
Reviewers' comments: 

Reviewer #1 (Remarks to the Author): 

The authors have done a very good job in answering the questions. 

Reviewer #2 (Remarks to the Author): 

The authors write a short rebuttal to the reviewers and address some of the comments; however, 
some of the responses provide little quantitative experimentation to address the comments. 

Specifically: 

In response to reviewer 1, they write in point (4): 
“As we summarized in the results and discussion sections in our manuscript, we don’t see a clear 
separation of relevant phenotypes, variants, and genes with this alternative approach…” 

- why did the alternative approach not work? The reason for the contrast is not given and this of
major importance since many more individual-leave data will be released in the near future.

In response to reviewer 2, they write in point (12):  
“If one takes GWAS summary statistics from a different GWAS study, the latent components can be 
different due to the difference in experimental design, such as selection of phenotypes and variants in 
the association analysis. “  
- This is speculative. Can the authors test these hypotheses in the current data? This is related to the
point (4) above.

In point (14), the authors write:  
“Contribution scores quantify relative importance of a phenotype, variant, or gene to a given 
component and is defined based on the squared distance of a phenotype, variant, or gene from the 
origin (Fig. 1d, Methods). Using scores, DeGAs identifies the key latent components for a given 
complex trait and annotated them with the driving phenotypes, genes, and variants (Fig. 1c, Methods). 
We performed biological characterization of DeGAs components with the genomic region enrichment 
analysis tool (GREAT) followed by functional experiments in adipocytes (Fig. 1e).“  
- The authors are still not describing concretely how to take the GREAT annotations and the scores to
rank order the latent components. As a reader and someone who wants to apply the method, I have
no idea on how to do so.

In point (15), the authors write:  
“Thank you for pointing out the interesting aspects of our results. Anthropometric traits are known to 
be highly polygenic (Locke et al. Nature, 2015, Yengo et al. bioRxiv, 2018) and we think that is one 
way to interpret the results. Also, it is possible that anthropometric traits are dominating among the 
continuous traits with full sample size, since we didn’t include biomarkers dataset in our analysis. “  
- Again, why not test these speculative comments? First, many traits — not only anthropomorphic -
are known to be be highly polygenic and this cannot explain the results fully. If the authors think it is
a sample size issue, why not test?

Reviewer #3 (Remarks to the Author): 

Editorial Note: This manuscript has been previously reviewed at another journal that is not operating a
transparent peer review scheme. This document only contains reviewer comments and rebuttal letters for 
versions considered at Nature Communications .



 
In their manuscript Tanigawa and colleagues describe a broad genomic screen of more than 2100 
phenotypes in about 340,000 subjects. The authors applied a truncated singular value decomposition 
(DeGAs) with a particular focus on the traits B body mass index (BMI), myocardial infarction (MI) and 
gallstones, finally focusing on two putative loss of function genes, GPR115 and PDE3b and their role 
on adipocyte function.  
The first part of the paper is interesting and innovative because it deals with a huge number of human 
data and provides bioinformatics strategies for the identification of key components that might be 
responsible for complex phenotypes. The results of complex analysis which also included information 
on mouse phenotype data are lists of genes that appear to play a role as risk factors, for the disease 
and / or comorbidities. However, unfortunately the success of the approach is not proven in the last 
part of the manuscript. It is also not clear why the authors selected GPR115 and PDE3B for the in vitro 
analysis and not LIPT1 and MLPH, or two candidates from two different PC.  
The data on the characterization of both genes are not convincing. GPR115 exhibits a very low 
expression in adipose tissue and in 3T3-L1 and SGBS cells (with not changes during differentiation). 
Therefore, it is difficult to understand the effect on reduced expression of adipogenic genes like PPARG. 
The question is if the knockdown is indeed specific and if a second siRNA has been tested and if off-
target effects can be excluded. According to the literature, GPR115 is supposed to be involved in skin 
development. However, the knockout mouse generated and analyzed by the IMPC shows – similar to 
the experiments in cells a reduction of total fat mass. However, a large number of ko mice have an 
impaired fat accumulation which might have several reasons, often mediated via secondary effects. In 
addition, the suppression of PDE3B was without effect, the IMPC ko shows no effect on body weight or 
fat mass but a bone phenotype (long tibia).  
I recommend to either removing the data of the two candidates or at least to shorten it strongly and 
to significantly reduce the interpretation. The classification of both candidates as putative novel 
therapeutic targets is truly an overstatement.  
 
