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Genome-wide association studies (GWASs) have identified hundreds of genetic risk variants for human cancers. However, target genes
for the majority of risk loci remain largely unexplored. It is also unclear whether GWAS risk-loci-associated genes contribute to muta-
tional signatures and tumor mutational burden (TMB) in cancer tissues. We systematically conducted cis-expression quantitative trait
loci (cis-eQTL) analyses for 294 GWAS-identified variants for six major types of cancer—colorectal, lung, ovary, prostate, pancreas,
and melanoma—by using transcriptome data from the Genotype-Tissue Expression (GTEx) Project, the Cancer Genome Atlas
(TCGA), and other public data sources. By using integrative analysis strategies, we identified 270 candidate target genes, including 99
with previously unreported associations, for six cancer types. By analyzing functional genomic data, our results indicate that 180 genes
(66.7% of 270) had evidence of cis-regulation by putative functional variants via proximal promoter or distal enhancer-promoter inter-
actions. Together with our previously reported associations for breast cancer risk, our results show that 24 genes are shared by at least two
cancer types, including four genes for both breast and ovarian cancer. By integrating mutation data from TCGA, we found that expres-
sion levels of 33 and 66 putative susceptibility genes were associated with specific mutational signatures and TMB of cancer-driver genes,
respectively, at a Bonferroni-corrected p < 0.05. Together, these findings provide further insight into our understanding of how genetic
risk variants might contribute to carcinogenesis through the regulation of susceptibility genes that are related to the biogenesis of
somatic mutations.

Introduction

Genome-wide association studies (GWASs) have identified
hundreds of genetic risk variants for human cancers; the
majority of these risk variants are for three common cancer
types: breast, colorectal, and prostate.'® Approximately
90% of these GWAS-identified single nucleotide polymor-
phisms, or index SNPs, reside in noncoding regions such
as intergenic or intronic regions. However, the target genes
and biological mechanisms driving cancer susceptibility
remain unclear for many of these variants. In recent years,
by using functional epigenetic data from the Encyclopedia
of DNA Elements (ENCODE) and the Roadmap Epigenom-
ics project (Roadmap), several studies have shown that in-
dex SNPs or their correlated variants in strong linkage
disequilibrium (LD) are enriched with cis-regulatory ele-
ments, including histone markers, DNase I hypersensitive
sites, and transcription factor (TF) binding motifs.””” These
findings, together with previous fine-mapping and expres-
sion quantitative trait loci (eQTL) studies, indicate that the
majority of noncoding index SNPs, or their correlated var-
iants, contribute to cancer pathogenesis through roles in
the gene regulation of nearby genes.”* !

Previous fine-mapping and eQTL analyses, including our
own work in breast and colorectal cancers, have revealed a
number of candidate cancer-susceptibility genes that are
regulated by index SNPs or their correlated variants.'*'*
2! However, target genes for the majority of index SNPs
identified for several other cancer types—melanoma,
ovarian, and pancreatic cancers—have remained largely
unexplored. In addition, many index SNPs have been
recently identified for prostate and colorectal can-
cers,”?*?* and existing eQTL analyses are often limited
by single transcriptome datasets. Thus, the systematic
characterization of previously reported index SNPs and
the exploration of candidate target genes with multiple
transcriptome datasets, such as The Cancer Genome Atlas
(TCGA) and the Genotype-Tissue Expression (GTEx) Proj-
ect, might provide further understanding of the biological
mechanisms that contribute to cancer development.

Recently, variants have been annotated in functional re-
gions genome-wide through the use of various emerging
functional genomic resources from the ENCODE,** Road-
map”>?° and FANTOMS5.?” Potential functional variants
can be examined by their locations in transcription factor
motifs,”*®?° histone modifications, DNase I hypersensitive
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Figure 1. Identification of Candidate Target Genes for GWAS-Identified SNPs in Six Cancer Types

(A) A histogram showing the number of characterized GWAS-identified SNPs in this study across six cancer types. The * refers to SNPs
commonly identified for both lung adenocarcinoma and squamous cell carcinoma (this note applies to other legends in this figure).
(B) A histogram showing sample size for each dataset across six cancer types. The dataset from TCGA is depicted in blue, the dataset from
the GTEx is depicted in yellow, and datasets other than TCGA and the GTEx are depicted in red.

(C) Aflow chart illustrating the identification of target genes for GWAS-identified SNPs on the basis of cis-eQTL analysis, using data from
both TCGA and the GTEx datasets across six cancer types. The rounded rectangle indicates the eQTL target genes identified by TCGA and
the GTEx. The green box indicates the target genes that are identified using BH-corrected p < 0.05 from a meta-analysis of eQTL results

(legend continued on next page)
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sites, and Chromatin Immunoprecipitation Sequencing
(ChIP-seq) binding sites. In particular, the advance of
chromatin interaction technology including Hi-throughput
Genome-wide Chromosome Conformation Capture (Hi-C),
Chromatin Interaction Analysis by Paired-End Tag
Sequencing (ChIA-PET), and Integrated Method for Predict-
ing Enhancer Targets (IM-PET) has produced large amounts
of chromatin-chromatin interaction data in various normal
and cancer cell lines.””** These data are valuable resources
for linking particular functional variants to target genes.
However, work to systemically link this new information
to functional variants and target genes in cancer remains
largely unexplored.

Somatic mutations are one of the most common causes
of human carcinogenesis.”® However, it is unclear
whether cancer-susceptibility genes are associated with
somatic mutations, by which they could influence cancer
risk and prognosis. The somatic mutation catalogs of base
substitutions can be characterized into distinct muta-
tional signatures.” A total of 30 reference signatures
were characterized with mutation data from TCGA in
the COSMIC database; some of these have been reported
to be a result of either the activity or inactivity of specific
cancer-driver genes.’°*! For example, signature 3 is
strongly associated with functional loss of either BRCA1
(MIM: 113705) or BRCA2 (MIM: 600185) in breast cancer.
Signatures 2 and 13 are attributed to the activity of
APOBEC cytidine deaminases, especially APOBEC3A
(MIM: 607109) and APOBEC3B (MIM: 607110), across
multiple cancer types. Signatures 10 and 11 are associated
with deleterious mutations in the DNA repair POLE
(MIM: 174762) and the MGMT (MIM: 156569) genes,
respectively.

In this study, we systemically characterized a total of 294
index SNPs identified from GWASs for six major types of
cancer—colorectal, lung (lung squamous cell carcinoma
and lung adenocarcinoma), ovary, prostate, pancreas,
and melanoma—among European populations. We
searched for target genes (as putative cancer-susceptibility
genes) for index SNPs by meta-analyses of eQTL data from
multiple transcriptome datasets (TCGA, GTEx, and other
datasets, such as Colonomics for colorectal cancer).
Furthermore, we systemically evaluated associations be-
tween the expression of putative cancer-susceptibility
genes with mutational signatures and tumor mutational
burden (TMB) of cancer-driven genes. Our findings provide
further insight into how genetic risk variants might
contribute to carcinogenesis by affecting the biogenesis
of somatic mutations though regulation of putative sus-
ceptibility genes.

