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2 Partitioning heritability by minor allele frequency 
2.1 Overview of model and method 
Given genotypes at M SNPs over N individuals we consider additive phenotypic models such that the phenotype 
of individual i is: !" = $"%&%'

%() + +"; 	+"~/ 0, 234 , where $"%	is the genotype of individual i at SNP j, &%	is the 
effect size of SNP j, and +" is the residual, i.i.d. normally distributed noise of individual i. We partition the SNPs 
into K disjoint sets determined by the minor allele frequency (MAF) of each SNP and wish to estimate the con-
tribution of SNPs in the kth set to the heritability of y: ℎ64 = 	264 274; where 264 is the genetic variance contributed 
by all of the SNPs in the kth partition, 284 = 2649

6()  is the total genetic variance, and 274 = 284 + 234	is the total 
phenotypic variance, assumed equal to 1 going forward. 

Recent work from several groups has examined this problem in the context of whole-genome sequencing, exome-
sequencing, and imputation of large population cohorts1–3. Two of these studies partitioned SNPs into two or five 
MAF bins and jointly estimated the heritability in each bin using a linear mixed model fit by GREML. We simi-
larly consider partitioning SNPs into bins by MAF, but investigate a larger range of bins from K=1 to 20. For 
computational and statistical reasons, we estimated heritability using Haseman-Elston (H-E) regression, which 
we describe below.  

 

2.2 Haseman-Elston (H-E) regression  
To infer the heritability of gene expression levels across individuals, we primarily rely on H-E regression4. The 
premise of H-E regression is that heritability can be estimated by the correlation between the phenotypic covari-
ance across individuals and the genotypic covariance across individuals. In practice, for a single gene, we estimate 
the phenotypic covariance (P) as the upper triangle of the outer product of quantile-normalized log2(FPKM) 
across our sample. For each of the K partitions, we estimate genotypic covariance with the upper triangle of a 
kinship matrix generated from all SNPs in the partition. Given a standardized genotype matrix of SNPs in the kth 
partition (Gk, with N rows and Mk columns, where each column has mean 0 and unit variance), the kth kinship 
matrix is :6 = ;6;6′/>6. H-E regression is then performed using the lm() function in R: 

?~:) +⋯+ :9 

Specifically, the regression is ordinary least squares applied to the (vectorized) strict upper triangles of these 
matrices (which, for N individuals has /2  elements). In H-E regression, the effect size for the kth term represents 
the genetic variance explained by the kth SNP partition &6 = 264 , with the total genetic variance explained by 
all SNPs given by 284 = 2649

6() . In the absence of other genetic contributions to phenotypic variation, heritabil-
ity is equal to the total additive genetic variance explained by SNPs, ℎ4 = 284. Therefore, in most instances in this 
paper we simply refer to the genetic variance explained as heritability. 

Since our H-E analysis is just regression, it is straightforward to add covariates to control for additional sources 
of variation as we describe here. We typically include the first 10 principal components (PCs) generated from our 
genome-wide genotype matrix as well as the first 10 PCs generated from our transcriptome-wide expression ma-
trix (though we show below that the number of PCs included does not qualitatively impact our results). Formally, 
we include the jth PC (or an arbitrary numerical covariate) by adding the upper triangle of the PC’s (or covariate’s) 
outer product with itself to our symbolic regression equation above. Note that we were unable to obtain unbiased 
results by regressing out PCs or covariates from the phenotype vector and genotype matrix, but further research 
would be necessary to understand this behavior. 
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2.3 Evaluating the model with lots of simulations 
To evaluate the properties of our estimation method, we first examined several genetic architectures for a hypo-
thetical phenotype. In most of our simulations, we use real genotype data by randomly sampling genes from the 
genome and extracting all genetic variants within 1Mb of their transcription start and end sites (though see below 
for effects of changing the window size). Our simulation parameters for the genetic architecture are described in 
Supplementary Table 1. A phenotype is simulated by first choosing h2 and B, the number of causal variants. We 
then chose one of three ways to determine the causal variants: 1) randomly sample B variants near the gene; 2) 
choose BCDC3 proportion of variants with MAF ≤ E and the remaining B×(1 − BCDC3) with MAF > E; or 3) choose 
B variants from the Uricchio et al. evolutionary phenotype model5. Under the Uricchio et al model, phenotype 
effect sizes are determined by ρ and τ. For the other two methods of choosing causal variants, we implement three 
different models for simulating effect sizes: 1) constant effect sizes; 2) i.i.d. N(0,1); and 3) the frequency depend-
ent model of Wu et al.6: 0.4×log10(MAF). Finally, effect sizes are scaled to give the chosen heritability, h2.  

Varying all of the parameters in Supplementary Table 1 along with our methods for simulating effect sizes 
results in 2,200 different parameter combinations that were evaluated in our study (each with 500 independently 
simulated datasets). Each set of simulated phenotypes was analyzed multiple ways. In particular, we varied K, the 
number of SNP bins, and minMAC, the minimum allele count for a SNP to be included in the analysis. Figure 1 
(main text) shows the particular case when h2=0.2, minMAC=1, and K is varied. Supplementary Figure 1 shows 
all values of h2 and minMAC. 

 

2.3.1 Which simulated models cause bias? 
We find that, in general, analyzing all SNPs in a single bin or excluding rare or low frequency variants from the 
analysis leads to substantial bias across many simulated models. These analytical approaches are therefore not 
robust to variation in the underlying genetic architecture (which for a real trait we may know little about). Jointly 
analyzing all SNPs partitioned into 20 disjoint bins by MAF results in the most consistent estimate of h2 across 
the bevy of simulated genetic architectures that we have analyzed. 

However, when h2 is large (e.g. h2=0.5), we find that even with K=20 and minMAC=1, several models exhibit 
downward bias (underestimating h2), and a few that exhibit upward bias (overestimating h2). The models that 
overestimate h2 all follow particular pattern: B=1000, BCDC3=1, E=0.01 or 0.05, and all effect sizes are in the same 
direction (either fixed or frequency dependent). In words, upward bias occurs when there are many causal variants 
(all of which are rare) with a substantially biased direction of effect. Such models seem unlikely to predominate 
complex traits in humans.  

Models that result in underestimates of h2 even when K=20 and minMAC=1 also share consistent patterns. A few 
models that result in underestimates have very few causal variants (B=1 or 10) that are all chosen to be rare 
(BCDC3 = 1.0 and E=0.01 or 0.05). The vast majority of models resulting in underestimates stem from the Uricchio 
et al evolutionary model, primarily when /L is small (either 1 or 10) or when both ρ and τ are near 1. Figure 1A 
(main text) shows points colored by category of simulation, and demonstrates that there are very few counter 
examples to these broad characteristics. 

Note that all simulations in Supplementary Figure 1 include quantile normalization of the simulated phenotype 
(just as we do with the real expression data, to be conservative). Below we investigate the role of quantile nor-
malization and show that it can lead to substantial underestimates of h2. 

2.3.2 Comparing H-E and REML. 
The common approach for estimating h2 from unrelated individuals in the literature is to use REstricted Maximum 
Likelihood (REML) to fit a linear mixed model (LMM), often as implemented in GCTA7. We implemented the 
Average-Information (AI) algorithm to fit LMMs in R to facilitate direct comparisons with our simulations8. 
Supplementary Figure	2 shows the mean relative bias [(inferred – true)/true] across all simulations where REML 
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converged using typical criteria. When K=1, almost all simulations converge (Supplementary Figure 3), and we 
see REML slightly outperforms H-E. Unfortunately, AI does not converge for many simulated models, particu-
larly with large M, and as the number of simulations that converge with the AI algorithm decreases, the mean 
estimate of h2 becomes unstable. In Supplementary Figure 3, we show the number of simulations for which we 
obtained an estimate for h2 from H-E regression (black) versus REML (blue). We find that when K=10 or 20, AI 
rarely converges for any simulated model, while H-E has an analytic solution that can always be calculated. We 
did not experiment with adding covariates, but our real data analysis below suggests that AI would fail to converge 
with even smaller M if they were included. 

2.3.3 H-E is robust to the fraction of variants that are causal 
When analyzing data, one does not necessarily know whether a trait is highly polygenic or not. We therefore 
varied the fraction of SNPs in a window that are causal from very small (0.01%) to very high (50%). We varied 
the true level of h2, and ran simulations to test whether our inference of h2 depends on the fraction of variants that 
are causal. We find that our inference procedure is robust to the fraction of variants that are causal (though some 
underestimate of h2 occurs when a very large fraction of variants are causal and true heritability is very large), 
but the standard error is larger when only a small fraction of variants are causal (Supplementary Figure	4). 

2.3.4 Simulating genotype error 
To understand the impact of genotyping error on our inference about h2, we performed the following simulations. 
Suppose there are separate error rates for false-positives and false-negatives. There is substantial evidence show-
ing that these two rates should not be the same in short read data from the 1000G9–11. In our simulations, only 
alternate alleles can be causal, so any reference allele has no effect on phenotype. A false-negative arises when 
an individual carries one causal allele at a site, but their genotype is called as homozygous reference; or alterna-
tively the individual carries two causal alleles but are called as either heterozygous or homozygous reference. 
Such scenarios can arise particularly frequently with low coverage data and conservative genotype callers. It is 
also possible for an individual to truly be homozygous reference (i.e. carry no causal alleles at a site), but geno-
typed incorrectly to carry one or two causal allele(s). False-positives are thought to be less common than false-
negatives genome-wide in the 1000G data, but we do not know where causal variants lie and therefore simulate 
across a much larger range than expected in the data. We varied both the false-negative (“missing”) rate and false-
positive (“errAdd”) rates, and performed 5000 simulations for each parameter combination. We simulate data 
under a model similar to the one we infer, where r=0.9, t=0.5, f=1, and the true h2=0.2 with 100 causal variants. 
We randomly sample 5000 genes and use all the variants within 1Mb of the TSS or TES. For each simulation, we 
estimate h2 using H-E regression with K=20 bins. In Supplementary Figure 5, we show the mean ± 2 s.e. for 
h2

total across all 5000 simulations. Adding errors as either false-positives or false-negatives at causal loci can result 
in a slight underestimate of h2

total, but in these cases all confidence intervals around the mean overlap the true 
value.  