Annette Schürmann  
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We thank the reviewers for their constructive comments and their time. We believe that the 
changes made in the light of their comments have significantly improved the manuscript. 

Our responses to the reviewers below are in blue font, the comments from the reviewer are 
copied in black, and quoted texts from the updated manuscript are shown in gray with a vertical 
bar (examples are shown below):  

Response to our Reviewer 1 

The authors have done a very good job in answering the questions. 

Thank you very much for your time and valuable feedback on our manuscript. 

Response to our Reviewer 2 
(19) Comparison with an alternative individual-level approach

In response to reviewer 1, they write in point (4): 
“As we summarized in the results and discussion sections in our manuscript, we don’t see a 
clear separation of relevant phenotypes, variants, and genes with this alternative approach…” 
- why did the alternative approach not work? The reason for the contrast is not given and this of
major importance since many more individual-leave data will be released in the near future.

Thank you for giving us the opportunity to clarify the objectives of the additional analysis. The 
original question from reviewer 1 was a suggestion of an alternative approach: to utilize the 
individual-level data on the phenotypes to characterize the latent structures and to study genetic 
associations using those phenotypic latent structures. 

We followed the suggestion from reviewer 1 and performed the following analysis as outlined in 
the previous response: (i) latent structure characterization of phenotype data (Supplementary 
Figures S4-S5); (ii) GWAS (Supplementary Figure S6); and (iii) genetic correlation analysis 
among the derived summary statistics (Supplementary Figures S7-S8). 
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In this analysis, we found that the latent structures characterized from the individual-level 
phenotype data picked up phenotypes like “traffic intensity on the major roads,” which does not 
have a clear genetic component (Supplementary Figures S5, quoted below). 

Fig. S5 Characterization of latent structures of phenotypic data characterized by truncated 
singular value decomposition (TSVD) of the imputed and normalized phenotype data. 
Phenotype (a) and Individual (b) PCA plots summarizes the first two components 

This observation is not surprising when one considers a property of the TSVD algorithm: it finds 
the latent components that explains most of the variation in the input dataset. When we apply 
TSVD on the individual-level phenotype data as suggested in the alternative approach, it 
identifies (1) latent components that explains most of the phenotypic variance, and (2) sets of 
phenotypes that show most of the correlation with the identified phenotypic latent components. 
Specifically, there is no guarantee that the identified components represent latent structures in 
the genetic associations. The captured phenotypic variation may come from different sources, 
such as environmental factors and technical and/or non-technical errors in the phenotypic 
measurements. In contrast, our proposed method, DeGAs, directly operates on the genetic 
association data (represented as a summary statistic matrix) and captures most of the variation 
in genetic associations in the identified DeGAs components. 

While pursuing the additional quantitative analysis for the suggested alternative approach, we 
also observed that the genetic associations characterized for the phenotypic latent components 
were not independent when we computed the genetic correlation among them (Supplementary 
Figures S7-S8). This highlights the pleiotropic effects of genetic variants even when the 
phenotypes are mathematically orthogonal among others. In contrast, the latent components 
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from our proposed approach, DeGAs, are guaranteed to be orthogonal among other given the 
way we decomposed the summary statistic matrix. 

As you pointed out, the UK Biobank will release more individual-level data enabling us to access 
more phenotypes and/or reduce the number of missing individuals for the existing phenotypes. 
However, even with the new individual-level data, it is unclear whether the alternative approach 
will identify latent components of genetic associations because of the aforementioned properties 
of the alternative approach. With more individual-level data, our DeGAs approach will also 
benefit because that will enable us to obtain more accurate estimate of genetic associations (the 
standard errors from GWAS will decrease as the number of samples with non-missing 
phenotypic values increases). 

Together, the suggested alternative approach provided a different perspective and 
interpretation, and the comparison highlights that DeGAs approach can focus on the variations 
in the genome-wide associations (not the phenotypic variations which may include 
environmental factors) across >2,000 traits and identify their orthogonal latent components. The 
results of those additional analyses and their implications are summarized in the Results and 
Discussion sections in the main texts (quoted below). 