Material and Methods

Data Resources

We included in this study a total of 409 GWAS-identified SNPs at
p < 5.0 x 1078 that are from the NHGRI-EBI GWAS catalog and
that are associated with six major cancer types: colorectal, lung
(lung squamous cell carcinoma and lung adenocarcinoma), ovary,
prostate, pancreas, and melanoma in European populations. We
filtered index SNPs by LD (distance within 2 Mb, R? > 0.1), select-
ing those that had the strongest associations with risk for each
cancer. A total of 294 index SNPs remained for further analysis
(Figure 1A and Table S1) for: colorectal cancer (n = 83), lung cancer
(specific for lung adenocarcinoma: n = 10; specific for lung squa-
mous cell carcinoma: n = 4; common to both lung adenocarci-
noma and squamous cell carcinoma: n = 7), ovary (n = 24), pros-
tate (n = 134), pancreas (n = 18), and melanoma (n = 14).

We downloaded RNA-seq V2 data (level 3), DNA methylation
data (level 3, Infinium HumanMethyaltion27K for ovarian cancer
and Infinium HumanMethylation450K for the other cancers), and
somatic copy number alteration data (level 3) from TCGA from
cBioPortal. For gene expression data, normalized gene expression
values were further transformed across samples by an inverse
normalizing transformation method. We also downloaded SNP
data (level 3), genotyped on Affymetrix SNP 6.0, from TCGA. We
imputed additional genetic data from genotype data by using
the mixed populations of the 1000 Genomes Project Phase 3
and the Minimac tool,**** implemented on the Michigan
Imputation Server. Only common SNPs (minor allele frequency
[MAF] > 0.05) with high imputation quality (R*> > 0.3) were
further evaluated. If the index SNP failed to meet these criteria,
we used a surrogate SNP in strong LD (R? > 0.8). For cis-eQTL an-
alyses, we used samples with matched gene expression, DNA
methylation, somatic copy number alteration, and SNP data
from European populations; samples numbered: colorectal cancer
(n = 355), lung adenocarcinoma (n = 435), lung squamous cell
carcinoma (n = 353), ovarian cancer (n = 284), prostate
cancer (n = 477), pancreatic cancer (n = 171), and melanoma
(n = 367). For somatic mutational signatures, we used 30 reference
signatures from the COSMIC database, and we characterized each
TCGA sample with mSignatureDB. We also downloaded somatic
mutations identified from whole-exome sequencing data for
each TCGA sample from the genomic data commons (GDC).

cis-eQTL Analysis
For data from TCGA, we conducted linear regression analyses that
included adjustment for DNA methylation, somatic copy number
alteration, and the top five principal components for genetic
ancestry in order to evaluate associations between the genotypes
of index SNPs and expression levels of nearby genes (+1 Mb).
We extracted cis-eQTL results for index SNPs and nearby genes
from the most recent GTEx database (v.7)** on the basis of normal
tissues from transverse colorectal (n = 246), lung (n = 383),
ovary (n = 122), prostate (n = 132), pancreas (n = 220), and
skin (n = 414). For colorectal cancer, we performed an additional

from TCGA and the GTEx. The data from the Colonomics was also included for colorectal cancer. The red box refers to previously
reported target genes. The yellow box refers to target genes after combining results from both our meta-analysis and previous eQTL

analysis.

(D) A histogram showing the number of target genes identified and those supported by additional evidence from functional genomic data.
The previously unreported target genes in our study are highlighted with deep yellow. Previously reported target genes are depicted in light
yellow. The shades of blue from left to right refer to target genes supported by evidence of additional functional genomic data including
promoter (proximal), chromatin-chromatin interaction data (distal), and promoter-enhancer correlation data (from FANTOMS).
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cis-eQTL analysis with data from healthy colonic mucosa (n = 47)
and normal mucosa adjacent to colon tumor tissues (n = 97) from
the Colonomics project.'®?!

We systematically searched for cis-eQTL results from prior
studies on six cancers, and, when they could be identified, we
included transcriptome datasets other than TCGA and GTEx. Spe-
cifically, we included eQTL results from four lung cancer datasets,
Laval (N = 409), UBC (N = 287), Groningen (N = 342), and NCI
(N = 90);'? four datasets for prostate cancer, Mayo (N = 471),'®
PHS/HPFS (N = 264),"> Weill Cornell Medical College
(N = 50),*° and Stockholm and Cambridge (N = 213);*” and one
dataset each for pancreatic cancer, LTG (N = 95),*® and ovarian
cancer, Mayo dataset (N = 209)*” (Figure 1B).

Identification of Putative Cancer-Susceptibility Genes

To identify cancer-susceptibility genes, we combined regression re-
sults for eQTL from TCGA and GTEx for each cancer type, as well
as from the Colonomics project for colorectal cancer, by using a
meta-analysis method based on association direction and p
values.”” The combined p values were further adjusted with the
Benjamini-Hochberg (BH) procedure. The BH-adjusted p < 0.05
threshold was applied to identify eQTL target genes for each can-
cer type. In addition, the candidate target genes were filtered to re-
move those with inconsistent directions of nominally significant
association across TCGA and GTEx data (Figure 1C). The eQTL
target genes identified in previous literature were also included
for us to characterize as putative cancer-susceptibility genes. In
addition, an unpublished fine-mapping study recently reported a
total of 178 high-confidence target genes from 150 susceptibility
regions in breast cancer®! by using the integrated expression quan-
titative traits and in-silico prediction of GWAS targets (INQUISIT)
pipeline.”*! We also evaluated the associations of these genes with
mutational signatures and TMB of cancer-driver genes (see Statis-
tical Analysis) and included the results in the Discussion.

Pathway Enrichment Analysis

By using the Ingenuity Pathway Analysis (IPA) tool, we examined
the functional enrichment in the gene function category and bio-
logical pathways for the identified putative cancer-susceptibility
genes. We presented the most significant gene function categories
and biological pathways.

Functional Annotation of Variants in Strong LD with
Index SNPs

Functional annotation was evaluated via epigenetic data,
including DNase I hypersensitive sites and TF ChIP-seq binding
peaks, from both ENCODE and Roadmap. We evaluated variants
for potential functional significance by using chromHMM annota-
tion in all available ENCODE and Roadmap cell lines. For each
SNP or indel, we investigated whether it mapped to functional re-
gions, including promoters or enhancers, as annotated from
ChromHMM based on the HaploReg v4 database.’” Additional
functional prediction scores for each variant from multiple bio-
informatic tools (e.g., CADD,>* RegulomeDB,** and Funseq2?’)
were also evaluated with the WGS Annotator.*

Chromatin-Chromatin Interaction Data Analysis

Experimentally-derived chromatin interactions generated by Hi-
C, ChIA-PET, and IM-PET were collected from the 4DGenome.”®
To analyze chromatin-chromatin interactions with promoter
regions of putative susceptibility genes, we first used data from

European populations from the 1000 Genomes project to identify
functional variants in strong LD (R? > 0.8) for index SNPs. We
then examined the flanking regions of functional variants
(=250 bp) and the flanking regions of gene transcription start
sites (TSS; = 2 kb) to assess potential chromatin-chromatin
interactions.

