
Biophysical Journal, Volume 117
Supplemental Information
Identification of Multiple Kinetic Populations of DNA-Binding Proteins

in Live Cells

Han N. Ho, Daniel Zalami, Jürgen Köhler, Antoine M. van Oijen, and Harshad Ghodke

2

Supplementary table

Table S1. Initial conditions, constraints and termination tolerance used in global fitting. n0 is the

minimum number of counts in the second bin across tl.

Model
Initial

conditions
Bound constraints

Termination

tolerance
Algorithm

MATLAB

function

Mono

(Eq. 2)

kb = 1 s-1

koff = 1 s-1

kb > 0 s-1

0 s-1 < koff < 1/int s-1
10-6

trust-region-

reflective
lsqnonlin

Bi

(Eq. 5)

kb = 1 s-1

koff1 = 1 s-1

B = 0.5

koff2 = 2 s-1

kb > 0

10-3 s-1 < koff1 < 1/int s-1

1/n0 < B < 1 – 1/n0

10-3 s-1 < koff2 < 1/int s-1

10-6
trust-region-

reflective
lsqnonlin

Tri

(Eq. 6)

kb = 1 s-1

koff1 = 0.05

s-1

B1 = 0.3

koff2 = 0.5 s-1

B2 = 0.3

koff2 = 5 s-1

kb > 0 s-1

10-3 s-1 < koff1 < 1/int s-1

1/n0 < B1 < 1 – 1/n0

10-3 s-1 < koff2 < 1/int s-1

1/n0 < B2 < 1 – 1/n0

10-3 s-1 < koff3 < 1/int s-1

B1 + B2 < 1 – 2/n0

10-9
trust-region-

reflective
fmincon

3

Table S2. The tl sets used in the study.

tl sets tl values (s)

10-s 0.1, 0.2, 0.3, 0.4, 0.6, 1, 2, 3, 5, 8, 10

100-s 0.1, 0.3, 0.7, 1, 3, 7, 10, 30, 70, 100

Three- 0.1, 1, 10

Five- 0.1, 0.3, 1, 3, 10

4

Supplementary figures

Figure S1. Schematic of experimental setups in single-molecule live-cell imaging. Bacteria

expressing fluorescently labelled proteins are loaded in a flow cell with a constant supply of media at

30 ºC. The fluorescent label (YPet) is excited with 514-nm light and fluorescence signal is recorded with

an electron-multiplying CCD camera.

5

Figure S2. Schematic of the simulation of the cumulative residence time distribution (CRTD) at

a specified tl. The molecules were generated by a random number generator to produce a group of

numbers following an exponential distribution (defined by koff1, kb, int and tl) (see Eq. 4-6 in main text).

The number generator function was called a few times (typically 3-6) until the number of molecules in

the first bin (n1) of the histogram exceeded the user-specified number of molecules (N1, N1 = A x B in

mono-exponential distribution, or N1 = A x B1 in multiple-exponential distribution). The koff2 and koff3 sub-

populations were simulated in the same manner. Then, molecules from all simulated sub-populations

were pooled and subject to bootstrapping analysis to construct the bootstrapped CRTDs (referred

simply as CRTDs). This procedure was repeated for all specified values of tl. The global fitting was

performed on CRTDs from all tl, using a CRTD for each tl.

6

Figure S3. Scatter plots show distributions of  obtained using global fitting on 100 simulated mono-

exponential (<> = 100 s) for each n value. (A) Simulation using the 10-s tl set. (B) Simulation using

the 100-s tl set. (C) Simulated data from (B) were globally fitted with the amplitude as the global

parameter. Apart from this panel, all global fittings in this study were performed with A as the local

parameter. Red bars represent the averages.

7

Figure S4. Determination of time constants and amplitudes from bi-exponential distributions with an

intermediate rate (koff1) and a fast rate (koff2 = 10koff1). (A-C) Scatter plots show distributions of B, 1 and

2 obtained using global fitting from 100 simulated distributions for each n value. Each panel

corresponds to a pre-set B, which increases from 10%, 25%, 50%, 75% to 90% from left to right. In

each panel, n increases from 103 (1e3) to 105 (1e5). Dashed lines and red bars represent the true

values and the average respectively. Orange shades represent distributions where B is larger than 0.1

or  is larger than 20%. To enhance visibility, outliers (less than 5% when present) were omitted from

scatter plots.