Results (pp. 3-4, line 131-140): 
To highlight the ability of DeGAs to capture related sets of phenotypes, genes, and variants 
in genetic associations, we also applied TSVD to the missing-value imputed and Z-score 
transformed phenotype matrix and characterized the first 100 latent components (Methods). 
Using the individual and phenotype PCA plots, we found a fewer number of components 
that explains most of the variance and several phenotypes, such as traffic intensity of the 
nearest major road and creatinine (enzymatic) in urine, are dominantly driving the top 
phenotypic PCs (Supplementary Fig. S4-S5). We applied GWAS for each of the 
decomposed phenotypes (Supplementary Fig. S6). Through the genetic correlation analysis 
with the derived summary statistics, we found non-zero genetic correlations among the 
phenotypic PCs (Supplementary Fig. S7-S8). 

Discussion (p. 8, line 318-323): 
Our comparison of DeGAs to an alternative approach – decomposition of individual 
phenotype data followed by GWAS – highlights the ability of DeGAs to capture most of the 
variation in the genetic associations and to enable identification of biomedically relevant 
genetic signals as latent components connecting sets of genetic variants and phenotypes. 
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Thank you very much for your question. It helped us to clarify the properties of DeGAs in a 
comprehensive manner. 

(20) Latent components from different GWAS study

In response to reviewer 2 (12): 
“If one takes GWAS summary statistics from a different GWAS study, the latent components 
can be different due to the difference in experimental design, such as selection of phenotypes 
and variants in the association analysis. “ 
- This is speculative. Can the authors test these hypotheses in the current data? This is related
to the point (4) above.

In our manuscript, we analyzed three datasets: “all” variants with both coding and non-coding 
variants, coding variants, and protein-truncating variants. These datasets contain different sets 
of variants and phenotypes (p.2, line 85-86): 

we performed separate analyses on three variant sets: (1) all directly-genotyped variants, (2) 
coding variants, and (3) PTVs (Supplementary Fig. S1). 

and (p.3, line 90-93): 

N and M denote the number of phenotypes and variants, respectively. N and M were 2,138 
and 235,907 for the “all” variant group; 2,064 and 16,135 for the “coding” variant group; and 
628 and 784 for the PTV group. 

For each of the three datasets, we quantified the contributions of phenotypes and genetic 
variants and found that they are different (Figures 3a, 4a, 4b, Supplementary Figures S9, S21, 
and S22). For example, the top contributing genes for the most important component for BMI 
were FTO, MC4R, and PDE3B, respectively for “all” variant group, “coding” variant group, and 
PTV group, respectively as shown below: 
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Dataset The genetic composition The phenotypic composition 

“All” 
variants 

Coding 
variants 

PTVs 
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We clarified this property in the discussion section (p.8, line 339-344): 
Due to differences in phenotype and variant selection, it is possible that the latent structures 
discovered from DeGAs would be different if using GWAS summary statistics from a 
different GWAS study. However, DeGAs is capable of identifying the most relevant 
components for a given input dataset using quantitative scores. In fact, our analysis for the 
three datasets – “all”, coding, and PTVs – identified different PCs for each trait of our 
interest, but their characterization with contribution scores enabled interpretation of the 
DeGAs components. 

(21) application of GREAT enrichment analysis for biological characterization of DeGAs
components

In point (14), the authors write: 
“Contribution scores quantify relative importance of a phenotype, variant, or gene to a given 
component and is defined based on the squared distance of a phenotype, variant, or gene from 
the origin (Fig. 1d, Methods). Using scores, DeGAs identifies the key latent components for a 
given complex trait and annotated them with the driving phenotypes, genes, and variants (Fig. 
1c, Methods). We performed biological characterization of DeGAs components with the 
genomic region enrichment analysis tool (GREAT) followed by functional experiments in 
adipocytes (Fig. 1e).” 
- The authors are still not describing concretely how to take the GREAT annotations and the
scores to rank order the latent components. As a reader and someone who wants to apply the
method, I have no idea on how to do so.

For readers that want to apply our methods, we provide an interactive web application as a part 
of the Global Biobank Engine so that people in the community can browse the results and use 
them for their analysis.  the DeGAs app page, we have prepared a video tutorial for our app so 
that the new users can easily learn our method and use it to address their research questions. 
We also provide the analysis code available on GitHub. We clarified those points in the data and 
code availability section quoted below (p. 21, lines 834-838): 

Data and code availability:  
The association analysis data, the interactive DeGAs App, and its video tutorial are available 
as a part of Global Biobank Engine (https://biobankengine.stanford.edu/degas). Analysis 
scripts and notebooks are available on GitHub (https://github.com/rivas-lab/public-
resources/tree/master/uk_biobank/DeGAs).  