Mutational Signatures and TMB of Cancer-Driver Genes
Mutational signatures have previously been characterized in TCGA
samples.*>>” We analyzed the relative contribution of mutational
signatures to overall TMB by assigning contribution values ranging
from O to 1 for each TCGA sample across seven cancer types (the six
types above plus breast cancer). To determine the TMB of cancer-
driver genes, we analyzed a total of 299 genes that were recently
identified in a PanCancer and PanSoftware analysis of TCGA
data.>® We calculated the TMB of cancer-driver genes by calculating
the sum of genes harboring at least one missense, deleterious, or
disruptive mutation for each sample; specifically, we summed
the number of mutations from frame_shift_del, frame_shift_ins,
in_frame_del, in_frame_ins, missense_mutation, nonsense_muta-
tion, nonstop_mutation, splice_site, and translation_start_site.

Statistical Analysis

The associations between mutational signatures and gene expres-
sion levels in European populations were analyzed with semi-para-
metric ordinal regression models, which are tailored to fit the
severely right-skewed distribution of mutational signatures; these
analyses were implemented with the ‘orm’ function from the ‘rms’
library in R.*” The associations between the over-dispersed count
of TMB of cancer-driver genes and the expression levels of putative
cancer-susceptibility genes in European populations were
analyzed via negative binomial regression; these regressions were
implemented with the ‘glm.nb’ function from the ‘MASS’ library
in R. To evaluate the enrichment of significant associations for
identified susceptibility genes with mutational signatures and
TMB of cancer-driver genes for each cancer type, we used Fisher’s
exact test to compare the number of significant associations iden-
tified from the target genes with those from all protein-coding
genes across the genome.

Results

Identification of Candidate Target Genes for Index SNPs
in Six Cancer Types

We characterized a total of 294 index SNPs that were iden-
tified in European populations for the risk of six types of
cancer from the GWAS catalog (Figure 1A and Table S1;
see Material and Methods). To identify target genes for
these index SNPs, we used integrative analysis strategies
that included target genes identified from a meta-analysis
of cis-eQTL analysis that used multiple transcriptome
datasets from TCGA, GTEx, and other available data (e.g.,
Colonomics for colorectal cancer; Figure 1B), as well as
genes previously reported in the literature (Figure 1C; see
Material and Methods).

For colorectal cancer, results from a meta-analysis of
eQTL results from TCGA, GTEx, and Colonomics revealed
a total of 31 target genes for 14 index SNPs at BH-corrected
p < 0.05 (Table S2; see Material and Methods). Of these
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Table 1. Summary of the Identified Putative Susceptibility Genes
Associated with Index SNP, Mutational Signature, and TMB of
Cancer-Driver Genes for Each Cancer Type

Number of Putative
Susceptibility Genes

Number of

Putative TMB of
Cancer Number of Susceptibility Mutational Cancer-Driver
Type Index SNPs Genes Signature Genes
Breast 51 101 24 24
cancer”
Colorectal 14 31 4 10
cancer
Lung 20 64 1 8
cancer
Prostate 81 156 2 23
cancer
Pancreatic 6 7 0 1
cancer
Ovarian 4 17 0 1
cancer
Melanoma 9 17 2 0
Total 185 393 (365") 33 67 (66")

Refers to putative breast-cancer-susceptibility genes reported from Guo et al.,
2018.%°
PRefers to the number of unique putative cancer-susceptibility genes.

target genes, 20 have been reported in previous
studies.'®?!°° The remaining 11 target genes, including
eight identified from five recently-reported index SNPs,
have not been previously linked to colorectal cancer risk
(Figure 1D and Table S2).

For prostate cancer, of the 134 SNPs investigated, results
from the integrative analyses revealed a total of 156 target
genes for 81 index SNPs (Figure 1D and Table S2). Of these,
our meta-analysis identified a total of 74 target genes for 39
index SNPs at BH-corrected p < 0.05; of these, 28 genes
have not been previously linked to prostate cancer risk
(Figure 1D and Table S2).

For lung cancer, results from the integrative analyses re-
vealed a total of 64 target genes for lung cancer; this
included 13 genes for lung squamous cell carcinoma
(four index SNPs), 24 genes for lung adenocarcinoma (10
index SNPs), and 36 genes for both lung adenocarcinoma
and lung squamous cell carcinoma (six index SNPs). Of
them, our meta-analysis identified a total of 31 genes for
both (three index SNPs), 16 for lung adenocarcinoma
(seven index SNPs), and 11 for lung squamous cell carci-
noma (two index SNPs). Of these, a total of 40 genes
have not been previously linked to lung cancer risk; these
genes include 12 for adenocarcinoma, 10 for squamous cell
carcinoma, and 27 for both lung adenocarcinoma and lung
squamous cell carcinoma (Figure 1D and Table S2).

For ovarian cancer, results from the integrative analyses
revealed a total of 17 genes for four index SNPs (Figure 1D
and Table S2). A total of 31 genetic loci have been identi-
fied by previous GWASs. However, a subset of them (a total
of 12 loci) have been identified in eQTL analysis that used

datasets other than TCGA and the GTEx, and only OBFC1
(MIM: 613128)was identified for index SNP dbSNP:
1s7902587.*’ Here, our analysis revealed a total of 16 previ-
ously unreported genes for three index SNPs associated
with ovarian cancer risk.

For pancreatic cancer, results from the integrative ana-
lyses revealed a total of seven target genes for six index
SNPs. Six genes were identified from our meta-analysis
(Figure 1D and Table S2). Of them, our analysis revealed
four previously unreported genes, PVT1 (MIM: 165140),
XBP1 (MIM: 194355), ABO (MIM: 110300), and PDX1I
(MIM: 600733), and the remaining three genes, KLHL17,
NOC2L (MIM: 610770), and HNF4G (MIM: 605966), have
been previously reported.*®

For melanoma, we identified a total of 17 target genes for
nine index SNPs from our meta-analysis (Figure 1D and
Table S2). Of them, our analysis revealed eight previously
unreported genes, and the remaining nine genes, CASPS
(MIM: 601763), KDELC2, ASIP (MIM: 600201), ANKRD54
(MIM: 613383), OCA2 (MIM: 611409), CDKIO (MIM:
603464), ALS2CR12, CHMPIA (MIM: 164010), and
DBNDD1, have been previously reported.®"

Overall, results from our integrative analyses revealed a
total of 270 target genes (based on 134 index SNPs) as
putative susceptibility genes for six types of cancer
(Table 1). Of these, a total of 99 genes (36.7%) had not
been previously associated with cancer risk.

