Supplementary information

Phlda3 regulates beta cell survival during stress

Mohammed Bensellam^{1,2}, Jeng Yie Chan^{1,3}, Kailun Lee¹, Mugdha V. Joglekar⁴, Anandwardhan A. Hardikar⁴, Thomas Loudovaris⁵, Helen E. Thomas^{5,6}, Jean-Christophe Jonas² and D. Ross Laybutt^{1,3}

¹Garvan Institute of Medical Research, Sydney, NSW, Australia

² Université catholique de Louvain, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Brussels, Belgium
³ St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia

⁴NHMRC Clinical Trials Centre, The University of Sydney, Sydney, NSW, Australia

⁵ St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia

⁶ St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia

Corresponding authors:

Mohammed Bensellam

Université catholique de Louvain, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Brussels, Belgium.

Tel: 32-2-764-9586; Fax: 32-2-764-5532; Email: mohammed.bensellam@uclouvain.be

D. Ross Laybutt

Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW 2010, Australia. Tel: 61-2-9295-8228; Fax: 61-2-9295-8201; Email: r.laybutt@garvan.org.au

Donor	Age	Gender	BMI	Diabetes duration	Diabetes treatment	Comments	Cause of death	Islet purity	Cell viability
N-SVI-014-10	34	М	30,6	-	-	No family history	Prescription drug overdose	65%	74%
				HbA1c 5,4			(28min downtime)		
N-SVI-020-10	33	F	31	-	-	No family history	Suicide - Hanging	80%	ND
				HbA1c 5,6			(45min downtime)		
N-SVI-032-10	40	F	24,1	-	-	No family history	Hypoxia	90%	71%
				HbA1c 5,7			(35min downtime)		
N-SVI-042-10	65	М	36,8	-	-	No family history	Spontaneous subarachnoid	90%	ND
				HbA1c 5,7			hemorrhage		
N-SVI-014-14	53	М	30,2	-	-	No family history	Cerebral hypoxia/ischemia (34min downtime)	70%	73%
N-SVI-023-14	61	F	31.9	-	-	No family history	Cerebral infarction	90%	96%
			-)-			5 5	(30min downtime)		
N-SVI-040-14	39	М	23,9	-	-	Grandfather T2D	Cerebral hypoxia/ischemia	95%	83%
							(0 min downtime)		
N-SVI-011-16	61	М	25,5	-	-	No family history	Intracranial haemorrhage	95%	84%
T2D- SVI-007-11	47	М	30,9	12 years	Diet controlled	Father T2D	Spontaneous subarachnoid	90%	85%
				HbA1c 6.0			hemorrhage		
T2D-SVI-001-12	44	М	44,1	Undiagnosed	None	Alcoholic with liver	Spontaneous subarachnoid	70%	ND
				HbA1c 10,0		cirrhosis, Father T2D	hemorrhage		
						on Dialysis. Not T1D			
						no Autoantibodies			
T2D- SVI-005-14	57	F	24,8	<1 year	Diet/exercise	Father, Uncle, Sister	Spontaneous subarachnoid	90%	ND
					controlled	Insulin dependent	hemorrhage		
						Diabetics			
T2D- SVI-014-15	40	М	30,4	Undiagnosed	None	Mother T2D	Hypoxia secondary to	75%	83%
				HbA1c 6,8		Confirmed not T1D	obstructive sleep apnea		
						no Autoantibodies	+ community acquired		
							pneumonia vs.		
							meningoencephalitis		
							(35min downtime)		
T2D- SVI-010-16	65	М	37,2	15 years	Oral hypoglycemic,	Sister T2D	Cerebral infarction	80%	ND
				HbA1c 8,0	DIABEX (Metformin),		(2/min downtime)		
					DIAMICRON				
					(Gliclazide)				

Supplementary Table 1. Characteristics of organ donors and islet preparations

F: Female, M: Male, N: Non-diabetic, ND: Not determined, T2D: Type 2 diabetes

Donor	Age	Gender	BMI	Islet purity	Cell viability
1	62	F	29.3	90%	95%
2	58	Μ	27.2	80%	90%
3	50	F	28.8	95%	Not done

Supplementary Table 2. Characteristics of the three non-diabetic organ donors and their islet preparations