2.3.5 The “Singleton-LD” effect – Simulations with globally rare causal variants vs random singletons. 
One defining feature of our analysis is the investigation into the contribution of singletons to heritability. To 
demonstrate that our inference is capable of robustly inferring heritability due to singletons, we performed an 
additional set of simulations. In contrast to the simulations above, which were performed to guide the analytical 
approach for our real data, the simulations we discuss here were performed after observing the pattern in Figure 
2B (main text). We constructed a simulation to test whether the inferred increase in heritability from globally rare 
alleles (relative to all singletons) is plausible. For the 10k genes included in our analysis, we extracted all single-
tons and noted their global minor allele frequency (gMAF) in the 1000G-wide dataset (n=2505, which allows us 
to avoid missing data issues with the gnomAD data). We then specified a fraction of all singleton variants to be 
causal (fracCausal=0.001, 0.01, 0.05, 0.5) and sampled two sets of causal variants. In one set, fracCausal single-
tons were chosen from those variants that were singletons in the 1000G-wide dataset (i.e., globally rare), and in 
the other set fracCausal singletons were chosen randomly from all singletons in our sample of n=360 individuals. 
Using these two sets of causal variants, we generated two phenotypes vectors for each gene (one based on the 
globally rare singletons, and one based on the randomly chosen singletons), where causal variants have i.i.d. 
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Gaussian effect sizes, and we varied h2 among {0.1, 0.25, 0.5, 0.75}. We then inferred h2 for both types of phe-
notypes from all SNPs (rare and common, even though only singletons are causal) in two ways. First, we parti-
tioned all SNPs into K=20 bins based on the observed frequency in our n=360 samples (as with data analysis 
shown in green in Figure 2, main text). Second, we partitioned SNPs into K=20 bins based on their frequency 
across all samples in 1000G (n=2505; analogous to the red curve in Figure 2C, main text).  

In Supplementary Figure 6, we show the results of these four analyses. We find that when causal variants are 
chosen to be globally rare, and we partition all SNPs by global allele frequency, our inference is unbiased (red 
points). However, pooling all singletons together can result in a substantial underestimate of h2 (blue points). This 
recapitulates our observation in Figure 2C (main text), which shows that partitioning by gnomAD MAF (red 
curve) results in a higher estimate of h2 compared to partitioning variants by the MAF observed in our n=360 
dataset (purple curve). We refer to this effect as “Singleton-LD”. To our knowledge, this is the first time h2 has 
been partitioned by allele frequency in an external dataset, and is therefore the first time this effect has been 
documented. Our finding strongly suggests that this approach should be considered in future studies. 

One challenge that arises is the use of quantile normalization. In Supplementary Figure 7 we show that under 
many circumstances, performing quantile normalization results in an underestimate of h2, but the pattern remains 
the same: when globally rare variants are causal but all singletons are analyzed in a single group, our estimate of 
h2 is even more biased downward. To be conservative, we apply quantile normalization in the observed data 
anyway, since there is potential concern for non-normality in the observed gene expression patterns (though we 
show below there are no qualitative effects of quantile normalization). 

 

2.4 Further investigation of singleton heritability with theory. 
In the case of N individuals and M SNPs, we assume the standard linear mixed model (LMM) for an N×1 pheno-
type vector ! � RN×1 and an N×M SNP genotype matrix ;	� {0, 1, 2}N×M : 

! = ;& + 	N  

&%~	/ 0, )
'
284 		 independent for all SNPs O 

N"~	/(	0, 234	)	  independent for all individuals P (and independent of &) 

If we define Q ∶= ;& to be the genetic contribution to the trait, then heritability is given by 

ℎ4 ∶= 	
STB(Q)
STB(!)

		 

We additionally assume that ;	consists of only singletons. This means that each column O of ;	will have N-1 
“zeros” and 1 “one”, and so has mean and variance 1/N. And Q simplifies: 

Q" ∶= ;	& " = 	 ;"%&%

'

%()

≜ / 0,
1
>
284 	

%:WXY()

	~	/(	0, 	Z"	284	)	 

where ≜ informally means equal in distribution and	Z" is defined as the fraction of singletons carried by individual 
P: 

Z" ∶= 	
#	singletons for person	P

#	singletons total
	= 	

	 ;"%%

>
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Although LMMs generally model between-sample phenotypic and genetic similarity, there is zero genetic simi-
larity across singletons, so the Q" are independent. Because the N" are also independent, the joint model on the 
phenotype vector ! simplifies to independent marginal models on each observation: 

 !"~	/(	0, 	Z"284 + 234	) independently for all individuals P																									(1)           

Similarly, the heritability is simple to evaluate: 

ℎ4 	= 	
\ STB Q Z + 	STB \ Q Z
\ STB ! Z + 	STB \ ! Z

	= 	
\ Z	284

\ Z	284 + 234
= 	

1
/ 28

4

1
/ 28

4 +	234
	 

(The inside expectation/variance operators, conditional on	Z, are over the random variables & and N, while the 
outside operators are over the empirical distribution of Z.) 

The factor 1// accounts for the fact we defined & on the scale of the genotypes ; rather than on the scale of the 
standardized genotypes as is customary. The normalization involves dividing the columns of ; by their standard 
deviation—for singletons, this is 1/ / for every column, and so the & on the conventional scale have vari-
ance	 )

]'
284. 

 

2.4.1 H-E is the same as regressing singleton count on squared phenotype. 
The Haseman-Elston (H-E) heritability estimate is constructed from M � RN×N, an inter-sample genetic similar-
ity matrix, and the phenotypes ! � RN×1. We take the standard approach and define K as the sample covariance 
of the column-demeaned genotype matrix: 

M	 = 	
/
>
	?)^	;	;_?)^	 

This uses the demeaning projection ?)^ 	 ∶= 	 `] −
)
]
	1]1]_ , where `] is the identity matrix and 1] is a vector of 

1s; this matrix is useful because for any a, ab ≔ ?)^	a is the demeaned version of a, and is central to the behavior 
of H-E with singletons. The / factor is equivalent to standardizing columns of ; to variance 1 (for general, non-
singleton	;, the columns will have different variances and the ordinary column-wise scaling cannot be replaced 
by a single scalar multiplication, as we have done here with /). 

Again, because ; contains singletons, ;",;%,_ is either 0 if P ≠ O or the number of singletons person P	has otherwise. 
Together, all these facts about singleton ; mean the kinship is simply 

M = 	/	?)^	ePT$(	Z	)?)^																														(2) 

where ePT$(Z) is a diagonal matrix with entries of Z on the diagonal.  

Given this definition of K and the demeaned phenotypes !"b ∶= 	!" −	! = 	 (?)^!)" the H-E estimate is: 

ℎfg4 ∶= 	
hij(	M"k%, !"b	!%b	)	

STB(	M"k%	)
		 

where hij and STB are the sample covariance and variance and the subscript on M"k% informally indicates the 
operators are applied to the (strict) lower triangle of the matrices M and !b!b_. 
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This definition is complicated and depends on everything but the variance terms given by the diagonal entries of 
M and !b!b_. But, intuitively, the diagonal terms of the inter-sample phenotypic and genetic similarity are all that 
matter—and this is formalized in Equation (1). Fortunately, H-E can still succeed because the demeaning opera-
tion spreads this diagonal self-similarity information across the entire M and !b!b_	matrices (e.g. Equation (2)). 

Nonetheless, H-E regression seems unnecessarily complex, regressing on ](]l))	
4

		data points when there are only 
/ independent observations. In fact, we show the H-E regression estimate is exactly proportional to the estimate 
from simply regressing !b4 on Z: 

ℎfg4 ∶=
1

/ − 2
	
hij(	Z, !b4	)	
STB(	Z	)

																																								(3) 

This regression framework—which compares the singleton dosages to the size of demeaned phenotypes—is more 
intuitive than H-E, computationally simpler, more naturally models covariates, has analytic standard errors, can 
be generalized to appropriately weight the observations (reflecting the clear heteroscedasticity caused by single-
tons), and is easy to study theoretically. 

The derivation details are below. The key fact is that both M and !b!b_ are demeaned versions of simple matri-
ces—for M, it is a diagonal matrix, and for !b!b_ it is a rank one matrix—but the calculations are tedious. 

 

2.4.2 Proving H-E is the same as regressing singleton count on squared phenotype. 
First, the total off-diagonal kinship is  

2	 M"%
"k%

= M"%
",%

− 	 M""
"

		= 0 − 	nB /	?)^	ePT$ Z = 	−/	
/ − 1
/

	 Z"
"

= 	−(/ − 1)			 

Next, the total off-diagonal squared-kinship is 

1
/4 M"%4

",%

= nB ePT$ Z 	?)^ePT$ Z ?)^ = Z"
"

?)^ePT$ Z ?)^ "" 		⟹																			 

2
/4 M"%4

"k%

= 	
1
/4 M"%4

",%

− 		
1
/4 M""4

"

							= Z"
"

/ − 2
/

	Z" +
1
/4 		−	

/ − 2
/

	Z" +
1
/4

4

"

=
/ − 2
/

	Z" +
1
/4

2
/
	Z" −

1
/4

"

										=
/ − 2
/

2
/
	 Z"4

"

+ −
/ − 2
/p 	+

2
/p Z"

"

−	
1
/p

=
2(/ − 2)

/4 	 Z"4

"

−	
/ − 3
/p 																									 

We now combine these to get the variance of the lower triangle of M: 

STB M"k% =
2

/(/ − 1)
	 M"%4

"k%

	−	 	
2

/ / − 1
	 M"%
"k%

4

																																						

=
1

/ − 1
	
2 / − 2

/
Z"4

"

−	
/ − 3
/p 	–	 	

1
/
	
4

																=
2 / − 2
/ − 1

	STB Z 				 

Now we need to compute to covariance term. First, 
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2	 !′"!′%
"k%

= !′"!′%
",%

− 	 !"b4

"

= −	 !"b4

"

= −/	STB(!) 