Target Genes Supported by Functional Genomic
Analysis

To search for evidence of regulatory mechanisms underly-
ing the identified target genes for index SNPs, we per-
formed extensive functional annotation analysis to iden-
tify candidate functional variants in strong LD (see
Material and Methods). We evaluated the functionalities
of a total of 2,981 variants in strong LD (R* > 0.8) with
the index SNPs. Of them, we analyzed 2,023 putative func-
tional variants, which showed evidence of the epigenetic
signals from the data analysis of ENCODE and/or Road-
map (Table S3; see Material and Methods). Specifically, a
total of 722 variants were mapped to promoter regions,
whereas the remaining 1,301 variants were mapped to
enhancer regions. Functional significance for a majority
of these variants was further supported by evaluating the
annotation from the CADD and other functional predic-
tion tools (Table S3; see Material and Methods).

To search for direct evidence that variants regulate the
putative target genes identified from our eQTL analysis,
we first examined whether the putative functional variants
were positioned in proximal promoter regions because
such variants would most likely play a regulatory role in
their closest genes. We found a total of 57 target genes
that were the closest genes for these putative functional
variants (Figure 1D and Table S3). Then we examined
whether putative functional variants were located in
enhancer regions. We further analyzed chromatin-chro-
matin interaction data to examine whether the target
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genes could be regulated by these variants via long-dis-
tance promoter-enhancer interactions (see Material and
Methods). We collected and analyzed chromatin-chro-
matin interaction data generated from multiple normal
and cancer cell lines (see Material and Methods). We found
a total of 104 genes with evidence of distal regulation by
putative functional variants via promoter-enhancer inter-
actions (Figure 1D and Table S3). By using promoter and
enhancer data from FANTOMS, we observed an additional
13 genes with evidence of distal regulation by putative
functional variants (Figure 1D and Table S3).

Taken together, a total of 180 genes (66.7%) showed
evidence of regulations by putative functional variants
via proximal promoter or distal enhancer-promoter inter-
actions, providing an additional layer of evidence to sup-
port the identified target genes for index SNPs (Table S3).

Common Candidate Target Genes in Multiple Cancer
Types

To investigate whether the putative target genes identified
were common across different cancer types, we analyzed a
total of 365 target genes, including 270 candidate target
genes for the six cancers above and 101 genes from our pre-
vious cis-eQTL analysis for breast cancer.” Our results re-
vealed that 24 target genes were commonly implicated in
cancers of breast and ovarian (n = 4); breast and lung
(n = 1); breast and melanoma (n = 1); breast, prostate,
and melanoma (n = 1); colorectal and prostate (n = 4);
lung and prostate (n = 9); and colorectal, lung, and pros-
tate (n = 4) cancers (Figures 2A and 2B). Notably, 23 of
these genes are located in three regions: 17q21.3,
6p22.1-6p21.33-6p21.32, and 2q33.1 (Figures 2B and 2C).

At the locus 17q21.3, our results showed that four genes,
LRRC37A (MIM: 616555), MAPK8IP1P2, KANSL1-AS1, and
LRRC37A4P, were commonly observed for both breast
and ovarian cancer. Risk alleles of dbSNP: rs2532263,
1s17631303, and rs183211 were associated with increased
expression of all of the genes except LRRC37A4P for both
breast and ovarian cancers (Figures 2B and 2C).

At the loci 6p22.1-6p21.33-6p21.32, our results showed
that 17 genes were commonly implicated in cancers of
colorectal and prostate; lung and prostate; and colorectal,
lung, and prostate. Similar to the above observation,
decreased expression levels of HLA-DQB1 (MIM: 604305)
and HLA-DQA1 (MIM: 146880) and increased expression
level of HLA-DQA2 (MIM: 613503) were consistently asso-
ciated with risk alleles of different index SNPs: dbSNP:
159271695 for colorectal cancer and dbSNP: rs3096702
and 15115306967 for prostate cancer (Figures 2B and 2C).
A decreased expression level of NOTCH4 (MIM: 164951)
was consistently associated with risk alleles of different in-
dex SNPs: dbSNP: rs3117582 for lung cancer and dbSNP:
13096702 for prostate cancer. In contrast, we observed
that the expression levels of the remaining 12 genes were
inconsistently associated with risk alleles of different
index SNPs from different cancer types (index SNPs dbSNP:
1s9271695 for colorectal cancer, rs4324798 and rs3117582

for lung cancer, rs115457135, rs12665339, rs130067,
153096702, and rs115306967 for prostate cancer) (Figures
2B and 2C).

At locus 2q33.1, our results showed that CASP8 and
ALS2CR12 were commonly implicated in cancers of breast
and melanoma and breast, prostate, and melanoma,
respectively. A decreased expression level of CASP8 was
associated with risk alleles of different index SNPs: dbSNP:
152110693 and 153769821 for breast cancer and dbSNP:
1513016963 for melanoma (Figures 2B and 2C). Similarly,
the increased expression level of ALS2CR12 was associated
with risk alleles of different index SNPs: dbSNP: 1s3769821
for breast cancer and dbSNP: rs13016963 for melanoma. In
contrast, an opposite pattern was observed for the expres-
sion level of ALS2CR12, associated with the index SNP for
the prostate (Figures 2B and 2C).

We further inferred potential oncogenes and tumor sup-
pressor genes on the basis of positive or negative associations,
respectively, between risk alleles of an index SNP (from
GWASs) and gene expression. Our results indicated five puta-
tive oncogenes and five putative suppressor genes that were
associated with risk across different cancers, as well as an addi-
tional 14 genes that might play distinct oncogene or tumor
suppressor roles among different cancer types (Figure 2B).

Putative Susceptibility Genes Associated with

Mutational Signatures

To investigate whether the putative susceptibility genes
identified might affect the biogenesis of somatic muta-
tions, we characterized the top mutational signatures
that substantially contributed to TMB for each cancer
type. In line with previous studies,®>°* our results showed
that the highest proportions of TMB were characterized by
signature 1 (with deamination at NpCpGs in breast,
colorectal, prostate, and pancreatic cancer), signature 4
(tobacco-smoking-associated signature in lung adenocarci-
noma and lung squamous cell carcinoma), signature 3
(BRCA1/2 alteration signature in breast and ovarian can-
cer), and signature 7 (ultraviolet-light-exposure-associated
signature in melanoma) (Figure 3A).

We next evaluated associations between putative cancer-
susceptibility-gene expression with each mutational signa-
ture for each cancer type (see Material and Methods). Of
the 365 genes evaluated, 285 (78.1%) were associated with
at least one mutational signature across the seven cancer
types, at nominal p < 0.05 (Table S4). By using a more strin-
gent threshold, we identified a total of 33 genes with signif-
icant associations with specific mutational signatures across
five cancer types (Bonferroni-corrected p < 0.05). Of these,
the majority (n = 24, 72.7%) were for breast cancer; addi-
tional genes included four (SHROOMZ2 [MIM: 300103],
GPR143 [MIM: 300808], MICB [MIM: 602436], and AICF
[MIM: 618199]) for colorectal cancer, two (CDK10 and
UQCC [MIM: 611797]) for melanoma, two (TBX1 [MIM:
602054] and MYO6 [MIM: 600970]) for prostate cancer,
and one (TP63 [MIM: 603273]) for lung adenocarcinoma
(Figure 3B, Tables 1 and 2). Specifically, high expression
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Figure 2. Putative Cancer-Susceptibility Genes Commonly Implicated in Multiple Cancer Types

(A) A histogram showing the number of target genes commonly implicated in multiple cancer types. The * refers to genes for lung adeno-
carcinoma and/or lung squamous cell carcinoma (this note applies to all other following figure legends).