F: Female, M: Male

Gene symbol	5' Oligonucleotide	3' Oligonucleotide
Cyclophilin (Cypa, Ppia)	TGTGCCAGGGTGGTGACTTTAC	TGGGAACCGTTTGTGTTTGG
Ddit3 (Chop, Gadd153)	TTCACTACTCTTGACCCTGCGTC	CACTGACCACTCTGTTTCCGTTTC
$Dnajc3 (p58^{IPK})$	AAGCCCGTGGAAGCCATTAG	GGTCATTTTCATTGTGCTCCTGAG
Fkbp11	ACACGCTCCACATACACTACACGG	ATGACTGCTCTTCGCTTCTCTCCC
Gpx1	ACAGTCCACCGTGTATGCCTTC	CTCTTCATTCTTGCCATTCTCCTG
Glut2 (Slc2a2)	CATTCTTTGGTGGGTGGC	CCTGAGTGTGTTTGGAGCG
Hmox1(HO-1, Hsp32)	CCACACAGCACTATGTAAAGCGTC	GTTCGGGAAGGTAAAAAAGCC
Hspa5 (Bip, Grp78)	AGGACAAGAAGGAGGATGTGGG	ACCGAAGGGTCATTCCAAGTG
Hsp90b1 (Grp94)	AAACGGCAACACTTCGGTCAG	GCATCCATCTCTTCTCCCTCATC
Id1	TTGGTCTGTCGGAGCAAAGC	GCAGGTCCCTGATGTAGTCGATTAC
Π1β	TGTTCTTTGAAGTTGACGGACCC	CCACAGCCACAATGAGTGATACTG
iNos (Nos2)	GCACCTTGGAAGAGGAGCAACTAC	TGCGGCTGGACTTTTCACTC
Ikba (Nfkbia)	ACCCCTCTACATCTTGCCTGTGAG	CGTTGACATCAGCACCCAAAG
Mafa	CGTCAACGACTTCGACCTGATG	ATCCTCCAGCACCGCTTTTC
p21 (Cdkn1a, Waf1)	CTTGTCGCTGTCTTGCACTCTG	CTTCAGGGTTTTCTCTTGCAGAAG
Pdia4 (Erp72)	AGTCAAGGTGGTGGTGGGAAAG	TGGGAGCAAAATAGATGGTAGGG
Phlda3	CACATCTACTTCACGCTAGTGACCG	GTTGATTCTTGAACTTGACCAGGC
Srxn1	TACCAATCGCCGTGCTCATC	AAAGGAATAGTAGTAGTCGCCACCC
Trb3	TCTTCAGCAACTGTGAGAGGACG	TCCAGACATCAGCCGCTTTG
Xbp1	GCAGCAAGTGGTGGATTTGG	AGATGTTCTGGGGAGGTGACAAC

Supplementary Table 3. Sequences of oligonucleotide primers (5'-3')

Aliases of gene symbols given in parentheses

Control

 $H_2O_2 50 \ \mu M$

Supplementary Figure 1. PHLDA3 immunostaining in H₂O₂-treated human islets

Human islets from 3 different preparations were cultured in the absence or presence of 50 μ mol/l H₂O₂ for 24h. At the end of culture, islets were fixed, embedded in paraffin and sections prepared for assessement of PHLDA3 expression. The representative images shown in Fig. 4g are from preparation 1. These images show the upregulation of PHLDA3 immunostaining throughout H₂O₂-treated islets in both beta and non-beta cells. Scale bar, 50 μ m.

Supplementary Figure 2. Effect of *Phlda3* knockdown on hypoxia-induced apoptosis

MIN6 cells transfected with either control siRNA (si-C) or siRNA against *Phlda3* (si-Ph3) were cultured in the presence of normoxia (20% O₂; white bars) or hypoxia (1% O₂; grey bars) for 24h. Changes in apoptosis levels were normalized to DNA content. Data are means±SEM for 3 experiments. ***p<0.001 vs normoxia. (two-way ANOVA+test of Bonferroni).

Uncropped images of immunoblots used for experiments shown in figure 7e. The bands shown in figure 7e are indicated with horizontal arrows

p-AKT

AKT

ACTIN