The inner product is 

2 !"b!%b

"k%

M"% = !"b!%bM"%
",%

− !"b4M""
"

= /	!b_ePT$ Z !b − !"b4 / − 2 Z" +
1
/

"

= !"b4 2Z" −
1
/

"

 

Together, this gives the covariance 

hij M"k%, !"b!%b =
2

/ / − 1
	 M"%!"b!%b

"k%

	− 	
2

/ / − 1
	 M"%	
"k%

2
/ / − 1

	 !"b!%b

"k%

	

=
1

/ / − 1
	 !"b4 2Z" −

1
/

"

	−	
−1
/
	

– STB !
/ − 1

	

=
1

/ / − 1
	 !"b4 2Z" −

2
/

"

																																																					=
2

/ − 1
	hij !b4, Z  

Now Equation (3)	follows by diving this by STB(M"k%). 

 

2.4.3 H-E for Singleton LMMs is broadly unbiased 

2.4.3.1 Standard case 
Based on the equivalence to standard regression derived above, it is easy to prove H-E is approximately unbiased: 

\ 	ℎfg4 =
1
/
	
hij 	Z, \(!b4|Z) 	

STB Z
=
1
/
	
hij 	Z, Z	284 + 234 	

STB Z
= 	
284

/
	
STB Z 	
STB Z

=
284

/
	= ℎ4		 

Again, informally, the hij and STB operators integrate over the empirical distribution of Z while the \ operator 
integrates over random noise and singleton effect sizes. This assumes that the phenotypes ! have variance 1, 
which simplifies notation and makes the denominator in the definition of ℎ4	non-random, simplifying the expec-
tation operations. More generally, the H-E estimate remains an unbiased estimate of the singleton variance ex-
plained. 

2.4.3.2 Random causals 
Imagine we observe Z with \ Z|Z = 	EZ for all Z; for example, only a fraction E of the observed SNPs Z are 
causal. Then 

\ 	ℎfg4 =
1
/
	
hij 	Z, \(!b4|Z) 	

STB Z
=
1
/
	
hij 	Z, \(Z)	284 	

STB Z
=
284

/
	
STB EZ 	
STB Z

=
E4284

/
			 

While the genetic variance is attenuated from 284, this just reflects the fact that the true Z is E times smaller than 
Z. In other words, H-E is still unbiased because 

ℎ4 ∶= \ STB Q Z + 	STB \ Q Z = \ Z	284|Z =
E4284

/
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2.4.3.3 Stratified singletons: theoretical basis for partitioning singletons by global allele frequency 
In the analysis of our data, we partition singletons into multiple groups based on their global allele frequency 
(Figure 2B/2C, main text). We show in this section that this approach is well founded. In particular, we justify 
our approach to stratifying singleton heritability based on global allele frequency (as a proxy for the strength of 
selection acting on each causal singleton). 

We generalize the standard LMM to have K distinct SNP groups, meaning that for each SNP O in group s: 

&%~	/(	0,
)
'
28,64 	)	    independently for all SNPs 

The genetic contributions Q are still independent, but now have more complex variances. If s O  is the group for 
SNP O, 

Q" ∶= ;& " = 	 ;"%&%

'

%()

≜ / 0,
1
>
28,6(%)4

%:WXY()

	~	/ 	0, 	Z"628,64
9

6()

	 

where	Z"6 is the fraction of singletons that are both in group s and carried by individual P. 

Unfortunately, regressing !b4 on Z—i.e. H-E regression—no longer generally gives unbiased results. Note that 
the above random-causal SNP setting (2.4.3.2) is a special case of effect stratification with M = 2, but it is only 
because of the assumption that causals are uniformly distributed across observed SNPs that H-E is unbiased. 

However, slightly generalizing H-E by regressing jointly on all singleton fractions—i.e. t ∶= 	 Z,)| … |Z,9 —
gives unbiased estimates of the variance components: 

\ !b4 t = 	 	Z628,64
9

6()

= Z	 28,)4 | … |28,94 	⟹ \ 	 t_t l)t_!b4 t 	= 	 28,)4 | … |28,94 		 

Of course, this requires knowing the true partition of the SNPs into the M groups (or, slightly more generally, 
requires that the known partition of SNPs is finer than the true partition). 

Again, if we condition on STB ! = 1, the estimate of ℎ4	constructed from these unbiased variance component 
estimates is unbiased; more generally, it is asymptotically consistent and approximately unbiased.  

2.4.4 H-E is biased when the mean singleton effect is nonzero 
We now modify the distribution on the genetic effects to have nonzero mean:  

&%~	/(	
)
'
v, )

'
284	)	    independently for all SNPs O 

The genetic contributions Q are still independent with the same variances as before, but now they have nonzero 
means: 

Q" ∶= ;	& " = 	 ;"%&%

'

%()

≜ /
1
>
v,
1
>
284

%:WXY()

	~	/(	Z"	v, Z"	284	)	 

Under this non-standard LMM, it is easy to evaluate the expectation of the H-E estimate using the regression 
equivalence derived above: 
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/\ ℎfg4 = 	
hij 	Z, \(!b4|Z) 	

STB Z
= 	
hij 	Z, S ! Z + \(!b|Z) 4 	

STB Z
=
hij 	Z, Z	284 + 234 +	(vZ)4 	

STB Z

= 284 + v4
hij 	Z, Z4 	
STB Z

	 

The true heritability also changes from the addition of v4: 

ℎ4 =
\ STB Q Z + STB \ Q Z
\ STB ! Z + STB \ ! Z

	=
\ Z	284 + STB(Z	v)

\ Z	284 + 234 + STB(Z	v)
=

284// + v4STB(Z)
284// + v4STB(Z) + 234

	 

Assuming the phenotypes have been standardized to variance 1, the denominator drops out, and the H-E bias due 
to mean singleton effects is 

\ 	ℎfg4 −	ℎ4 =
284

/
+	
v4

/
hij Z, Z4 	
STB Z

–
284

/
+ v4STB Z = 	v4

1
/
	
hij Z, Z4 	
STB Z

− STB Z 	 

When v = 0, this recovers our previous result that H-E is unbiased under the standard LMM. Otherwise, the bias 
scales with v4 and a term comparing the second and third moments of Z. This bias is negligible, though, as both 
terms in the difference are w Z4 = w )

]x
. 

We performed 500 simulations with true h2=0.3 under three effect size distributions (Supplementary Table 2), 
where random indicates & is drawn i.i.d. from a mean zero Gaussian, fixed indicates &% = v for all O (equivalently, 
a zero variance Gaussian), and biased indicates & is drawn i.i.d. from a non-mean zero Gaussian. H-E returns 
reasonable estimates of h2 if and only if the mean effect size is 0. This is consistent with our other simulations 
shown in Figure 1A (main text). We develop a novel model for jointly estimating h2 and mean effect sizes that 
(approximately) solves this bias in the next section. 

2.4.5 Singleton LMMs can identify mean effect sizes 
We have proved that non-mean zero genetic effect sizes, v, can badly bias H-E heritability estimates from single-
tons. It is not obvious how this meshes with the extensive publication record demonstrating the robustness of H-
E. Indeed, ordinary H-E performs well in standard genome-wide simulations with v ≠ 0 and 	284 = 012. 

The key difference is in Z", the total minor allele dosage of person P. In the ordinary genome-wide context, where 
many SNPs are studied, Z is essentially constant across samples. In this case, a nonzero v contributes roughly vZ 
to each sample, which has two implications. First, the v effect is indistinguishable from other sources of mean-
shift in the phenotype. Second, the ordinary phenotype de-meaning step (in REML and H-E) appropriately resid-
ualizes v, and thus standard heritability approaches work well (in that the missed heritability, driven by v, will be 
negligible). However, in our setting—which involves a few (high-kurtosis) singletons in a cis window—Z has 
non-negligible variance: unfortunately, this biases standard heritability estimates; fortunately, it enables, for the 
first time, estimation of v. 

We summarize our above non-mean zero singleton LMM as 

!"~	/(	Z"	v, 	Z"	284 + 234	) 

and the !" are all independent. 

We fit this model with REML, which projects out the intercept and Z from !. After this projection, we obtain the 
mean zero LMM again: 
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!"~	/(	0, 	Z"	284 + 234	) 

where ! are the residuals of ! after adjusting for the intercept and Z; this is a common approximation and is cor-
rect to first order in )

]
. 

Interestingly, because the entries of ! are independent, this likelihood problem is equivalent to the ordinary LMM 
likelihood after rotating away the kinship eigenvectors, with the singleton dosages Z" replaced by the eigenvalues 
y�	(note that eigenvalues can be interpreted as eigenvector dosages). In particular, any eigendecomposition-based 
LMM routine has a subroutine that fits the above likelihood model; we use the approach from13. We do not 
constrain the estimates of	284 and 	234 to lie in (0,1), which enables approximately unbiased heritability estimates14. 

After fitting 	284 and 	234, we fit v by weighted least squares, which gives the ML estimate if	284 and	234 are esti-
mated without error. Finally, we estimate the heritability by 

ℎ4 ∶=
284// + v4 + STB(v) 	STB(Z)

284// + v4 + z\(v)4 	STB(Z) + 234
	 

This essentially evaluates the heritability definition at (v, 284, 234); the exception is the contribution of the standard 
error of v, which reflects the fact that mean-zero error in v increases the expectation of v4 beyond v4. 