(B) A heatmap showing target genes commonly observed from different cancer types. The arrow refers to a putative oncogene or putative
tumor suppressor gene inferred by associations between expression levels of these genes and risk alleles of index SNPs from GWAS.
(C) A total of 23 target genes commonly observed in different cancer types are located in the three regions: 17q21.3, 6p22.1-6p21.33-
6p21.32, and 2q33.1. Lines with different colors refer to different cancer types. LD values (based on data from European populations
from the 1000 Genomes project) are presented for two index SNPs linked by a dashed curve.

levels of APOBEC3A and APOBEC3B were associated with
increased signatures 3 and 13, and high expression levels
of two other DNA repair related genes, DCLRE1IB (MIM:
609683) and GATAD2A (MIM: 614997), were associated
with an increased signature 3 in breast cancer. Similarly,
we observed that associations were also observed for
SHROOM?2, GRP143, and A1CF with signature 1 in colorectal

cancer, for TBX1 with signature 1 in prostate cancer, and for
CDK10 with signature 4 in melanoma (Figure 3C).

Putative Susceptibility Genes Associated with TMB of
Cancer-Driver Genes

To investigate whether putative cancer-susceptibility genes
might affect TMB of cancer-driver genes, we first

The American Journal of Human Genetics 705, 1-16, September 5, 2019 7



Please cite this article in press as: Chen et al., Identifying Putative Susceptibility Genes and Evaluating Their Associations with Somatic Mu-
tations in Human Cancers, The American Journal of Human Genetics (2019), https://doi.org/10.1016/j.ajhg.2019.07.006

A [ signature 1 Il signature 2 Il signature 3 [l signature 4 signature 6 I signature 7 I signature 9 Il signature 10
B signature 11 signature 13 | signature 15 B signature 18 I signature 20 W signature 22 | signature 24
1.00 . 100 - 1.00 1.00 1.00 1.00 1.00 - 1.00 -
® i . . N i -
s : : ) : ) .
5 o075 0.75 0.75 N 0.75 0.75 . 0.75 - 075 075
c 'y - . -
a - 3 - L .2 St
2 N - * . - EEN <
S 050 i 0.50 0.50 1 0.50 - 0.50 st 0.50 i 0.50 I 0.50
2 > - : - : i f - -
T i . - Y - - . 2
2 o2 i “ 0257 R 0.25 i 0.25 “ ‘ t 025 4 ¢ li‘ 2 ‘
0.00 — — 0.00 !ll 0.00 L 0.00 ) — ‘ 0.00 L l 0.00 l 0.00 li 0.00 _ll
Breast cancer Colorectal cancer  Lung adenocarcinoma Lung Squamous Ovarian cancer Melanoma Prostate cancer Pancreatic cancer
cell carcinoma
B W signature 1
15 A signature 13
- Bonferroni-corrected P < 0.05 B signature 16
> W signature 2
_g 10 1 W signature 3
Q>_ signature 6
S W signature 26
> W signature 4
o 51 8-B8-= S EENREREREHNS =N - .
i I B B BEmRN | | signature 20
signature 25
o signature 23
= = S © Putat tibilit
L L R A0 RN rE s O e Rl e e RE LSS5 00 S0 88 ET K g |Puanesucopbity
SSTWL IIuzw QIsuLaag S Oz SQUzuokarxdwWIQrRORKLI A oom§<m<o<oh§|\qqu genes significantly
2 azg QLI TEE - ow T T ogudg fe-% akQ#ARS T & (SRR associated with
B> o >R Ie) sSa w w o o > = OE'J(ELU)IQ ] I I tational signat
za g Qk Iy s QaQ < g = 5 & mutational signatures
< < < <
Breast cancer : Colorectal cancer . “"«\Melanoma
% Lung
C ¢ Prostate’, , yonocarcinoma
cancer *
:Breast cancer
: APOBEC3A APOBEC3B DCLRE1B GATAD2A APOBEC3A APOBEC3B
0.6 0.6 0.6 0.6 0.6
o o
° <
2
& 0.4 0.4 4 0.4 2 0.4 0.4
(=) c
® k=
@
0.24 0.2 4 0.2 0.24 0.2
0.04 0.0 0.0 0.04 0.0

Normalized gene expression

Normalized gene expression

:Colorectal cancer

SHROOM2 GPR143 A1CF BX1 CDK10

1.0 1.0 1.0 1.0 06 4
P e [ Low expression
P © ! _
,§ é 0.4 4 Medium expression
.- 0.54 05 0.5 2 [ High expression

0.2
0.0 0.0 0.0 00—~ W W oo B W
Normalized gene expression Normalized gene expression Normalized gene expression

Figure 3. Putative Susceptibility Genes Associated with Specific Somatic Mutational Signatures

(A) Top mutational signatures contributing to TMB for each cancer type. Each color refers to a specific mutational signature.

(B) Bar plots showing the significance of putative susceptibility genes associated with mutational signatures at nominal p < 0.05 iden-
tified for four cancer types. The dashed lines indicate a cutoff of Bonferroni-corrected p < 0.05 for each cancer type.

(C) Violin plots of samples separated by low, median, and high expression levels of the highlighted genes (see Results); the genes were
associated with specific mutational signatures at Bonferroni-corrected p < 0.05 for four cancer types. The upper dashed box shows the
associations between represented genes and signature 3, as well as signature 13 in breast cancer. Lower diagram: in the dashed boxes from
the left to the right, the genes SHROOM2, GPR143, and AICF in colorectal cancer, TBX1 in prostate cancer, and CDK10 in melanoma are
presented.

characterized the mutation spectrum of 299 known can-
cer-driver genes for each cancer type; as expected, these
genes were frequently mutated across the seven cancers
evaluated (Figures 4A and 4B). When we evaluated associ-
ations between the expression levels of identified target
genes and TMB of cancer-driver genes, 139 genes
were associated across seven cancer types at nominal

p < 0.05 (Table S5). At a Bonferroni-corrected significance
threshold, 66 genes were associated with TMB of cancer-
driver genes among six types of cancer (Figure 4C and
Tables 1 and 3); this included 24 genes in breast cancer,
23 genes in prostate cancer, 10 genes in colorectal cancer,
seven genes in lung adenocarcinoma, one gene (FRY
[MIM: 614818]) in lung squamous cell carcinoma, one
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Table 2. Associations Between Putative Susceptibility Gene
Expression Levels and Mutational Signatures for Five Cancer Types

(Bonferroni-Corrected p < 0.05)

Table 2. Continued

Gene Beta P Bonferroni-Corrected P

Gene

Beta

P

Bonferroni-Corrected P

Breast Cancer (Signature 2)