We do not use GREAT enrichment analyses to rank latent components. We applied GREAT 
analyses for each DeGAs component independently as described in the method section (p.16, 
line 655-661): 
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For each DeGAs component, we selected the top 5,000 variants according to their variant 
contribution score and performed enrichment analysis with the default parameter as 
described elsewhere20. Since we included the non-coding variants in the analysis, we 
focused on GREAT binomial genomic region enrichment analysis based on the size of 
regulatory domain of genes and quantified the significance of enrichment in terms of 
binomial fold enrichment and binomial p-value. Given that we have 9,561 terms in the 
ontology, we set a Bonferroni-corrected p-value threshold of 5×10-6.  

The rank order of the DeGAs latent components, as well as the relative importance of each 
DeGAs components for any phenotype of interest were quantified with “phenotype squared 
cosine score.” Briefly, phenotype squared cosine score quantifies the relative importance of 
DeGAs component for any given phenotype. The full definition and their interpretation are 
described in the method section (p.14, line 573-583): 

To quantify the contribution of the phenotypes, variants, and genes to a given component, 
we computed contribution scores. We first defined phenotype contribution score and 
variant contribution score. We denote phenotype contribution score and variant 
contribution score for some component 𝑘 as cntr&

phe(𝑖) and cntr&var(𝑗), respectively. They
were defined by squaring the left and right singular vectors and normalizing them by 
Euclidean norm across phenotypes and variants:  

cntr&
phe(𝑖) = 1𝑢3,&5

6

cntr&
var(𝑗) = 	 1𝑣3,&5

6

where, 𝑖 and 𝑗 denote indices for phenotype and variant, respectively. Because 𝑈 and 𝑉 are 
orthonormal, the sum of phenotype and variant contribution scores for a given component 
are guaranteed to be one, i.e. ∑ cntr&

phe(𝑖)3 = 	∑ cntr&var(𝑗)< = 1.

Thanks for the opportunity to clarify these issues that are important from the user’s perspective. 

(22) Large contribution of anthropometric traits

In point (15), the authors write: 
“Thank you for pointing out the interesting aspects of our results. Anthropometric traits are 
known to be highly polygenic (Locke et al. Nature, 2015, Yengo et al. bioRxiv, 2018) and we 
think that is one way to interpret the results. Also, it is possible that anthropometric traits are 
dominating among the continuous traits with full sample size, since we didn’t include biomarkers 
dataset in our analysis. “ 
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- Again, why not test these speculative comments? First, many traits — not only
anthropomorphic - are known to be highly polygenic and this cannot explain the results fully. If
the authors think it is a sample size issue, why not test?

Regarding point (15), let us first quote the question from reviewer 1 to clarify the context: 

--- Quote from reviewer 1 starts here --- 
(15) A large contribution from anthropometric traits
Is there intuition for why there is such a large contribution from anthropometric traits in the top
PCs of your analysis? Is it due to strength of association? Is it a function of the phenotypic
landscape of UKB?
I am also curious why the top 5 PCs are all related to different aspects of anthropometric, blood,
or spirometric traits when you are using so many phenotypes for your analysis e.g. psychiatric
traits. Is this a function of the enrichment of certain trait categories in UK Biobank?
--- Quote from reviewer 1 ends here ---

Thank you for the opportunity to clarify the contribution of anthropometric traits. To address your 
concern, we performed additional quantitative analysis and quantified the degree of polygenicity 
by number of independent SNP associations with the phenotype after applying a LD-clumping 
procedure. LD-clumping is a computational technique to characterize independent set of SNPs 
commonly applied to GWAS summary statistics. By comparing the polygenicity and the 
phenotype contribution scores for the first 5 components, we found that the phenotypes with 
large phenotype contribution scores tend to be highly polygenic anthropometric traits 
(Supplementary Figure S29, shown below): 
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Supplementary Figure S29. Comparison of phenotype contribution scores and the number 
of clumped GWAS hits for the first five DeGAs components (PC1-5). The phenotype 
contribution score (x-axis) and the number of clumped GWAS hits (p < 1e-4, y-axis) is 
compared. Each point is a phenotype and they are grouped and colored by phenotype 
categories defined in Supplementary Table S2. 