A different definition of heritability can be made removing the STB(Z) terms (from numerator and denominator). 
This is the ordinary REML definition, which is natural when the fixed effects are non-genetic15. However, in our 
model the mean effect is clearly attributable to genetic variation. 

We note that because \ !"4 = 	Z"4	v4 + Z"284 + 234, jointly regressing !4 on Z4 and Z will yield unbiased esti-
mates for v4 and the variance components. We do not pursue this, however, because v4 < 0 seems nonsensical; 
the computational cost of REML is negligible; and inverting an estimate of	v4 to estimate	v requires identifying 
the sign of	v and partitioning v4 into v4 and STB(v). 

 

3 GEUVADIS data set and QC 
GEUVADIS: Genetic European Variation in Health and Disease, A European Medical Sequencing Consortium16. 
RNA-sequencing gene expression data were downloaded from http://www.internationalgenome.org/data-
portal/data-collection/geuvadis. This dataset contains 375 individuals of European descent from four locations. 
Each of these individuals are contained in the 1000 Genomes Project, and genome sequence data were down-
loaded from www.1000genomes.org9.  

3.1 RNA-seq processing. 
The GEUVADIS data consists of RNA-seq data for 464 lymphoblastoid cell line (LCL) samples from five pop-
ulations in the 1000 genomes project. Of these, 375 are of European ancestry (CEU, FIN, GBR, TSI) and 89 are 
of African ancestry (YRI). In these analyses, we considered only the European ancestry samples. Some individ-
uals were previously identified as having cryptic relatedness by the 1000 Genomes Project9 using Identity by 
State (IBS) analyses and were therefore pruned. Our resulting dataset contains 360 unrelated individuals of Eu-
ropean descent from four populations. Raw RNA-sequencing reads obtained from the European Nucleotide Ar-
chive were aligned to the transcriptome using UCSC annotations matching hg19 coordinates. RSEM [RNA-Seq 
by Expectation-Maximization, RSEM17] was used to estimate the abundances of each annotated isoform and 
total gene abundance is calculated as the sum of all isoform abundances normalized to one million total counts 
or transcripts per million (TPM). For each population, TPMs were log2 transformed and median normalized to 
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account for differences in sequencing depth in each sample. The genotype data was obtained from 1000 Ge-
nomes Project Phase 3 V5 data set9 . To remove potential confounders such as population structure and batch 
effects, we performed principal component analysis (PCA). 

 

3.2 PCA and Permutations: controlling for population structure and batch effects. 
PCA was performed on both genome-wide genotype data as well as transcriptome-wide expression data. We 
obtained expression PCs from www.geuvadis.org, and ran PCA on the WGS data as follows. Input files: 

1000 Genomes Phase 3 V5 variant call files 

VCFtools [v0.1.14]18 to filter out related individuals, exclude singletons sites, remove indels, filter out all non-
biallelic sites. 

PLINK [v1.90b3x]19 was used to identify sites approximately in linkage equilibrium r^2 < 0.2 examining 50 kb 
windows in 5 site increments, extract these sites, and recode in an additive model (0, 1, 2). 

R (https://www.r-project.org/) was used to concatenate chromosomes, and run principal component analysis on 
the centered and scaled genotype matrix. 

We also ran PCA on the genotype data with a higher MAF filter (MAF≥5%) and got highly correlated results. 
However, because our analysis is based on rare variants, we wanted to include signals of population structure that 
manifest primarily in rare variants, hence including all variants seen at least twice.  

We then checked for residual population structure using permutations. We first applied the standard permutation 
style, whereby phenotypes are shuffled among individuals prior to running H-E. We found that this unrealistically 
removed all signals in the data and gives ℎ4 = 0. We then developed another permutation, which we refer to as a 
trans-permutation. In this case, we maintain the order of gene expression and genotypes among individuals, but 
we perform H-E regression on the SNPs in a window around one gene with the expression values of a random 
autosomal gene (i.e., a gene in trans). We show the results of this permutation in Figure 1A (main text) and in 
several figures below. We find that there exists some degree of residual population structure for rare variants, but 
not common variants (despite the fact that we included rare variants in our PCA analysis). The main caveat with 
this approach is that we are unable to distinguish population structure from rampant true trans-effects, but we feel 
removing the residual ℎ4 from the trans-permutation is conservative. 

 

3.3 Identifying high quality genes.  
Not all genes are expressed in lymphoblastoid cell lines. To identify actively expressed genes, we analyzed several 
aspects of the data. Supplementary Figure 8 shows the distribution of log2(FPKM) across all individuals and 
genes. We then quantified the number of genes for which X% of individuals have log2(FPKM)>Y. For our main 
analysis, we focus on X=0.5 and Y=1.5, which results in a total 10,078, which we refer to as our Final Gene Set. 
Supplementary Figure 9 shows the cumulative proportion of h2 as a function of MAF for various choices for X 
and Y (with X=0.5, Y=1.5 indicated in yellow). Each panel shows the number of genes that pass the X/Y threshold 
(N), the total heritability inferred (h2), and the fraction of heritability explained by singletons (y). In general, 
these parameters do not impact our qualitative conclusions about the genetic architecture of gene expression so 
long as X>0. When X=0, many genes are effectively not expressed by any individuals, and both the estimate of 
h2 and the fraction of h2 due to singletons (ψ) are considerably lower (or negative). This figure also gives insight 
into the biological factors driving the genetic architecture of gene expression. Excluding the Y=0 column, we see 
that total h2 monotonically decreases from left to right and top to bottom while ψ monotonically increases in both 
directions. This means that conditioning on some fraction of individuals having high expression reduces the total 
estimate of h2, but also increases the impact rare variants have on patterning gene expression.  
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We further inspected the properties of h2 inferred as a function of average expression levels across individuals for 
all genes, as well as those that make it in into our Final Gene Set. Specifically, we partitioned genes into decile 
bins based on their mean expression across all individuals (from lowest to highest expressed genes). In Supple-
mentary Figure 10, we show that for all genes (lighter shades), h2

total is near (or below) zero for the bottom forty 
percent of genes. Genes near the fiftieth expression percentile have positive h2, but none of these genes made it 
into our Final Gene Set. All of the genes that made it into our Final Gene Set are in the 60th percentile and above. 
In general, we see that h2

total is maximized for genes with intermediate expression, where rare and common vari-
ants contribute in equal proportions to h2. As we move toward higher expression quantiles, h2

total decreases.  

3.4 Robustness to model parameters. 
In our inference of h2, we make several model assumptions that could influence our inference of the genetic 
architecture of human gene expression. In the following subsections we present inference of h2 as a function of 
MAF when we vary each of the assumptions made in our model, and argue that the assumptions we have made 
are in general conservative, and do not impact our qualitative conclusions.  

3.4.1 Number of SNP bins and Quantile Normalization. 
Our primary analysis focuses on including all variants (down to singletons), K=20 SNP bins, and performing 
quantile normalization on the individual phenotypes. In Figure 2 (main text), we show the dependence of our 
inference of h2 on the MAF threshold. Adjusting the number of bins (from K=1 to 50) primarily affects our ability 
to make precise inference about the contribution of rare variants, since some rare variant classes tend to be pooled 
as K decreases (Supplementary Figure 11). Subtle difference can arise (e.g., analyzing all SNPs in a single bin 
seems to result in a larger estimate of h2, but, while K=2 results in a comparable h2

total, the contribution of the 
MAF<1% bin seems to be underestimated). Quantile normalization plays a minimal role in our data analysis. This 
is in contrast to our simulations above (Supplementary Figure 7), which suggest that when true h2 is very large, 
quantile normalization can result in a substantial underestimate of h2.  

3.4.2 Window Size. 
Our primary analysis focuses on a window size of 1Mb around the transcription start and end sites of each gene. 
We explored shorter windows with a length of 20kb and 100kb, and found comparable levels of h2

total (Supple-
mentary Figure 12). However, we enforce the constraint that each SNP bin must have at least 100 SNPs per gene 
to perform inference (otherwise adjacent bins are pooled together). As a result, when the window size drops from 
1Mb to 100kb, we must drop to K=10. When the window size drops to 20kb, we must drop to K=5. 

At shorter window lengths, the genetic architecture of gene expression is more dominated by common variation. 
This likely represents the substantial impact that nearby expression quantitative trait loci (eQTLs) play in shaping 
expression patterns among individuals (which are predominately common variants). Indeed, if we look at the 
pattern of h2 as a function of MAF for genes that have a significant eQTLs in GEUVADIS data20, we see that 
there is indeed a substantially larger contribution of common variants to h2

total (Supplementary Figure 13). In-
terestingly, while common variants play a larger role in genes with an eQTL, rare variants contribute the same 
level of h2 across both eQTL and non-eQTL genes. As the eQTLs were identified in this data, there could be a 
winner’s curse that results in an overestimation of h2 for common variants, and not necessarily predictive of the 
patterns in independent datasets.  

3.4.3 Number of PCs. 
The bulk of our analysis focuses on the inclusion of the top 10 principal components from both genotypes as well 
as phenotypes. These are intended to eliminate possible confounding effects of population structure (in the genetic 
data) or batch effects (in the RNA-seq expression data). How PCs are added to the H-E regression model is 
discussed above. The number of principal components used makes very little difference to our inferred signature, 
though h2

total decreases very slightly as the number of PCs increases (Supplementary Figure 14). Note that the 
residual population structure we identify with trans-permutations is not affected by PC correction. 
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3.5 Genotype quality and genome mapability. 
One potential concern is that regions of the genome could contribute to poor quality read mapping, and this could 
confound both genotype data (SNP calls from predominantly low coverage whole genome sequence data) as well 
as expression data (measuring FPKM with RNA-seq). To critically assess these issues, we performed two addi-
tional experiments. We first interrogated our SNP calls, particularly singletons since they are a major source of 
low quality genotype calls (and the largest source of h2). For each singleton, we extracted the genotype likelihood 
of the individual who carried the minor allele from the 1000 Genomes Project (1000G) supporting information 
(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/genotype_likelihoods/). We then divided 
these singletons into four disjoint quartile groups based on their genotype likelihood (sorted from lowest quality 
to highest quality), and performed H-E regression on these four groups of singletons. In Supplementary Figure 
15, we show that singletons in the lowest genotype likelihood quartile contribute nothing (or slightly negatively) 
to h2

singleton. Instead, only the upper quartiles contribute positively to h2
singleton. This is in contrast to partitioning 

singletons by their global allele frequency observed in gnomAD, which shows that the lowest frequency bins 
contribute the most to h2

singleton (Figure 2B, main text). This is strong evidence that SNP genotype quality is not 
inflating our signal of h2. 