Breast Cancer (Signature 3)*

FAM72B 0.54 <220 x 1071 546 x 10713
PRC1 0.55 <220 x 107 546 x 10713
NEK10 -0.48 2.22 x 1071¢ 6.06 x 10713
NTN4 -0.39 1.89 x 10712 5.16 x 107°
APOBEC3B  0.44 1.92 x 107! 5.24 x 1078
RCCD1 0.38 1.46 x 10°1° 3.99 x 1077
EIF2S2 0.37 1.58 x 1071° 431 x 1077
DCLRE1B 0.35 2.34 x 10710 6.39 x 1077
DYNLRB2  -0.37 2.93 x 10710 8.00 x 1077
ESR1 -0.38 1.28 x 1077 3.49 x 107°
ATP6APIL  —0.34 4.59 x 107° 1.25 x 10~°
PDZK1 -0.30 2.52 x 1078 6.88 x 10°°
ITPR1 -0.33 1.83 x 1077 5.00 x 107*
FGF10 -0.32 1.93 x 1077 527 x 107*
TOX3 -0.28 6.31 x 1077 1.72 x 1073
APOBEC3A  0.26 2.35x10°° 6.42 x 1073
GATAD2A  0.29 6.35 x 107 0.017
POLR2L -0.25 7.58 x 107° 0.021
SLC4A7 —-0.26 7.61 x 107 0.021
Breast Cancer (Signature 13)

APOBEC3A  0.48 2.84 x 1074 7.75 x 1071
DYNLRB2  —0.41 2.26 x 10711 6.17 x 1078
ATP6APIL  —0.39 1.73 x 107 1° 4.72 x 1077
ESR1 -0.37 1.19 x 107? 3.25 x 10°°
AMEFR -0.35 8.97 x 107° 2.45 x 107°
APOBEC3B  0.40 1.24 x 1078 3.39 x 107°
PDZK1 -0.34 1.85 x 1078 5.05 x 10°°
WNT3 -0.34 3.62 x 1078 9.88 x 10°°
NEK10 -0.32 1.10 x 1077 3.00 x 1074
EIF2S2 0.33 1.59 x 1077 434 x 1074
MRPS30 —-0.31 1.71 x 1077 4.67 x 1074
PTPN22 0.32 3.82 x 1077 1.04 x 1073
PRC1 0.33 1.35 x 10°° 3.69 x 1073
FAM72B 0.32 2.96 x 107¢ 8.08 x 1073
CTSW 0.28 5.56 x 107¢ 0.015
FGF10 -0.28 8.95 x 107 0.024
Breast Cancer (Signature 1)

ATP6APIL  0.05 3.05 x 107° 8.33 x 107°°
DYNLRB2  0.04 4.84 x 1077 132 x 1073
ESRI1 0.04 7.63 x 1077 2.08 x 1073

WNT3 -0.29 7.48 x 1078 2.04 x 1074
Breast Cancer (Signature 16)

NTN4 0.60 1.26 x 107° 3.44 x 1073
Colorectal Cancer (Signature 1)

SHROOM2  0.09 3.60 x 107° 2.38 x 107°¢
GPR143 0.09 4.07 x 107° 2.69 x 1076
MICB —-0.09 6.26 x 107° 413 x 1076
AICF 0.08 1.18 x 10° 7.80 x 1073

Colorectal Cancer (Signature 26)

AICF -1.39 412 x 1073 0.027

SHROOM2  -1.12 4.77 x 10~° 0.032

Colorectal Cancer (Signature 6)

GPR143 —-0.47 2.05 x 1077 1.35x 1074
AICF -0.52 2.75 x 1077 1.81 x 10°*
SHROOM2  —0.42 1.02 x 10°¢ 6.73 x 10°*
Lung Adenocarcinoma (Signature 4)

TP63 —0.23495 1.94 x 10° 2.56 x 1072
Prostate Cancer (Signature 1)

TBX1 0.07 7.18 x 1078 3.43 x 107*
MYO6 0.07 2.68 x 107° 1.28 x 1072
Melanoma (Signature 20)

CDK10 —-0.40 1.09 x 107° 4.85x 107*
Melanoma (Signature 4)

CDK10 -0.31 1.43 x 107° 6.36 x 1073

Melanoma (Signature 25)

CDK10 0.72 8.92 x 10°° 0.040

Melanoma (Signature 23)

vQcc 0.32 7.77 x 10~° 0.035

*The mutational signatures for each cancer type were derived from TCGA
samples.

gene (OBFC1) in ovarian cancet, and one gene (NOC2L) in
pancreatic cancer. Specifically, high expression levels of
APOBEC3A and APOBEC3B were associated with increased
TMB of cancer-driver genes, whereas low expression levels
of another two genes, WNT3 and ESR1I (MIM: 133430),
were associated with increased TMB of cancer-driver genes
in breast cancer (Figure 4D). Similarly, we observed that
high expression levels of MICB were associated with
increased TMB of cancer-driver genes, whereas low expres-
sion levels of another three genes, SHROOM2, GRP143, and
AICF, were associated with increased TMB of cancer-driver
genes in colorectal cancer (Figure 4D).
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Figure 4. Putative Susceptibility Genes Associated with TMB of Cancer-Driver Genes

(A) Mutation spectrum of cancer-driver genes with high alteration frequency (> 6%) in each sample across cancer types. The top boxes
with different colors indicate samples of different cancer types. The lines in different colors indicate the mutation of each driver gene in
each sample. The carcinogenesis signaling pathways for these driver genes are indicated with different colors on the left.

(B) Scatterplots for TMB of cancer-driver genes for each sample across seven cancer types. Each dot represents each sample and “n” refers
to sample size. The red line indicates the median of TMB of cancer-driver genes for each cancer type.

(C) Bar plots showing the statistical significance between expression levels of putative susceptibility genes and TMB of cancer-driver
genes across seven cancer types. The dashed lines indicate the genes with statistical associations at Bonferroni-corrected p < 0.05 in

each cancer type.

(D) Violin plots of samples separated by low, median, and high expression levels of the highlighted genes (see Results); the genes were
associated with TMB of cancer-driver genes at Bonferroni-correction p < 0.05. The upper plots show the associations in breast cancer, the

lower plots show the associations in colorectal cancer.

(E) Heatmap plots showing the putative susceptibility genes associated with both TMB of cancer-driver genes and mutational signatures
in breast and colorectal cancer. The 1 and | refer to a positive and negative association, respectively. The lower plots show the correlation
coefficients between TMB of cancer-driver genes and mutational signatures in breast and colorectal cancer, respectively.