We removed our previous speculative comments, included the results of this analysis as a 
supplementary figure (Supplementary Figure S29), and updated the main text with a reference 
to these additional analysis (p.8, line 324-31).  
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In DeGAs, we provided multiple ways to investigate the biological relevance of latent 
components, including quantitative scores and ontology enrichment analyses. These metrics 
are useful to annotate and interpret latent components, which are otherwise just 
mathematical objects in a high-dimensional space. For example, we found a significant 
contribution of anthropometric traits among the top 5 components, which reflects the 
pervasive polygenicity of these traits (Supplementary Fig. S29)38,39. By leveraging the ability 
of TSVD to efficiently summarize most of the variance in the input association statistic 
matrix, DeGAs provides a systematic way to interpret polygenic and pleiotropic genetic 
architecture of common complex traits. 

Thank you very much for your questions that helped us further improve our manuscript. 

Response to our Reviewer 3 

(23) Selection of the two PTVs for experimental follow-up

However, unfortunately the success of the approach is not proven in the last part of the 
manuscript. It is also not clear why the authors selected GPR115 and PDE3B for the in vitro 
analysis and not LIPT1 and MLPH, or two candidates from two different PC. 

Thank you very much for your questions about the selection strategy of PTVs used for the 
experimental follow-up that helped us making the presentation clearer. We selected GPR151 
(not GPR115) and PDE3B for the follow-up experiments in adipocyte models based on the 
unbiased computational analyses applied on the PTVs dataset focusing on BMI, which is used 
as an example trait of DeGAs application throughout our manuscript. 

In our computational analyses with DeGAs, we found that PC1 was identified as the top 
component for BMI. According to our “gene contribution scores” (Figure 4b, shown below), 
PDE3B and GPR151 are ranked first and second with 19.03% and 12.26% of gene contribution 
scores, respectively, whereas MLPH and LIPT1 are ranked 9 and 10 with 3.40% and 3.24% of 
the scores, respectively (the bar charts should be read from the bottom as is typical for that type 
of chart). 
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Fig. 4 DeGAs applied to the protein-truncating variants (PTVs) dataset. (b) gene 
contribution scores for the top key components associated with BMI. 

According to the “phenotype contribution scores” (Figure 4a, shown below), we found that first 
principal component (PC1) was characterized by fat-related phenotypes (with 33.8 % of the total 
phenotype contribution score). Thus, we selected adipocytes as the most relevant cell type for 
the experimental follow-up of the PC1 candidates. If we were to select candidates from a 
different PC, such as PC3 characterized with height-related phenotypes, we would have used 
another model system (in the case of PC3, probably a bone cell model) to carry out the 
experimental follow-up. 

Fig. 4 DeGAs applied to the protein-truncating variants (PTVs) dataset. (a) phenotype 
contribution scores for the top key components associated with BMI. 
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Hence, in summary, we picked the top PC and the top two genes contributing to this PC 
for functional follow-up experiments, and decided on the model system based on the 
nature of the phenotypes. To make our selection strategies for candidate genes and 
experimental models clearer, we have now added the following text to the manuscript 
(p.8, line 345-352): 

To select candidate genes and the most relevant experimental models for the functional 
studies in an unbiased manner, we applied DeGAs to the PTV dataset. First, we identified 
PC1 as the top phenotype component contributing to BMI. Second, based on the fact that 
the main drivers of PC1 phenotypes were fat mass-related measurements, we chose 
adipocytes as our experimental model to approach candidate gene studies. Last, but not 
least, we selected the top two genes contributing PTVs to PC1 (GPR151 and PDE3B) and 
explored their functionality in fat cells, in order to illustrate the application of DeGAs 
computational analysis in biological research. 

(24) Very low expression of GPR151

The data on the characterization of both genes are not convincing. GPR115 exhibits a very low 
expression in adipose tissue and in 3T3-L1 and SGBS cells (with not changes during 
differentiation). Therefore, it is difficult to understand the effect on reduced expression of 
adipogenic genes like PPARG. 