We next interrogated the possibility that difficult to sequence regions of the genome could be leading to read 
mapping errors for the RNA-seq data, shown in  

Supplementary Figure 16. We first reproduced the main analysis of all 10k genes that are in our final analysis 
(purple curve, which you cannot see because it is completely covered by other curves). We then re-analyzed all 
genes, but included only those SNPs that were in regions of the genome passing the 1000G accessible genome 
strict mask (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/accessible_genome_masks/), 
shown in brown in  

Supplementary Figure 16 (again, difficult to see because it is buried by other curves). We next partitioned genes 
into four quartile bins based on the number of exon bases that were contained in the strict mask (Q1 having the 
lowest fraction, Q4 having the highest fraction). The idea is that regions of the genome that are difficult to map 
could result in aberrant RNA-seq expression values. We find no evidence of this. The genetic architecture in each 
partition is essentially indistinguishable ( 

Supplementary Figure 16, blue, green, red, and yellow curves). This is in contrast to the genetic architecture of 
the genes that were excluded from our analysis due to insufficient expression across enough individuals [i.e., 
<50% of individuals had log2(FPKM)>1.5, shown in orange in  

Supplementary Figure 16].  

Together, these observations strongly suggest that data quality has not compromised our inference of the genetic 
architecture of human gene expression. 

 

3.6 Comparing H-E and REML 
A majority of papers analyzing h2 from unrelated individuals focus on linear mixed models (LMMs) using RE-
stricted Maximum Likelihood (REML), and its extensions. We found that we are unable to obtain reliable infer-
ence of h2 from REML due to lack of convergence at our sample size. This problem becomes particularly prob-
lematic when the number of SNP bins increases. Shown in  

Supplementary Figure 17 is the number of genes for which we are able to infer h2 from H-E (blue) and REML 
(brown), for both the total set of all genes (light shades) as well as the Final Gene Set (dark shades). Essentially 
all genes fail to converge with K=20 despite multiple independent attempts for each gene. 
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3.7 Common variants tag a negligible amount of h2 from rare variants 
The extent to which common variants are able to tag heritability contributed by rare variants (and vice versa) is a 
major open question in the field. To investigate this question, we analyzed multiple subsets of SNPs as a function 
of MAF (Supplementary Figure 18). We start by reproducing the plot of cumulative h2 as a function of MAF 
for the full data set (purple, Supplementary Figure 18, as shown in main text Figure 2C). We then inferred 
cumulative h2 as we removed progressively more common variants (curves above purple dots in Supplementary 
Figure 18). We find that each of these curves fall above the purple dots, which demonstrates that low frequency 
variants are able to partially tag h2 contributed by more common variants. We also performed the reverse exercise, 
where we strip out progressively more rare variants, which as shown in Figure 2C (main text) results in a reduced 
h2

total (below purple dots). To evaluate whether some of the rare variant h2 was being tagged by common variants, 
we performed the following analysis. We calculated the cumulative h2 as a function of MAF for 1,000 bootstrap 
samples of all genes in our final gene set. For each bootstrap sample, we removed progressively more rare variants, 
and plotted the 99% quantile range across bootstrap samples with a purple envelope. Supplementary Figure 18 
shows that this purple envelope covers the orange, pink, and grey points, demonstrating that common variants 
have not tagged any h2 contributed by rare variants.  

We further evaluated whether partitioning singletons by gnomAD MAF resulted in additional common variant 
h2. To do this, we recreated the red and purple curves shown in Figure 2C (main text) using a reverse cumulative 
distribution (Supplementary Figure 19), which shows the total h2’ contributed by variants with >|} ≥ Z. This 
shows that common variant h2 is unaffected by singleton partitioning, suggesting that common variant h2 has not 
been impacted by this partitioning scheme. 

 

3.8 Heritability as a function of evolutionary conservation. 
We inferred an evolutionary model for the genetic architecture of gene expression, and it suggests that causal 
variation is constrained by the action of natural selection (Figure 3, main text). It is therefore plausible that evo-
lutionary constraint as measured by comparative genomics using the GERP statistic21 could aid in the identifica-
tion of causal variation. In Supplementary Figure 20 we show that for singletons, sites with stronger evolution-
ary constraint (i.e. sites with more negative GERP scores) do not in general have increased h2. In contrast, when 
all sites are partitioned by their GERP score, evolutionary constrained sites do contribute substantially more h2. 
This suggests that evolutionary conservation may be an important metric for common variants, but not as in-
formative for singletons. This could be because the regulatory architecture of the human genome has evolved 
sufficiently quickly that long-term constraint does not capture all aspects of functionality in modern humans.  

3.9 Population structure makes a negligible contribution to singleton heritability. 
Previous work has shown that inclusion of PCs can remove population structure bias from common variant esti-
mation. We included PCs in our inference of h2 and here evaluate whether there is residual population structure 
contributing to our inference of h2

singletons. We performed multiple permutations, and show in Supplementary 
Figure 21 that none of them produce substantial singleton heritability. First, a typical permutation would shuffle 
the genotype-phenotype relationship among individuals. Such a permutation results in zero h2 estimates (“Ran-
dom Perm” in Supplementary Figure 21). However, population structure in our sample renders such permuta-
tions inadequate. Our data analysis utilizes PCA to control for population structure, but since genotype-phenotype 
relationships are permuted, PCA-correction can no longer be easily applied [though other approaches are possi-
ble22]. We therefore constructed an additional permutation, where we paired the genotypes around one gene with 
the expression values of a random gene from the same individual. Since the individuals are preserved in this 
permutation, PCA can be applied, but we find that it has no effect of h2

singletons , which are all between 0.0035-
0.005 (“trans PC={0,1,5,10}” in Supplementary Figure 21). These estimates of singleton heritability from trans-
permutations are negligible compared to the real data (h2

singletons=0.02 for the GEUVADIS MAF partition, labeled 
“Data” in Supplementary Figure 21), so we are therefore confident that population structure has a minimal 



	 17	

impact on the patterns of h2
singletons that we infer from our data. Work from other groups has considered the pos-

sibility of fine-scale populations not captured by PC covariates. In this case our heritability estimates, as well as 
previous estimates2,3, as well as tests for association to rare variants, may be slightly inflated.  

 

3.10 Analyzing a subset of individuals with high coverage whole genome sequencing 
As part of the 1000G9 analysis, a subset of individuals were sequenced to high coverage by Complete Genomics 
Inc. (CGI). Fifty-eight of these subjects overlap the individuals in our study from GEUVADIS. To gain insight 
into the role of false-positive and false-negative inference of singletons in our estimation of h2, we partitioned 
the singletons observed in the 1000 Genomes Project low coverage data by their presence/absence in both the 
high coverage CGI data as well as gnomAD. We find that the vast majority (88%) of the singleton heritability 
that we report in Figure 2 (main text) are contributed by singletons that replicate in the high coverage data 
(Supplementary Figure 22). Further, a majority of this signal (67%) is contributed by variants that are not pre-
sent in the gnomAD dataset. 

3.11 Heritability enrichment across MAF. 
In Figure 2 (main text) and above, we show that rare variants (particularly singletons that are ultra-rare in gno-
mAD) compose a substantial fraction of heritability. It is also the case that the plurality of variants in cis-regions 
of genes are rare. Oppositely, common variants compose a majority of the remaining heritability, but, following 
population genetic theory, there are fewer common variants than rare variants in cis-regions of genes. We there-
fore performed an enrichment analysis to see if there is more heritability inferred in a MAF bin than expected 
from the fraction of variants observed across MAF bins. In Supplementary Figure 23, we show that heritability 
enrichment is “U” shaped as a function of MAF (on a log scale). This suggests that the rarest and most common 
alleles contribute an excess of heritability, and intermediate/low frequency variants (MAF 0.1%-5%) compose a 
dearth of heritability. While this does not give us direct insight into the underlying distribution of regulatory effect 
sizes per causal variant, it may be reasonable to speculate that in order for the rarest alleles to have the largest 
enrichment, the distribution of effect sizes for rare causal variants may be considerably larger (in absolute value) 
than common variants. We explore this topic further below with model predictions in Section 4. 

 

3.12 Exploring population covariates as an alternative to PCA. 
In much of our analysis, we focus on PCA to control for population structure (as described in Section 3.2). In 
reality, we know that our samples derive from four different European populations, and therefore explored the 
use of a series of binary covariates to indicate the population of origin for each sample. Supplementary Figure 
24 shows that both approaches produce comparable results. Though the population covariates resulted in 
slightly higher estimates of singleton heritability, this was compensated by slightly higher residual population 
structure from our trans-permutation test. 