Finally, when we examined correlations between TMB of
cancer-driver genes and mutational signatures, correla-
tions varied among cancer types (Table S6). In particular,
mutational signatures that were associated with putative

cancer-susceptibility genes (e.g., signatures 13 and 1, for
breast and colorectal cancer, respectively) were strongly
correlated with TMB of cancer-driver genes. Specifically,
signature 13 was positively correlated and signature 1
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Table 3. Associations Between Putative Susceptibility Gene Table 3. Continued
Expression Levels and TMB of Cancer-Driver Genes for Six Cancer -
Types (Bonferroni-Corrected p < 0.05). Gene Beta P Bonferroni-Corrected P
Gene Beta P Bonferroni-Corrected P SECISBP2L ~0.18 1.94 x 104 1.71 x 1073
Breast Cancer TRIM3S -0.17  3.66 x 107* 2.68 x 1073
APOBEC3A 0.32 1.23 x 10711 1.12 x 1077 APOM -0.14 463 x107* 291 x 1073
EIF2S2 0.28 6.24 x 107° 5.68 x 1077 Lung Squamous Cell Carcinoma
PRSS45 -0.29 2.35x 1078 2.14 x 107° FRY —0.16 5.97 x 10°° 1.67 x 1073
PLEKHM1 -0.25  4.59x107 4.18 x 10°° Pancreatic Cancer
NNT -023  9.59%x 1077 8.73 x 10°° NOC2L 045 159 x 104 111 x 10-3
FGF10 —0.24 132 x 10°¢ 1.20 x 107* Prostate Cancer
BTN3A2 0.22 1.37 x 107¢ 1.25 x 1074 ESPLI 0.60 507 x10-% 838 x 10-12
CASP8 0.22 212 % 107 1.93 x 107* FGFR2 048  531x10° 3.05 x 10~7
PTPN22 0.22 2.50 x 107 2.28 x 1074 TUBAIBR 0.44 576 x 10~° 3.05 x 10~7
LRRN2 -021 527 x10°° 4.80 x 107* MSMB —0.43 1.61 x 107 6.40 X 10~
ESRI -022  115x10° 1.0 x 107 P2RX2 —040 350x107  1.11x10°°
CISW 0.20 148 x10°° 135 x 107 TCF19 0.38 596 x 107 1.29 x 1075
ADCY3 -021  179x10°  1.63x 107 PLEKHHZ 041 610x1077  1.29 x 1075
ZNF283 0.18 9.02 x 10°° 8.21 x 1073 NOL10 0.39 6.48 X 10~7 1.29 x 10-5
BBS2 -019  167x10* 0015 RUVBL1 0.41 863x 107  1.52x10°S
WNT3 -017  224x10*  0.020 LPCATI 0.40 110 x10°  1.75 x 10~
NDUFB1 0.17 227 x 107* 0.021 Sv2A 034 221 x 10-5 310 x 10-4
APOBEC3B 019  252x107* 0023 SLC2243 ~034  234x10°  310x10°*
ITPRI -018  322x10*  0.030 Céorf182 0.31 327 x 1075 4.00 x 107
KIAA0892 -0.17  3.60x 107* 0.033 STYX 0.31 447 X 10-5 508 x 104
NEK10 -0.17 378 x 107* 0.034 TBXS 034 610 x 10-5 6.47 X 104
Clorf190 —0.18 435 %x 1074 0.040 HAUSS 0.30 6.73 x 10-5 6.69 x 10~
ARRDC3 0.18 477 x 100 0043 CABLES2 0.31 9.73%10°°  8.67 x 10°*
AMFR —016  529x10%  0.048 AXL —031 981x107° 867 x 107
Colorectal Cancer MICB 0.28 576 x 107 124 x107°
AICF -058  7.07x107*° 156 x 10" PPIL3 030  169x10*  134x10°°
SHROOM2 -053 792x10"  1.74x 10" FAMIO01B 031 195 x 10-* 148 x 103
GPR143 -053  848x10°7 187 x 10" UHRFIBPI ~ 028 268 x 10  194x 1073
MICB 047  271x10°”  596x 10! ZNF131 028  356x10%  246x10°°
MAPILC3A  -037  1.63x107° 3.58 x 1078 Ovarian Cancer
ZNF584 0.38 8.62 x 1077 1.90 x 1077 OBFCI 025  4.46x 103 0.045
SLC25A26 -0.32 1.18 x 107° 2.60 x 1073
FHL3 0.32 2.24 x 107°¢ 493 x 107°
INF132 0.26 175 x 104 384 x 10 was negatively correlated with TMB of cancer-driver genes,
respectively (Figure 4E).
ASAH2B 0.21 1.82 x 1073 0.040
Lung Adenocarcinoma . .
Discussion
MPZL3 0.20 2.50 x 1076 1.10 x 107*
AMICA1 -023  541x10°° 1.19 x 10°* We systematically evaluated transcriptome data from TCGA,
NUMBL 0.19 249 x 10-° 3.65 x 104 GTEx, and other publicly available data sources and identi-
75 > fied putative susceptibility genes for GWAS-identified SNPs
FUBP1 0.19 435 x 10 4.79 x 10

for six major cancer types. By using an integrative analysis
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approach, we characterized a total of 270 candidate genes,
including 99 that had not been previously associated with
cancer risk. Of the candidate target genes, 180 (66.7%)
showed evidence of cis-regulation by putative functional
variants via proximal promoter or distal enhancer-promoter
interactions. Furthermore, our results showed that a total of
33 and 66 putative susceptibility genes were associated with
specific mutational signatures and TBM of cancer-driver
genes, respectively. These findings provide additional puta-
tive susceptibility genes and further insight into understand-
ing how genetic risk variants might contribute to carcino-
genesis, mediated by regulation of susceptibility genes that
might affect the biogenesis of somatic mutations.

Our identification of a total of 270 putative cancer-sus-
ceptibility genes is supported by several lines of additional
evidence. First, 110 (40.7%) target genes showed signifi-
cance at nominal p < 0.05 in both the GTEx and TCGA da-
tasets. Second, a substantial proportion of target genes
(66.7% of 270) had evidence of cis-regulation by putative
functional variants via proximal promoter or distal
enhancer-promoter interactions. Third, our results showed
that ten genes commonly observed in different cancer
types were found to be consistently associated with risk
alleles of different index SNPs, and an additional 14 genes
were also observed among different cancer types, although
they had inconsistent associations with index SNPs in
different cancer types (Figures 2B and 2C). Finally, a
functional enrichment analysis of these genes done with
Ingenuity Pathway Analysis (IPA) revealed that the most
significantly enriched molecular and cellular function
was involved in cancer-related functions (p < 0.05 for
the enrichment analysis). In particular, many genes identi-
fied by our analysis, including WNT3, SLC22A3 (MIM:
604842), PCAT19 (MIM: 618192), CEACAM21 (MIM:
618191), and CABLES2, have been verified by in vitro or
in vivo experiments to be involved in cell growth, prolifer-
ation, and apoptosis.”>’" It should be noted that a total of
16 identified eQTL target genes, five in lung adenocarci-
noma and 11 in prostate cancer, showed inconsistent di-
rection of association in previous literature'®'? (Table S2).

Our results showed that 23 genes, located in three re-
gions (17q21.3, 6p22.1-6p21.33-6p21.32, and 2q33.1)
were commonly implicated in at least two cancer types.
In line with findings from previous studies, the 17q21.3
locus was associated with risk of both breast and ovarian
cancer, and the 6p22.1-6p21.33-6p21.32 loci have been
reported to be associated with risk of both lung and pros-
tate cancers.”” The 2q33.1 locus has also been reported
to be associated with risk of melanoma, breast, and pros-
tate cancers.”® Together with these findings, our study
revealed putative cancer-susceptibility genes in these loci,
providing evidence of regulatory mechanisms underlying
cancer pleiotropy for shared cancer risk.