Thank you for bringing up this question. We agree with the reviewer that GPR151 expression is 
low in adipose tissue and in preadipocyte models throughout adipogenic differentiation. 
However, we have provided evidence that the minimal expression of the endogenous Gpr151 in 
preadipocytes is indispensable to initiate adipogenic process: knockdown of Gpr151 in 
preadipocytes remarkably blocked adipogenic conversion (Fig. 5), while overexpression of 
Gpr151 in preadipocytes did not further elevate adipogenesis (Fig. S27). The reduction of 
adipogenic markers, such as Pparg, is a reflection of the inhibited adipogenic activity in Gpr151-
lacking cells, as we knocked down Gpr151 in the preadipocyte stage before inducing 
differentiation and measured Pparg expression at the terminal differentiation stage to indicate 
the degree of differences in adipogenesis between control and Gpr151-deficient cells (Fig. 5d).  

To clarify the potential importance of the minimal expression of endogenous GPR151 in 
adipogenic precursors in imposing its effect on adipogenesis, we added the following text to the 
Discussion section (p.9, line 356-364): 
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GPCRs are known to influence adipogenesis by conveying a complex series of secondary 
messengers, including cAMP and calcium signals44,45. The density of receptors and the 
timing of receptor expression during adipogenesis governs the level, timing and duration of 
the secondary signals, which is a critical factor in initiating and/or maintaining adipocyte 
conversion44. Although the endogenous expression of GPR151 is low in preadipocytes, our 
results show that its presence is important to instigate the early events of adipogenic 
differentiation. Further investigation of the mechanism of GPR151 action will be valuable to 
understand its integral role in adipogenesis to the full extent. 

(25) The specificity of siRNA & concern about off-target effects

The question is if the knockdown is indeed specific and if a second siRNA has been tested and 
if off-target effects can be excluded. 

Thanks for the question and opportunity to clarify this matter. We indeed tested 3 different 
siRNAs targeting the same gene and observed the same downstream effects on adipogenesis. 
Each of these 3 siRNAs has the same intended target but contains distinct seed sequences, as 
well as unique potential off-target signatures. By using multiple individual siRNAs and achieving 
the same results, the confidence of the specificity of the siRNAs is increased and strongly imply 
that the observed phenotypes do indeed result from silencing the intended target. By pooling 
multiple siRNAs against the same target, the number and magnitude of off-target effects may be 
reduced due to the competition among siRNAs in the pool, while combining their on-target 
effects. Accordingly, we modified Figure 5c-d to show the results of 3 siRNAs both individually 
and together to make this clearer. 

Fig. 5 Experimental validation of GPR151 function in cellular models of adipogenesis. (c) 
qPCR analysis of Gpr151 mRNA knockdown in 3T3-L1 preadipocytes, by 3 siRNAs targeting 
Gpr151 individually and together. (d) qPCR analysis of the effect of siGpr151 knockdown 
(individually and together) on adipogenesis markers, Pparg, Cebpa and Fabp4. 
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(26) Consistency between our results and IMPC KO

According to the literature, GPR115 is supposed to be involved in skin development. However, 
the knockout mouse generated and analyzed by the IMPC shows – similar to the experiments in 
cells a reduction of total fat mass. However, a large number of ko mice have an impaired fat 
accumulation which might have several reasons, often mediated via secondary effects. 

Thank you very much for checking the external datasets. However, it should again be pointed 
out that we analyzed GPR151, not GPR115, in our manuscript. There is no phenotypic 
information is registered in IMPC on Gpr151 (IMPC’s Gpr151 page: 
https://www.mousephenotype.org/data/genes/MGI:2441887). In fact, our study is the first 
experiment of a potential role of GPR151 in fat cell development. As discussed in the text (p.9, 
line 389-392; quoted below), we do not exclude the possibility of other mechanisms underlying 
the functionality of GPR151 in fat accumulation. The objective of the paper was to prioritize 
novel genes in the context of relevant phenotypes in order to initiate more effective experimental 
follow-up studies. For each individual gene, we believe that comprehensive and systemic 
studies are needed in the future to fully understand the regulatory mechanism of a gene 
function. 

We do not exclude the contribution nor the importance of other tissues or mechanisms 
underlying body weight changes. Indeed, some lines of evidence support additional effects 
of GPR151 on obesity via the central nervous system – possibly on appetite regulation37 

(27) Contribution of PDE3B to adipocyte phenotypes

In addition, the suppression of PDE3B was without effect, the IMPC ko shows no effect on body 
weight or fat mass but a bone phenotype (long tibia). 