 

3.13 Constructing bootstrap confidence intervals. 
In main text Figure 2 and throughout this Supplemental Material, we compare heritability estimates in many 
ways. Our primary approach to estimating uncertainty was based on rigorous bootstrapping. Except where 
noted, all error bars (sometimes plotted as envelopes encompassing the mean) were calculated from the 95% 
interquantile range of 1,000 bootstrap samples. This is an appropriate method for estimating uncertainty in i.i.d. 
data, and has previously been shown to work well in far broader settings23. Further, bootstrapping is a statisti-
cally appropriate way to estimate uncertainty when analyzing functions of correlated parameter estimates (for 
example, when estimating total h2, which is the sum across h2 estimates per bin). These bootstrap intervals rep-



	 18	

resent uncertainty in the across-gene average heritability estimates per category (indeed, the single gene uncer-
tainties are much larger), and retains any across-gene correlations that are present in the real data. Hence, our 
SE estimates naturally account for correlated expression. 
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4 Inferring posterior distributions of evolutionary 
parameters 

4.1 Overview of rejection sampling pipeline 
We first provide a high-level overview of our rejection sampling24 procedure in this section, and in the subsequent 
sections provide in-depth details pertaining to our model and its implementation.  

Rejection sampling compares a set summary statistics that are informative about model parameters computed on 
the output of model-based simulations to summary statistics computed on observed genomic and phenotypic data. 
The simulations that generate summary statistics that are most similar to the observed data are retained, and the 
parameter values from the retained simulations are used to generate a posterior distribution over the true parameter 
values. 

The goal of our rejection sampling procedure is to infer the mean strength of selection (2Ns, where N is the 
effective population size and s is the fitness effect; represented here by a parameter ϕ that corresponds to a mixture 
proportion of weakly and strongly selected sites), the correlation between selection on variants and their effect on 
the trait (ρ), and the mean shape of the effect size distribution (τ), for the alleles that contribute to gene expression 
variation among individuals. Details on the model were previously described5 and summarized below. We focus 
on inferring the posterior distribution of the mean across genes as opposed to the parameter values for individual 
genes because single gene estimates proved too noisy to be reliably computed. 

Our estimation procedure has 4 main steps, which we then further subdivide into several small steps in the sub-
sequent sections. The first main step is to generate 2,000,000 simulated gene expression values using parameter 
values (ρ, τ, ϕ) sampled from prior distributions. For our prior distributions, we use a Beta(0.35, 0.35) distribution 
for τ and ρ and a Uniform(0,1) distribution for ϕ, such that there are an excess of genes with very large and very 
small τ and ρ, and selection strengths are evenly distributed between 0 and 1 (note that the prior distributions over 
gene sets that we use for inference are uniform, while the prior over individual simulated genes were not uniform 
for τ and ρ). These simulated genes utilize forward-in-time simulations of selection and human demography to 
generate a distribution of selection coefficients and allele frequencies, then use an evolutionary phenotype model 
to map these selection coefficients to effect sizes, and finally apply these effect sizes to empirical cis-variation 
for each sequenced gene used in the data analysis to generate phenotypes for each individual (along with an error 
term representing random environmental effects).  

Second, we perform H-E regression on each simulated phenotype with real genotypes, and compute cumulative 
h2 as a function of MAF for each simulated gene (i.e., the same analysis that we have performed for each gene in 
the main text for the observed GEUVADIS data).  

Third, we resample 1,000,000 gene sets, each composed of 10,000 genes, from the complete set of 2,000,000 
simulated expression products. We use 10,000 genes to approximately match the number of genes in the final 
gene set we analyze in the observed GEUVADIS data. The genes are resampled such that the mean τ, ρ and ϕ 
over the gene set are approximately equal to value of τ, ρ and ϕ drawn from a uniform prior distribution for each 
parameter (note again that the prior distributions over gene sets are uniform, while the prior over individual sim-
ulated genes were not uniform for τ and ρ).  

Lastly, we compute mean cumulative h2 as a function of MAF over each of the 1,000,000 simulated gene sets, 
and input this set of parameter values (mean τ, ρ and ϕ) and paired summary statistics (cumulative value of h2) 
into our rejection sampler, which computes the mean squared distance between the observed and simulated h2 vs 
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MAF curve for each gene set. We then retain the 1,000 gene sets that minimize this distance to form an approxi-
mate posterior distribution.  

Below, we provide a more detailed description of each step. 

 

4.2 Evolutionary model of complex phenotypes 
In order to simulate phenotypes, we must map simulated selection coefficients to causal alleles with a given effect 
size. We employed a previously developed evolutionary model5 of phenotypes under selection that captures the 
relationship between effect sizes and selection strength as 

& = �|Ä|Å with probability Ç
�|ÄC|Å otherwise  

where s is the selection coefficient of a causal site while sr is a random selection coefficient drawn from the 
marginal distribution of selection coefficients over all causal sites; ρ controls the correlation between the strength 
of selection on the variant and the phenotypic effect of the variant; δ is a random sign; and τ is an exponent that 
controls the shape of the relationship between selection coefficients and effect sizes. 

Conceptually, if ρ is near 1, then the effect that alleles have on gene expression are tightly correlated with their 
selection coefficients, which would imply that strong effect mutations tend to be evolutionarily deleterious. If ρ 
is closer to 0, then for the majority of causal alleles, effect sizes are disjoint from the strength of selection. Such 
cases could reflect a high level of pleiotropy, whereby alleles with weak effects could be experiencing strong 
selection because of other functional effects of the allele (and vice versa). If τ is close to 0, then all effect sizes 
are of comparable magnitude, whereas if τ is large, effect sizes are broadly distributed and large effect alleles are 
not unlikely. Unlike ρ, τ is not formally constrained on [0,1], but in practice this range is suitable since the distri-
bution of fitness effects that have been inferred for humans tends to be very widely distributed25,26, and previous 
analyses inferring τ have found values between 0 and 1.2 For more discussion of the model, see5. 

 

4.3 Forward in time-simulations 
Since population demography and natural selection both alter genetic architecture5,27–29, we performed forward-
in-time simulations under a population genetic model of recent human demography30 and fitness effects25,26 using 
SFS_CODE and sfs_coder31,32. The demographic model includes an expansion in the African ancestral population, 
an out-of-Africa bottleneck, a second bottleneck at the founding of Europe, and followed by super-exponential 
growth. Parameter values of the simulations are reported elsewhere5,32. 

To model natural selection, we supposed that alleles that alter the expression levels of genes would be composed 
of a mixture of strongly selected and weakly selected loci. We therefore simulated a mixture of alleles under 
strong selection [consistent with human nonsynonymous sites, <2Ns>= -457]26 and alleles under weaker purifying 
selection [consistent with conserved non-coding sites, <2Ns> = -8]25. Note that this mixture parameter is one of 
the parameters that we infer with our rejection sampling procedure, and hence our method allows for a wide range 
of selection strengths that are consistent with previous estimates of selection in humans. Moreover, since the 
selection and demographic parameters were inferred from patterns of diversity in human genomic sequences, our 
simulations will generate patterns of diversity that are broadly consistent with human patterns of polymorphism 
in functional regions.  

At the end of each simulation, we down-sampled to 360 individuals to match the observed GEUVADIS data, and 
then used sfs_coder to extract the simulated allele frequencies and selection coefficients32. 
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4.4 Simulated phenotypes 
Our simulated phenotypes use the actual sequence data from GEUVADIS by matching each observed allele to an 
effect size (many of which are 0). For each simulated gene, we first sample values of τ, ρ and ϕ from prior 
distributions as described above. For each set of parameter values, we then sample causal variants from the sim-
ulated frequency spectrum, and then map the selection coefficient of this allele to an effect size under our model. 
We then sample a frequency-matched allele in the observed genomic data using the parameters of our evolution-
ary phenotype model (discussed above). We assume that between 2% and 20% of the sites surround each gene 
are causal for the phenotype. We selected 2% and 20% to reflect the diversity of conserved non-coding sequence 
density in the human genome, supposing that functional sites are likely to have an effect on expression (although 
this effect may be very weak, depending on the parameters of selection model).  

Once effect sizes have been sampled, we computed the genetic component of the phenotype under a standard 
additive phenotype model (i.e., by summing up the effect sizes of each variant for each individual in the analysis). 
We then simulated a random normal variable to represent the environmental contribution to the variance in ex-
pression level for each gene. The random normal variable was scaled such that the true narrow sense heritability 
of each simulated expression level was set to h2= 0.09, in concordance with the approximate mean heritability 
observed in our allele frequency partitioned analysis of GEUVADIS expression levels. Finally, we quantile nor-
malized the simulated expression of each gene. 

4.5 H-E on simulated expression values and genetic data 
We used our allele frequency partitioned H-E regression framework to calculate the contribution of alleles at 
various frequencies to the heritability of the simulated expression levels. We corrected for population structure in 
both genetic and phenotypic data using the first 10 PCs from the GEUVADIS data as covariates in the analysis, 
as with other analyses in the paper. We subdivided the frequency space into 20 bins with approximately equal 
numbers of variants. For each simulated gene, we then stored the parameter values and the results of the parti-
tioned regression in a lookup table.  

 

4.6 Parameter inference 
To infer parameters under our evolutionary model, we used rejection sampling. We sampled each of our param-
eters from prior distributions (uniform from 0 to 1). We then resampled simulated genes from the lookup table 
described in the previous section such that mean ρ, τ, and ϕ of the set match the values sampled from the prior 
distribution. In so doing, we assumed that there exists a beta distribution over parameter values in each gene set, 
and we sampled the variance over each parameter among ρ, τ, and ϕ from a uniform distribution over the possible 
values for a beta distribution, conditional on the previously sampled mean.  

As informative summary statistics for the rejection sampler, we computed the cumulative proportion of h2 given 
by alleles in 10 frequency bins of fixed minor allele count (specifically minor allele counts of 
1,2,5,10,20,60,120,180,240, and 360) for each gene and averaged the values over the whole set of 10,000 sampled 
genes. To determine the h2 estimate for each of these frequencies, we interpolate the h2 values between the 20 
frequency bins from the H-E regression procedure, and use the interpolated values as summary statistics in our 
rejection sampling pipeline.  