Our approach of combining regression results of eQTL
analyses from normal tissues and tumor tissues might be
questioned. To address this concern, eQTL regression
models for tumor tissues from TCGA were adjusted for

DNA methylation and somatic copy number alterations
to account for any potential influence of somatic alter-
ations in tumor tissue. Even though it might be inappro-
priate to combine effect sizes from tumor and normal
tissues, we reasonably combined the covariate-adjusted
p values from TCGA with p values from GTEx following
meta-analysis methods based on directions of association.

It should be noted that a particular index SNP might be a
surrogate for multiple variants for cancer risk in the locus.
The target genes for those potential causal variants, which
are in weak LD with index SNPs, might not be identified by
cis-eQTL analysis. On the other hand, index SNPs could be
statistically excluded as candidate causative variants in
some GWAS-identified loci. Nevertheless, the identifica-
tion of target genes on the basis of the index SNPs is still
reliable because most statistically causative variants are still
expected to be in strong LD with them.

Our findings showed that many putative cancer-suscepti-
bility genes were associated with specific mutational signa-
tures and TMB of cancer-driver genes. Of the 180 genes
with evidence of cis-regulation by putative functional vari-
ants via proximal promoter or distal enhancer-promoter in-
teractions, a total of 21 genes showed associations with spe-
cific mutational signatures and TMB of cancer-driver genes;
these genes included seven for colorectal cancer, one for
lung adenocarcinoma, one for pancreatic cancer, and 12
for prostate cancer (Table S7). In breast cancer, an unpub-
lished fine-mapping study has reported a total of 178
high-confidence target genes from 150 susceptibility re-
gions.”' We additionally evaluated the associations of these
genes with mutational signatures and TMB of cancer-driver
genes (see Material and Methods). We observed 55 genes
associated with mutational signatures and 29 with TMB of
cancer-driver genes by using a Bonferroni-corrected signifi-
cance threshold of p < 0.05 (Table S8). Of them, 13 genes
showed associations with both specific mutational signa-
tures and TMB of cancer-driver genes. In comparison with
the results from the 101 eQTL target genes reported in our
previous study,”” a total of 10 genes associated with either
mutational signatures or TMB of cancer-driver genes were
commonly observed (Figure S1). Additionally, we also eval-
uated associations between the expression of all protein-
coding genes and each mutational signature and TMB of
cancer-driver genes for each cancer type. Our results sug-
gested that the proportion of cancer-susceptibility genes
associated with specific mutational signatures and TMB of
cancer-driver genes was significantly higher than the pro-
portion of all protein-coding genes that were thus associ-
ated; this result was found in a majority of cancer types
(including breast, colorectal and prostate cancers, and mel-
anoma; Fisher’s exact test, p < 0.05 for the enrichment anal-
ysis; Figures S2 and S3; see Material and Methods).

It should be noted that the biological mechanisms of how
these cancer-susceptibility genes might affect mutational
signatures in different cancer types remains unclear. In
line with previous studies, we found that APOBEC3A and
APOBEC3B were associated with mutational signatures 3
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and 13 for breast cancer.’”**7*7> By using gene expression
data in breast cancer tumor tissues from TCGA, we observed
that a majority of genes identified were respectively associ-
ated with mutational signatures and also correlated with
APOBEC3A and APOBEC3B (p < 0.05; Figure S4). This might
indicate that these putative cancer-susceptibility genes
affect mutational signatures through a common APOBEC3
pathway. Several DNA repair genes, such as DCLRE1B and
GATADZ2A, were observed to be associated with mutational
signatures. DCLREIB, encoding a 5-3' exonuclease, has
been reported to play a vital role in DNA double-strand
break (DSB) repair by affecting efficient localization
of BRCA1 and the MRE11/RAD51/NBS1 complex.’®
GATAD2A, encoding a subunit of the nucleosome remodel-
ing and histone deacetylase (NuRD) complex, plays an
important role in recruiting NuRD to the sites of damaged
chromatin for repair of DSBs by homologous recombina-
tion.”>’”~"? Interestingly, we also found that a low expres-
sion level of ESR1 was associated with an increase of TMB
of cancer-driver genes. This might be supported by observa-
tion of the expression correlations between ESR1 and the
DNA-repair gene DLCLRE1B and both APOBEC3A, and
APOBEC3B (Figure S4). On the other hand, in previous
studies from ChIP-seq analyses, thousands of candidate
target genes, including many DNA-repair genes, have been
identified for ESR1, adding other possibilities of regulating
the related DNA-repair genes and pathways, consequently
affecting the TMB of cancer-driver genes.®’ %>

In conclusion, we evaluated a total of 270 putative sus-
ceptibility genes, including 99 with previously unreported
associations, for six major cancer types. Our results indicate
that many GWAS-identified variants might influence can-
cer risk through cis-regulation through proximal promoter
or distal enhancer-promoter interactions with putative
functional variants. In addition, our results indicate that a
substantial proportion of these genes were associated with
specific mutational signatures and TMB of cancer-driver
genes. Together, our findings provide further insight into
understanding the role of genetic variants and how regula-
tion of target susceptibility genes might affect the biogen-
esis of somatic mutations in multiple types of cancer.

Supplemental Data

Supplemental Data can be found online at https://doi.org/10.
1016/j.ajhg.2019.07.006.
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Figure S1. Numbers of putative susceptibility genes associated with mutational signatures and
TMB of cancer-driver genes in breast cancer. The red and green colors refer to numbers of significant
associations for the genes identified in our previous ! and Fachal et al's * studies, respectively
(Bonferroni-corrected P < 0.05). The blue colors refer to numbers of significant associations that were

commonly observed in the two gene sets.
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Figure S2. The proportion of genes associated with mutational signatures at different significance

thresholds for each cancer type. The red and blue colors refer to the proportion of significant

associations for all protein-coding genes across genome and significant associations for putative

susceptibility genes, respectively.
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Figure S4. The expression correlations of putative susceptibility genes that were associated with

mutation signatures and TMB of cancer-driver genes in breast cancer.

Table S1: A list of 294 GWAS-identified risk SNPs for each of six cancer types.

Table S2: A list of eQTL target genes for each of six cancer types.

Table S3: The identified eQTL target genes for index SNPs supported by evidence of cis-
regulation by putative functional variants via proximal promoter or distal enhancer-promoter
interactions.

Table S4: Associations between putative susceptibility gene expression levels and mutational
signatures across seven cancer types (nominal P < 0.05).

Table S5: Associations between putative susceptibility gene expression levels and TMB of
cancer-driver genes across seven cancer types.

Table S6: Spearman correlation between mutational signatures and TMB of cancer-driver
genes for each cancer type.

Table S7: A list of genes with evidence of regulation by putative functional variants, associated

with specific mutational signatures and TMB of cancer-driver genes.



Table S8: Associations of the genes identified in the Fachal et al’s study ? with mutational

signatures and TMB of cancer-driver genes in breast cancer (Bonferroni-corrected P < 0.05).
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