We thank the reviewer for the chance to clarify the relevance of studying PDE3B in fat-related 
phenotypes. First, as explained in detail above, we selected the top two genes contributing to 
PC1 in an unbiased manner for functional experiments that were performed in fat cells due to 
the phenotypic profile of this PC. Then, we will respond in turn to each of the three parts of this 
specific question: 1) PDE3B knockdown had no effect in our study; 2) Pde3b KO in IMPC 
showed no effect on body weight or fat mass; 3) Pde3b KO in IMPC showed phenotypes in 
bone length. 

In this study, we only tested the impact of PDE3B knockdown on preadipocyte differentiation 
and observed no effects. We cannot exclude that PDE3B plays a role in other functions of 
adipocytes in relation to energy, lipid and glucose metabolism. There is evidence that white 
mature adipocytes in Pde3b knockout mice exhibit improved mitochondrial activity and behave 



15/17 

as “beige” fat with more energy-burning properties (Chung, Y. W. et al., 2017). More detailed 
studies are needed to characterize the role of PDE3B in all aspects of fat biology. 
In IMPC, both male and female homozygous knockout mice showed a modest increase in body 
weight under regular chow diet, as compared to their wild-type (WT) counterparts (IMPC Pde3b 
link: 
https://www.mousephenotype.org/data/charts?accession=MGI:1333863&parameter_stable_id=I
MPC_BWT_008_001&&chart_type=TIME_SERIES_LINE). This phenotype in mice is consistent 
with our findings in humans that PDE3B loss-of-function variant carriers have 0.647 kg/m2 
higher BMI than the average of UK Biobank participants (see in the text: p. 6 line 232-234, 
Supplementary Figure S26). Moreover, in a study not included in IMPC database, the 
percentage of the visceral fat weight relative to body weight was reduced in Pde3b knockout 
mice under high-fat diet challenge, in comparison to controls. Further, a recent publication from 
the Million Veteran Program (MVP) indicated a beneficial association of PDE3B loss-of-function 
variation with lower triglyceride and higher HDL-cholesterol in circulation (Klarin, D. et al., 2018). 
All the evidence above suggests a phenotypic involvement of PDE3B in fat biology. 

We agree with the reviewer that in IMPC, long tibia is indeed listed as a significant phenotype in 
Pde3b total-body knockout mice. In humans, our PheWAS analysis indicates that the standing 
height and leg fat-free mass are also driving the contribution of PDE3B PTVs to body weight. In 
this paper, we focused on studying the effect of PDE3B in fat cells, but did not exclude its 
involvement in other metabolic tissues, such as bone. In fact, fat and bone cell development are 
often coordinated in regulation of whole-body metabolism. All taken together, to address the 
reviewer’s concern over the relevance of PDE3B in adipocyte biology, we added and modified 
the following text in the Discussion (p.9, line 365-380, line 388-393):  

PDE3B, on the other hand, did not affect differentiation of preadipocytes significantly in our 
study. There is evidence that PDE3B plays a more notable role in differentiated mature 
adipocytes, the primary component of adipose tissue. As an essential enzyme that 
hydrolyzes both cAMP and cGMP, PDE3B is known to be predominantly expressed in 
tissues that are important in regulating energy homeostasis, including adipose tissue46. 
White adipose tissue in Pde3b knockout mice behaves more as “beige” fat with improved 
mitochondrial activity and energy-burning properties, leading to a reduction of visceral fat 
mass as compared to the wild-type littermates47. Moreover, Pde3b knockout in mice confers 
cardioprotective effects48, and human PDE3B “knockout” subjects display lower circulating 
triglycerides and higher HDL-cholesterol in blood49. There is a growing body of evidence that 
cardiometabolic health is linked to improved body fat distribution (i.e. lower visceral fat, 
higher subcutaneous fat)50. Our PheWAS analysis suggests that PDE3B PTVs have the 
strongest association to hip circumference (e.g. lower-body subcutaneous adiposity) 
(Supplementary Fig. S24). Therefore, understanding the fat depot-specific metabolic effects 
of PDE3B may help uncover the mechanism underlying the positive relationship of PDE3B 
PTVs with peripheral fat accumulation and favorable metabolic profiles. 
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In this study, we focused on evaluating the functional effects of these genes on adipocyte 
function and development. We do not exclude the contribution nor the importance of other 
tissues or mechanisms underlying body weight changes. Indeed, some lines of evidence 
support additional effects of GPR151 on obesity via the central nervous system – possibly 
on appetite regulation37, while loss-of-function variant in PDE3B is also associated with 
height51 - another contributing factor to body weight changes. 