We repeated the above procedure 2,000,000 times, and then computed the mean squared distance between the 
summary statistics for each of the 2,000,000 simulations as compared to the observed data. We retained the 0.05% 
of the simulations, and the parameter values of mean τ, mean ρ, and mean ϕ, then determine the approximate 
posterior distribution of the parameters. 



	 22	

4.7 Validation 
To validate our parameter estimation procedure, we performed cross-validation. We masked 1,000 combinations 
of summary statistic and parameter combination dataset, and attempted to use the remaining 1,990,000 summary 
statistic and parameter combinations to infer the parameter values corresponding to the masked data.  

In Supplementary Figure 25A-C, we plot the inferred parameter value (the maximum a posteriori estimate) 
against the true parameter value for 100,000 different parameter combinations, for each of the three parameters. 
The tight correlation between the inferred and true parameters demonstrates that our method is accurate and rel-
atively unbiased (note colors are plotted on a log-scale). As further validation, we computed the root mean squared 
deviation (RMSD) between the true and observed parameter values for both ρ and τ across the space of possible 
ρ and τ values (Supplementary Figure 25D-E). RMSD tends to be minimized when τ≈ρ. When τ or ρ is very 
small, our inference procedure can struggle. This is likely because when τ=0, all causal alleles have the same 
effect size, so the parameter ρ does not make sense. However, when ρ and τ are both substantially greater than 0 
(say >0.5), the inference is much more accurate (Supplementary Figure 26).  

As further validation of our method, in Figure 3C (main text), we plot out-of-sample simulations of the h2 vs 
frequency curve, where we used each line in our inferred posterior distribution as input to a new set of resampling 
simulations. Since the parameter estimates are exactly those that were generated from the rejection sampling, if 
our procedure is robust we expect this new set of simulations to generate approximately the same h2 vs. frequency 
curve. As expected, these out-of-sample simulations very closely track the observed data. 

 

4.8 Sufficiency of summary statistics for parameter estimation 
Rejection sampling is very similar to approximate Bayesian computation (ABC)33. However, in ABC a linear 
model is imposed relating the parameter values and summary statistics, which corrects for the non-0 distance 
between the simulated and observed summary statistics. In rejection sampling this correction is not applied. Alt-
hough the two methods are very similar, we found rejection sampling to have better empirical performance (as 
determined by out-of-sample simulations) for this model, and hence proceeded with this approach. 

In both ABC and rejection sampling, sets of summary statistics are said to be approximately sufficient if their 
ability to differentiate between models is essentially equivalent to full likelihood expression. In this case, we have 
used the h2 vs frequency curve as our set of summary statistics, but we note that in some cases (e.g. when ρ=0 or 
τ=0) there is little this summary statistic can do to differentiate models.  

We found that overall, ABC [as implemented by34] had very similar performance in estimating parameters to 
rejection sampling for this model, but also resulted in very poor fitting out-of-sample simulations when we sam-
pled from the ABC-based posterior distribution as compared to the rejection sampling-based distribution. This 
difference in performance is likely due to the distinct solution spaces for ρ and τ that are broadly consistent with 
our data. The linear model fit by ABC tends to contract all of the ABC estimates into the space in between distinct 
solution sets (i.e., mean ρ between 0.6 and 0.8, and mean τ between 0.5 and 1.0). If we were to discover and apply 
a fully sufficient (instead of approximately sufficient) set of summary statistics, the linear model imposed by ABC 
would be more appropriate because it would then not average over distinct peaks in the solution space.  

 

4.9 Predicting the population-wide frequency of causal singletons. 
We find that ~25% of all h2 derives from singletons in our sample of n=360 individuals. In Figure 2C (main text) 
we show that most of this h2

singletons derives from variants that are not reported in n>15k in gnomAD. Given our 
out-of-sample simulations described above (shown in Figure 3C, main text), we sought to predict the distribution 
of the true population-wide frequencies of causal variation that must contribute to h2

singletons. We rely again on 
simulations. In this case, we use a feature in SFS_CODE to report the true population frequency of a segregating 
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mutation. Using the out-of-sample draws shown in Figure 3C (main text), we generated the true population fre-
quencies of the causal singletons in our n=360 simulations. In Supplementary Figure 27 we show that the plu-
rality of h2

singletons is expected to come from variants that have true MAF <1e-5. This implies that replication will 
likely not be feasible for any individual variants.  
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6 Supplementary Tables and Figures 
  

Supplementary Table 1. Parameters for simulating genetic architecture. 
Parameter Description Simulated values tested 

h2 Total heritability 0.02, 0.05, 0.1, 0.2, 0.5 
É Number of causal variants 1, 10, 100, 1000 

ÉÉÑÉÖ Fraction of causal variants that are “rare” 0.01, 0.05, 0.1, 0.5, 1.0 
Ü Frequency threshold for rare variants 0.01, 0.05, 0.1 
ρ Effect size-fitness effect correlation 0, 0.5, 0.8, 0.9, 0.95, 1.0 
τ Effect size-fitness effect scaling factor 0.5, 0.8, 1.0, 1.5 

	

Supplementary Table 2. Simulation results showing that our new es-
timator of h2

singletons (SingHer h2) is approximately unbiased across three 
distributions of the effect size (β), while in two scenarios H-E is biased. 
True h2=0.3 (n=500 simulations). 

β SingHer h2 St. Err. H-E h2 St. Err. 
random 0.2862 0.0041 0.2794 0.0064 

fixed 0.2857 0.0034 0.7753 0.0082 
biased 0.2825 0.0040 0.4499 0.0087 
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Supplementary Figure 1. Simulation results showing bias of our H-E estimate of total h2 across all parameters, analogous 
to Fig 1A (main text), varying the level of h2 (rows) and the minimum minor allele count (minMAC) threshold for inclusion 
(columns; including all variants down to singletons on the left, and excluding all variants with MAF<5% on the right). 
Points are red if the central 90% empirical interquantile range across 500 simulations did not encompass the true h2 and blue 
otherwise. For many simulated models, choosing K=1 or excluding low frequency variants leads to substantial bias. Each 
boxplot shows median, first and third quartiles, and twice the interquartile range, with points indicating each of the n=500 
simulations. 

 

  

1 2 5 10 20−0
.1

0
0.

00
0.

10

Number of SNP bins

Bi
as

 o
f h

2 to
t ●●

●●●●

●●

●●●●

●●

●●

●●●●

●●
●●

●●

●●

●●

●●●●

●●

●●
●●
●●

●●

●●
●●
●●

●●
●●
●●

●●●●●●
●●

●●●●

●●●●

●●

●●●●
●●
●●
●●

●●
●●
●●

●●●●
●●

●●

●●

●●●●●●●●
●●

●●

●●

●●

●●

●●

●●●●●●

●●

●●●●●●

●●
●●
●●●●
●●

●●●●●●●●●●
●●

●●

●●

●●

●●

●●

●●

●●

●●●●●●

1 2 5 10 20

−0
.0

6
0.

00

Number of SNP bins

Bi
as

 o
f h

2 to
t

●●
●●

●●
●●

●●●●●●

●●●●●●
●●

●●

●●●●●●●●●●●●

●●

●●

●●●●●●●●●●

●●

●●

1 2 5 10 20

−0
.0

3
0.

01

Number of SNP bins

Bi
as

 o
f h

2 to
t

●●
●●

1 2 5 10 20

−0
.0

3
0.

00

Number of SNP bins

Bi
as

 o
f h

2 to
t

1 2 5 10 20

−0
.1

0.
1

Number of SNP bins

Bi
as

 o
f h

2 to
t

●●
●●

●●

●●●●
●●

●●

●●

●●

●●●●

●●

●●

●●

●●

●●●● ●●

●●
●●●●
●●
●●
●●

●●●●

●●
●●●●
●●

●●●●

●●●●

●●

●●
●●●●
●●

●●●●

●●●●●●●●

●●

1 2 5 10 20
−0

.0
5

0.
05

Number of SNP bins

Bi
as

 o
f h

2 to
t ●●●●

●●

●●

●●●●●●●● ●●●●●●●●

●●

●●●●

1 2 5 10 20

−0
.0

6
0.

00
0.

06

Number of SNP bins

Bi
as

 o
f h

2 to
t

1 2 5 10 20

−0
.0

4
0.

02

Number of SNP bins

Bi
as

 o
f h

2 to
t

1 2 5 10 20

−0
.1

0.
2

0.
5

Number of SNP bins

Bi
as

 o
f h

2 to
t

●●

●●
●●●●●●

●●

●●
●●
●●

●●

●●

●●

●●●●

●●

●●●●●●●●

●●●●●●
●●
●●
●●

●●
●●●●
●●
●●
●●

●●
●●●●
●●
●●●●

1 2 5 10 20

−0
.1

0
0.

05
0.

20

Number of SNP bins

Bi
as

 o
f h

2 to
t

●●●●

●●

●●

●●

1 2 5 10 20

−0
.1

0
0.

05

Number of SNP bins

Bi
as

 o
f h

2 to
t

1 2 5 10 20

−0
.1

0
0.

00

Number of SNP bins

Bi
as

 o
f h

2 to
t

1 2 5 10 20

−0
.2

0.
2

0.
6

Number of SNP bins

Bi
as

 o
f h

2 to
t

●●
●●

●●

●●

●●
●●

●●

●●

●●
●●●●●●●●●● ●●●●●●

●●
●● ●●●●●●

●●
●●

1 2 5 10 20

−0
.2

0.
1

0.
3

Number of SNP bins

Bi
as

 o
f h

2 to
t ●●●●

●●

●●

1 2 5 10 20

−0
.2

0.
0

0.
2

Number of SNP bins

Bi
as

 o
f h

2 to
t

1 2 5 10 20

−0
.2

0
0.