8

Figure S5. Bi-exponential distributions with an intermediate rate (koff1 = 0.1 s-1) and a fast rate (koff2 = 1
s-1) with infinite counts. (A) Representative kefftl plots at 20 amplitudes of koff2. From top to bottom, the
amplitude reduces from 95% to 5%. (B) Integrated peak areas as a function of koff2 amplitudes (open
circles). Line is the exponential fit to data points (R2: 0.9996). The peak area is calculated as the
difference between areas under the kefftl plots and the area under the line y = 0.7 + 0.1tl.

9

Figure S6. Determination of time constants and amplitudes from bi-exponential distributions with a slow

rate (koff1 = 0.01 s-1) and an intermediate rate (koff2 = 0.1 s-1). (A-C) Scatter plots show distributions of

B, 1 and 2 obtained from fitting of 100 simulated distributions to bi-exponential model. Each panel

corresponds to a pre-set amplitude of B, which increases from 10%, 25%, 50%, 75% to 90% from left

to right. In each panel, n increases from 103 (1e3) to 106 (1e6). Dashed lines and red bars represent

the true values and the average respectively. Orange shades represent distributions where B is larger

than 0.1 or  is larger than 20%. To enhance visibility, outliers (less than 5% when present) were

omitted from scatter plots.

10

Figure S7. Determination of time constants and amplitudes from bi-exponential distributions with a slow

rate (koff1) and an intermediate rate (koff2 = 10koff1), simulated using the 100-s tl set. (A) kefftl plots of bi-

exponential distributions with kbint of 0.7, koff1 and koff2 of 0.01 and 0.1 s-1 respectively, with 105

observations. The amplitude of koff1 (B, shown on top) increases from left to right (10% to 90%). Shaded

error bands are standard deviations from ten bootstrapped samples. (B-D) Scatter plots show

distributions of B, 1 and 2 obtained from fitting of 100 simulated distributions to bi-exponential model.

Each panel corresponds to a pre-set amplitude of B, which increases from 10%, 25%, 50%, 75% to

90% from left to right. In each panel, n increases from 103 (1e3) to 106 (1e6). Dashed lines and red bars

represent the true values and the average respectively. Orange shades represent distributions where

B is larger than 0.1 or  is larger than 20%. To enhance visibility, outliers (less than 5% when

present) were omitted from scatter plots.

11

Figure S8. Determination of binding lifetimes and amplitudes from bi-exponential distributions with

closely spaced rates (koff2 = 3koff1). (A-C) Scatter plots show distributions of B, 1 and 2 obtained from

fitting of 100 simulated distributions for each n value. Each panel corresponds to a pre-set B, which

increases from 10%, 25%, 50%, 75% to 90% from left to right. In each panel, n increases from 103 (1e3)

to 105 (1e5). Dashed lines and red bars represent the true values and the average respectively. Orange

shades represent distributions where B is larger than 0.1 or  is larger than 20%. To enhance

visibility, outliers (less than 5% when present) were omitted from scatter plots.

12

Figure S9. Determination of binding lifetimes and amplitudes from tri-exponential distributions with a

slow rate (koff1), an intermediate rate (koff2 = 10koff1) and a fast rate (koff3 = 10koff2), using the 100-s tl set.

From left to right, five panels in each row correspond to different amplitudes of each sub-population

(displayed on top). (A-E) Scatter plots show distributions of amplitudes (B1 and B2), 1, 2 and 3 obtained

using global fitting 100 simulated samples. In each panel, n increases from 103 (1e3) to 106 (1e6).

Dashed lines and red bars represent the true values and the averages respectively. Orange shades

represent distributions where B is larger than 0.1 or  is larger than 20%. To enhance visibility,

outliers (less than 5% when present) were omitted from scatter plots.

13

Figure S10. Determination of time constants and amplitudes from bi-exponential distributions simulated

with the five tl set, and an intermediate rate (koff1 = 0.1 s-1) and a fast rate (koff2 = 1 s-1). (A-C) Scatter

plots show distributions of B, 1 and 2 obtained from fitting of 100 simulated distributions to bi-

exponential model. Each panel corresponds to a pre-set amplitude of B, which increases from 10%,

25%, 50%, 75% to 90% from left to right. In each panel, n increases from 103 (1e3) to 105 (1e5). Dashed

lines and red bars represent the true values and the average respectively. Orange shades represent

distributions where B is larger than 0.1 or  is larger than 20%. To enhance visibility, outliers (less

than 5% when present) were omitted from scatter plots.