(28) Interpretation of the experimental results from the candidate gene study

I recommend to either removing the data of the two candidates or at least to shorten it strongly 
and to significantly reduce the interpretation. The classification of both candidates as putative 
novel therapeutic targets is truly an overstatement. 

Thank you for the suggestion. We shortened and modified the interpretation of the data for both 
genes in the Results section, only summarizing direct observations from the experiments to 
avoid overinterpretation. We also deleted the statement of suggesting these two genes as novel 
therapeutic targets in treating obesity. We agree with the reviewer that we have not performed 
enough experiments to fully understand the role of either gene in fat biology. We are not aiming 
to completely map the functional and mechanistic roles of either gene. We performed 
experimental studies on these two genes contributing to obesity-related traits, as unbiasedly 
chosen by the novel computational methods, in hopes of: 1) providing an example of how to 
interpret the results from DeGAs effectively and how to select candidate genes for the relevant 
experimental models; and 2) initiating an application of DeGAs in biological research and 
inspiring more state-of-art basic/translational studies about novel candidates predicted from 
DeGAs. 

Summary of GPR151 function in adipocytes (p.7, line 268-269, line 290-293): 
These data suggest that GPR151 knockdown in adipocyte progenitor cells may block their 
conversion into mature adipocytes. 

To sum up results from the gain- and loss-of-function studies of GPR151 in preadipocyte 
models, minimal but indispensable endogenous expression of GPR151 in adipose 
progenitor cells in generating lipid-rich adipocytes may underlie one of the mechanisms by 
which GPR151 promotes obesity. 

Summary of PDE3B function in adipocytes (p.7, line 294-299): 
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knockdown of Pde3b in 3T3-L1 preadipocytes (Supplementary Fig. S28a) showed no 
significant influence on adipogenesis and lipolysis (under either basal or β-adrenergic 
stimulated conditions), as compared to scRNA-transfected controls (Supplementary Fig. 
S28b-e). Since PDE3B is expressed primarily in differentiated adipocytes (Fig. 5a-b), future 
research efforts should be concentrated on studying the metabolic role of PDE3B in mature 
adipocytes. 

Summary of the value of performing the experimental studies on these two candidates (p.7, line 
300-305):

Collectively, we performed functional characterization studies on the top two genes
contributing to obesity-related traits, as selected based on the novel DeGAs approach in an
unbiased manner, in hopes of: 1) providing an example of how to interpret the results from
DeGAs effectively and how to select candidate genes for relevant experimental models; and
2) initiating an application of DeGAs in biological research and inspiring more state-of-art
translational studies of novel candidates predicted from DeGAs.

Thank you very much for your time, suggestion, and comments to have substantially improved 
the presentation. 



REVIEWERS' COMMENTS:  
 
Reviewer #2 (Remarks to the Author):  
 
The authors have addressed my comments.  
 
 
Reviewer #3 (Remarks to the Author):  
 
First of all I would like to appologize for mixing up GPR115 with GPR151; I'm very sorry for this 
mistake. Secondly, I would like to thank the authors for answering to all my questions and 
suggestions. I'm satisfied with the changes and Responses and recommend to publish this important 
set of data.  
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Response to the reviewers 

Our responses are in blue font, the comments from reviewers are copied in black (examples are 
shown below):  

This is an example of editorial requests or reviewer’s comments 
This is an example of our response. 

REVIEWERS' COMMENTS: 

Reviewer #2 (Remarks to the Author): 

The authors have addressed my comments. 

Thank you very much for your time and valuable feedback on our manuscript. 

Reviewer #3 (Remarks to the Author): 

First of all I would like to appologize for mixing up GPR115 with GPR151; I'm very sorry for 
this mistake. Secondly, I would like to thank the authors for answering to all my questions and 
suggestions. I'm satisfied with the changes and Responses and recommend to publish this 
important set of data. 

Thank you very much for your time and valuable feedback on our manuscript. 
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