00

Number of SNP bins

Bi
as

 o
f h

2 to
t

1 2 5 10 20

−0
.5

0.
5

1.
5

Number of SNP bins

Bi
as

 o
f h

2 to
t

●●

●●

●●
●●

●●

●●

●●

●●

1 2 5 10 20

−0
.4

0.
2

0.
8

Number of SNP bins

Bi
as

 o
f h

2 to
t ●●

1 2 5 10 20

−0
.4

0.
0

0.
4

Number of SNP bins

Bi
as

 o
f h

2 to
t

1 2 5 10 20

−0
.4

0.
0

Number of SNP bins

Bi
as

 o
f h

2 to
t

minMAC = 1 minMAC = 2 minMAC = 5 minMAC = 36

h2
 =

 0
.0

2
h2

 =
 0

.0
5

h2
 =

 0
.1

h2
 =

 0
.2

h2
 =

 0
.5



	 27	

 
	

	
Supplementary	Figure	4.	We	varied	the	true	h2	(grey	lines)	and	the	fraction	of	variants	that	are	causal.	We	find	that	
H-E	is	largely	robust	(each	bar/whisker	shows	mean±2se from n=5000 simulations).	
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Supplementary	Figure	2.	Mean relative bias [(inferred-
true)/true] for each set of simulated parameters shown in 
Fig S4 for H-E (black) and LMM (blue).  

	

 

Supplementary Figure 3. The number of simulations 
that converge for H-E (black) and LMM (blue), where 
each point is a set of simulated parameters. As the num-
ber of SNP bins increases, LMM struggles to converge 
but H-E regression does not.  
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Supplementary Figure 5. Simulating genotyping error does not induce bias. We simulate separate error rates for missing 
causal genotypes (e.g. low coverage induced false-negative; x-axis) and for adding false-positive genotypes at causal loci 
(colors). We generated 5,000 simulations for each parameter combination, and plot the mean±2se. 
	

	
Supplementary Figure 6. Singleton simulations without quantile normalization is unbiased. Inference of total h2 when 
analyzing all SNPs but all causal variants are singletons for different levels of h2 (rows) and different fraction of singletons 
that are causal (fracCausal; columns). Points in yellow shading indicate that causal singletons are chosen to be globally rare, 
while grey shading indicates causal singletons are chosen randomly from all singletons. Red points indicate partitioning all 
alleles by 1000G-wide allele frequencies while blue points indicated partitioning by GEUVADIS frequency. When causal 
variants are globally rare, pooling all singletons together results in a substantial under estimate of h2, but when causal 
singleton variants are randomly chosen, partitioning by 1000G frequency does not increase bias very much. Points are 
means across all 10k genes and whiskers (often too small to see) represent 2SE.  
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Supplementary Figure 7. Simulated data are the same as Fig S2, but phenotypes are quantile normalized (as with the real 
data). Inference of h2 is substantially biased downward. However, quantile normalization can avoid possible problems when 
observed data are not normally distributed. 
	

	
Supplementary Figure 8. Investigating patterns of expression. Top shows the full distribution of all genes in all individuals. 
Middle is the same as top, with y-axis on log scale. Bottom shows the inverse CDF, indicating how many observations 
(individuals×genes) have expression larger than the value on the x-axis. For reference 50% of all observations have 
log2(FPKM)≥0.26. 
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Supplementary Figure 9. The cumulative proportion of heritability as a function of MAF for genes in which some fraction 
X of individuals (rows) have log2(FPKM)>Y (columns) with only PCA correction for population structure (A) and after 
correcting for population structure using our trans-permutation approach (B). For our main analysis, we focus on X=0.5 and 
Y=1.5, shaded yellow, but qualitative patterns are similar across all subsets except X=0, in which case heritability estimates 
for rare and low frequency variants are dominated by population structure. In each panel, N is the number of autosomal 
genes, h2 is the total heritability estimate, and ψ is the fraction of heritability due to singletons. 

	

 
Supplementary Figure 10. Mean (±2SE) total heritability inferred for genes with different expression levels (black) as 
well as the h2 contributed by rare (MAF<=5%; red) and common (MAF>5%; blue) alleles. All genes (n=24,944) were 
partitioned into disjoint decile bins, and the mean h2 (total, rare, and common) for all genes in each bin is shown in lighter 
shades. Genes that make it into the final analysis are only in the upper quantiles, and shown in bold shades. 
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Supplementary Figure 11. Effect of varying K and minMAF threshold without quantile normalizing the expression values 
(A) and with quantile normalizing expression values (B). In dark colors are the Raw PCA-corrected h2 estimates, and in 
light shades are the estimates from the trans-permutation reflecting the degree of population structure. 

	

 
Supplementary Figure 12. Effect of window size on inference of genetic architecture. Shorter windows around each gene 
results in smaller numbers of SNPs, which reduces the K we can use, but has only a moderate impact on h2

total. Rare variants 
play a large role outside the immediate vicinity of genes. 95% bootstrap confidence envelopes are shown for n=10,078 
genes. 
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Supplementary Figure 13. Cumulative h2 as a function of MAF for all genes versus those genes that have or do not have 
a genome-wide significantly associated eQTL. 95% bootstrap confidence envelopes are shown. 

	

 
Supplementary Figure 14. Adjusting the number of principal components does not affect our inference of h2 or the con-
tribution of rare variants. 95% bootstrap confidence envelopes are shown for n=10,078 genes. 

	

 
Supplementary Figure 15. Partitioning singletons in our data into quartile bins based on genotype likelihood demonstrates 
that not all singletons contribute equally to the inferred heritability. Singletons with higher genotype likelihood contribute 
more to inferred heritability than singletons with low genotype likelihood. 
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Supplementary Figure 16. Partitioning genes by the proportion of 1000G Strict Mask exon (SME) bases suggests that all 
genes included in our analysis have result in the same global pattern. In contrast, genes excluded from our analysis (orange) 
are substantially different.  

 

Supplementary Figure 17. The number of genes that converged for H-E vs LMM (REML) for All Genes (light shades) or 
the Final Gene Set (dark). 

	

 
Supplementary Figure 18. Tagability of rare and common variants. Cumulative h2 inferred for multiple subsets of SNPs. 
In the middle are the purple dots, which includes all data (as shown in Figure 2C, main text). Above are cumulative h2 
estimates excluding common variants to ask whether rare variants tag common variants. That these curves tend to deviate 
above the purple dots indicates that rare variants can partially tag the h2 of common variants. Below the purple dots are 
cumulative h2 estimates excluding rare variants to ask whether common variants tag h2 from rare variants. The purple shaded 
area indicates the 99% quantile range of the mean for 1,000 bootstrap samples of the full data set.  From this envelope, we 
subtracted the contribution of rare variants, and find that it largely overlaps the inferred h2 when rare variants are not in-
cluded in the model. This demonstrates that common variants do not tag any rare variant h2. 
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Supplementary Figure 19. Reverse cumulative distribution of h2 (i.e. total h2’ contributed by variants above a given MAF) 
when singletons are pooled (purple) vs partitioned according to their observed gnomAD MAF (red). 95% bootstrap confi-
dence envelopes are shown for n=10,078 genes. 
	

 
Supplementary Figure 20. Heritability for SNPs with different evolutionary constraint. We partitioned SNPs into quantile 
bins by their evolutionary constraint as measured by GERP (where negative values indicate more cross-species constraint 
and positive values indicate rapid evolution). We partition singletons only (black), and all SNPs (blue) by GERP. This 
suggests that evolutionary constraint may be more helpful for common variants than for rare variants. 95% bootstrap con-
fidence intervals are shown for n=10,078 genes. 
	

 

Supplementary Figure 21. Population structure is a negligible contributor to singleton heritability. We ran permutations 
multiple ways to characterize the impact of population structure on singleton heritability. Points correspond to the mean 
across all genes ±95% quantile range of 10,000 bootstrap samples across genes. See Section 3.9 for description. 
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Supplementary Figure 22. Partitioning singletons by presence or absence in high coverage data and the gnomAD resource. 
We find that the vast majority (88%) of our singleton h2 reported in Figure 2 (main text) are contributed by variants that 
are validated in high coverage sequencing data. Further, the majority of this signal (67%) is contributed by singletons that 
are not in gnomAD. 95% bootstrap confidence intervals are shown. 
	

 

Supplementary Figure 23. Enrichment of heritability across MAF bins, calculated as the average fraction of bias-corrected 
inferred h2 per bin across genes (as shown in main text Figure 2C) divided by the average fraction of variants observed in 
each MAF bin. 

	

 

Supplementary Figure 24. Comparing the use of a series of dichotomous population covariates to control population struc-
ture instead of PCA. Both approaches result in comparable levels of singleton heritability inferred after correcting with our 
trans-permutation.  
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Supplementary Figure 25. Model performance for rejection sampler. (A-C) shows the distribution of inferred vs the sim-
ulated parameters, demonstrating a strong correlation (note that the coloration is on a log scale, indicating that inference is 
tightly distributed along the diagonal). However, performance is non-uniform. Here we plot the root mean squared deviation 
(RMSD) between true and inferred values of ρ (D) and τ (E) across the parameter space as a function of the other parameter. 
RMSD tends to be minimized along the diagonal (e.g. τ≈ρ). When τ is very small, our model has difficulty inferring large 
ρ (note that τ=0 forces all causal variants to have the same effect size, so it does not make sense to have a correlation between 
fitness effects and phenotype effect size if all causals have the same effect size). 

	

 
Supplementary Figure 26. Model performance improves when parameters are large. Similar to Figure 3A-B (main text), 
but on the left the performance of ρ conditional on τ>0.5, and on the right the performance of τ conditional on ρ>0.5. In 
both cases, the estimator remains unbiased but the variance decreases. 
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Supplementary Figure 27. Singleton heritability is driven by extremely rare variation. gnomAD curve recreated from 
Figure 2B (inset, main text), and analogously partitioning variants by the MAF observed across all 2504 samples in 1000G. 
Model shows h2 as a function of “true” MAF from simulations, averaging over out-of-sample draws from the posterior 
distribution. 
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