14

Figure S11. Determination of time constants and amplitudes from bi-exponential distributions simulated

with the three tl set, and an intermediate rate (koff1 = 0.1 s-1) and a fast rate (koff2 = 1 s-1). (A-C) Scatter

plots show distributions of B, 1 and 2 obtained from fitting of 100 simulated distributions to bi-

exponential model. Each panel corresponds to a pre-set amplitude of B, which increases from 10%,

25%, 50%, 75% to 90% from left to right. In each panel, n increases from 103 (1e3) to 105 (1e5). Dashed

lines and red bars represent the true values and the average respectively. Orange shades represent

distributions where B is larger than 0.1 or  is larger than 20%. To enhance visibility, outliers (less

than 5% when present) were omitted from scatter plots.

15

Supplementary Notes

1. Simulation of a set of binding events whose lifetimes follow an exponential distribution

with user-defined mean

function [counts, each_molecule] = simulate_res_time(mu,edges,n_count)
%%

%% Inputs:

%% mu: mean of exponential distribution for a particular tl
%% edges: bin edges of histograms

%% n_count: the number of counts for a particular tl
%% Outputs:

%% counts: vector describing CRTD

%% each_molecule: vector containing all random number corresponding to

%% lifetimes of binding events

%%

each_molecule = [];
counts = zeros(10,1);

%% generate a set of random numbers corresponding to lifetimes of binding

%% events until counts in the first bin exceed user-defined counts
while counts(1) < n_count

% single iteration of the exprnd function
 sim = exprnd(mu,round(n_count/2.71),1);

% construct the histogram with edges corresponding to frame times

% N is a vector containing counts in all bins [from the latest iteration]
 [N,~] = histcounts(sim,edges);

 counts = counts + N'; % add counts to the previous iterations
% combine lifetimes of binding events to existing population from previous

% iteration of the exprnd function
 each_molecule = [each_molecule; sim];

end
end % end of the function

16

2. Simulation of mono-, bi- or tri-exponential distribution across all tl

%%

%% Inputs:

%% ttl: vector containing the set of time-lapse intervals

%% kb: photobleaching rate (unit: s-1)

%% tint: camera integration time

%% koff1: user-defined off rate 1

%% koff2: user-defined off rate 2

%% koff3: user-defined off rate 3

%% B(1): amplitude of the first kinetic sub-population

%% B(2): amplitude of the second kinetic sub-population

%% n_count_total: user-defined counts for each simulation

%% Outputs:

%% bin: matrix containing CRTDs for all time-lapse intervals

%% d.data: contains the simulated population at a particular time-

%% lapse interval

%%

for i = 1:length(ttl) % simulate CRTD for each time-lapse interval
 time = ttl(i)*(0:10)'; % determine frame times for binning
 %% define exponential distribution for each sub-population
 keff1 = (kb*tint/ttl(i) + koff1); % effective rate 1
 % mean of the exponential distribution of the first sub-population

 mu1 = 1/keff1;
 keff2 = (kb*tint/ttl(i) + koff2); % effective rate 2
 % mean of the exponential distribution of the second sub-population

 mu2 = 1/keff2;
 keff3 = (kb*tint/ttl(i) + koff3); % effective rate 3
 % mean of the exponential distribution of the third sub-population

 mu3 = 1/keff3;
 %% determine the number of counts for each sub-population based
 %% on the amplitudes B1 and B2

 % counts of the first kinetic sub-population
 n_count1 = round(B(1)*n_count_total);
 % counts of the second kinetic sub-population

 n_count2 = round(B(2)*n_count_total);

 % counts of the third kinetic sub-population
 n_count3 = n_count_total - n_count1 - n_count2;
 % bin1, bin2 and bin3 are vectors containing CRTDs of koff1, koff2 and

 % koff3 sub-population respectively
 % population1, population2 and population3 are vectors containing

 % simulated koff1, koff2 and koff3 sub-population respectively.
 bin2 = zeros(10,1); population2 = [];
 bin3 = zeros(10,1); population3 = [];
 % simulate koff1 sub-population

 [bin1, population1] = simulate_res_time(mu1,time,n_count1);
 % simulate koff2 sub-population

 if n_count2 > 1
 [bin2, population2] = simulate_res_time(mu2,time,n_count2);
 end
 % simulate koff3 sub-population

 if n_count3 > 1
 [bin3, population3] = simulate_res_time(mu3,time,n_count3);
 end
 % combine CRTDs from sub-population CRTDs
 bin(:,i) = bin1 + bin2 + bin3;
 % combine simulated population from simulated sub-populations

 d(i).data = [population1; population2; population3];
end

17

3. Global fitting

function [p_out] = globalFit(i_model, X, Y, tint)
%%

%% Inputs:

