distribution (π) (derived
from high resolution PDB structures [8]). Accordingly, it is necessary to develop a transition for

6

the Markov chain, aiming to match the chains stationary distribution with the individual (φ, ψ)
distributions. As an effective strategy to sample angular space (φ, ψ), a random-walk Markov chain
uses the current state of a chain of conformations to propose a new state. Within Sibe, a Gaussian
function centered on the current state g(s|s(t−1)) ∼ N (s(t−1), 1) is defined as the proposal function.
This allows the algorithms to exploit the conformation space of the posterior–if a new conformation
is similar to the last draw, then it is likely to be accepted. The proposal distribution g(s|s(t−1)) is
dependent only on the previous state in the Markov chain.

Starting from some random initial state s(0) ∼ π(0), the protocol first draws a potential state s
from a proposal distribution g(s|s(t−1)). Accordingly, in Sibe the Metropolis-Hastings algorithm is
launched as the simplest form of random-walk MCMC protocol, which accepts or rejects a transi-
tion from protein conformation s(t−1) to s with probability α. The detailed criteria for accepting or
rejecting a proposed state are defined as follows:

1. If R(s) ≥ R(s(t−1)), the proposed state s will be set as the next state in the Markov chain.

2. If R(s) < R(s(t−1)), then the proposed state may still be accepted, but only randomly, and
with a probability R(s)

R(s(t−1))
. The acceptance probability for the proposed state is calculated as

follows,

P (s(t−1) → s) = min

(
1,
R(s)g(s→ s(t−1))

R(s)g(s(t−1) → s)

)
, (2)

where R is the density of the individual φ, ψ distribution of an amino acid, and g is the
density of the proposal function for a transition from s(t−1) to s.

The proposed state s is accepted if a random uniform number u is less than or equal to α.
Otherwise, it will be rejected, and the current state will be set as the next state in the Markov
chain.

Comparisons

We have compared our predictions to those of EVfold [10] on the three proteins. As shown in Table
S2. All the results are computed from EVfold web-server, and the comparisons between EVfold
and Sibe are reported in Table S2 in the supplementary material.

Table S2: Comparison of predictions between EVfold and Sibe.
EVfold Sibe

RMSD (TMscore)
b†0.2 b†0.3 b†0.4 RMSD (TMscore)

1ZGG 3.51Å (0.71) 3.66Å (0.68) 4.51Å (0.61) 2.18Å (0.76)
5FHY 5.23Å (0.49) -‡ 3.75Å (0.61) 3.16Å (0.64)
5UW2 4.25Å (0.57) 4.53Å (0.54) 4.51Å (0.52) 1.50Å (0.80)
†: the multiple sequences were aligned at a bitscore.
‡: no results.

As shown in Fig. S5, the results were computed by the EVfold web-server at https://evcouplings.org.
All the predictions are based on the default configurations on the server and the visualizations of
the tertiary structures are presented by PyMol [12] for comparison to our results as shown in Table
S2. As a de novo method, folding module in Sibe has better performance than that of EVfold, since
Sibe provides folding details in the predictions and iteratively bias the folding.

7

(A) (B) (C)

Figure S5: The comparison of models predicted by EVfold [10] (green) to the crystal structures
(red). Top one Predicted structure of (A) the YwlE protein (1ZGG, bitscore = 0.2), (B) the flagellar
capping (5FHY, bitscore = 0.4), and (C) the E. coli MCE protein MlaD (5UW2, bitscore = 0.2).

Running time
As shown in Fig. S6, the running time of different tasks (MSA, statistical potential, folding) are
presented. For all the proteins used in the study, the jackhmmer tool took similar time to search
the UniRef90 database for obtaining the MSA of each protein. The running time of both estimated
potential and folding is highly dependent on the protein length and the number of sequences in the
MSAs. For example, it took about 13 hours to infer the statistical potential for the human β2AR
protein due to its longer sequences and large number of sequences in its MSA as illustrated in
Fig. S6(a). On distributed computational clusters, we conducted folding simulations on eighteen
proteins [13] and computed the running time as shown in Fig. S6(b).

As illustrated in Fig. 1, it took much longer time to folding a protein into its tertiary structure
comparing to that of calculating the potential.

2322s 151s 1014s 48068s

43516 4912 46266 221306
Aligned
sequences

892s 889s 896s 1064s

~ 3.9h ~ 32.2h ~ 26.2h

2LCI

1E6K

2KPT

1R9H

1RQM

2LTM

1TVG

2LCG

1F21
3MER

2KSY

1SVN

1DMB

2K1S
1ZGG

1N0S

5P21

2JSZ

(a) (b)

Figure S6: Running time of obtaining MSA, estimating sequence potential, and folding simulation.

8

References
[1] Baris E Suzek, Yuqi Wang, Hongzhan Huang, Peter B McGarvey, Cathy H Wu, UniProt

Consortium, et al. Uniref clusters: a comprehensive and scalable alternative for improving
sequence similarity searches. Bioinformatics, page btu739, 2014.

[2] Sean R. Eddy. Accelerated profile HMM searches. PLOS Computational Biology, 7(10):1–16,
10 2011.

[3] Gearóid Fox, Fabian Sievers, and Desmond G Higgins. Using de novo protein structure
predictions to measure the quality of very large multiple sequence alignments. Bioinformatics,
32(6):814–820, 2015.

[4] Quan Le, Fabian Sievers, and Desmond G Higgins. Protein multiple sequence alignment
benchmarking through secondary structure prediction. Bioinformatics, 33(9):1331–1337,
2017.

[5] Franco O. Tzul, Daniel Vasilchuk, and George I. Makhatadze. Evidence for the principle of
minimal frustration in the evolution of protein folding landscapes. Proceedings of the National
Academy of Sciences, 114(9):E1627–E1632, 2017.

[6] Todd J Taylor and Iosif I Vaisman. Discrimination of thermophilic and mesophilic proteins.
BMC structural biology, 10(1):S5, 2010.

[7] John Desmet, Marc De Maeyer, and Ignace Lasters. The dead-end elimination theorem and
its use in protein side-chain positioning. Nature, 356(6369):539, 1992.

[8] Aashish N Adhikari, Karl F Freed, and Tobin R Sosnick. De novo prediction of protein
folding pathways and structure using the principle of sequential stabilization. Proceedings of
the National Academy of Sciences, 109(43):17442–17447, 2012.

[9] Ngaam J. Cheung, W. Yu, J. M. Jumper, K. F. Freed, and T. R. Sosnick. De novo protein
structure prediction using ultra fast molecular dynamics simulation. 2018.

[10] Debora S. Marks, Lucy J. Colwell, Robert Sheridan, Thomas A. Hopf, Andrea Pagnani, Ric-
cardo Zecchina, and Chris Sander. Protein 3D structure computed from evolutionary sequence
variation. PLOS ONE, 6(12):1–20, 12 2011.

[11] Debora S Marks, Thomas A Hopf, and Chris Sander. Protein structure prediction from se-
quence variation. Nature Biotechnology, 30:10721080, 2012.

[12] WL DeLano. The PyMOL molecular graphics system, version 1.2 r3pre, schrödinger, LLC.
2002.

[13] Ngaam J Cheung and Wookyung Yu. De novo protein structure prediction using ultra-fast
molecular dynamics simulation. PloS one, 13(11):e0205819, 2018.

9