%% i_model = 1 – mono-exponential model

%% i_model = 2 – bi-exponential model

%% i_model = 3 – tri-exponential model

%% X: matrix containing frame times of all time-lapse intervals

%% - row: frame times corresponding to one time-lapse interval

%% - column: increase in frame times

%% Y: matrix containing simulated CRTDs of all time-lapse intervals

%% tint: camera integration time

%% para: initial conditions

%% - mono-exponential model: [kb, koff1, counts]

%% - bi-exponential model: [kb, koff1, B1, koff2, counts]

%% - tri-exponential model: [kb, koff1, B1, koff2, B2, koff3, counts]

%% lb: lower constraints

%% - mono-exponential model: [kb, koff1, counts]

%% - bi-exponential model: [kb, koff1, B1, koff2, counts]

%% - tri-exponential model: [kb, koff1, B1, koff2, B2, koff3, counts]

%% ub: upper constraints

%% - mono-exponential model: [kb, koff1, counts]

%% - bi-exponential model: [kb, koff1, B1, koff2, counts]

%% - tri-exponential model: [kb, koff1, B1, koff2, B2, koff3, counts]

%% Outputs:

%% p_out: vector containing outcomes of global fitting

%% - p(1): kb

%% - p(2): koff1

%% - p(3): B1

%% - p(4): koff2

%% - p(5): B2

%% - p(6): koff3

%% - p(7): 1 – B1 – B2

%% - p(8)-p(end): counts at time 0 for all time-lapse intervals

%%

%% Known Parameters
ttl = X(:,1); % vector containing all time-lapse intervals
a_para = Y(:,1); % Initialize the vector for counts at time 0
weights = ones(size(X)); % fitting weights
lower_B = 1/min(a_para(a_para>0)); % the lower bound for the amplitudes
upper_koff = 1/tint; % the upper bound for off rates
if i_model == 1 % fitting to mono-exponential function
 para = [1, 1, a_para']; % initial conditions: kb, koff1, counts
 lb = [0, 0, zeros(size(ttl))']; % lower bounds: kb, koff1, counts
 % upper bounds: kb, koff1, counts

 ub = [Inf,upper_koff, Inf*ones(size(ttl))'];
 % define function to minimize

 f1 = @(p)((model(i_model,p,X,tint,ttl)-Y).*weights);
 opts = optimset('Display','off');
 % Global fitting using the lsqnonlin function
 [p] = lsqnonlin(f1,para,lb,ub,opts);
 p_out = [p(1:2),1,zeros(1,4),p(3:end)];
elseif i_model == 2 % fitting to bi-exponential function
 para = [1, 1, 0.5, 2, a_para'];
 lb = [0, 1e-3, lower_B, 1e-3, zeros(size(ttl))'];
 ub = [Inf, upper_koff, 1-lower_B, upper_koff, Inf*ones(size(ttl))'];
 % define function to minimize

 f1 = @(p)((model(i_model,p,X,tint,ttl)-Y).*weights);
 opts = optimset('Display','off');

18

 % Global fitting using the lsqnonlin function
 [p] = lsqnonlin(f1,para,lb,ub,opts);
 % assign the smaller off rate to be koff1
 p_temp = sortrows([p(2) p(3); p(4) (1 - p(3))]);
 p_temp = p_temp';
 p_out = [p(1), p_temp(:)', zeros(1,2), p(5:end)];
elseif i_model == 3
 para = [1, 0.05, 0.3, 0.5, 0.3, 5, a_para'];
 lb = [0, 1e-3, lower_B, 1e-3, lower_B, 1e-3, zeros(size(ttl))'];
 ub = [Inf, upper_koff, 1-lower_B, upper_koff, 1-lower_B,upper_koff,

 Inf*ones(size(ttl))'];
 % define function to minimize

 f1 = @(p)(sum(sum((model(i_model,p,X,tint,ttl)-Y).^2.*weights,2)));
 opts = optimoptions('fmincon', 'MaxFunctionEvaluations',10000,...
 'MaxIter',3000,'Algorithm','interior-point','StepTolerance',

 1.0000e-9);
 b = 1-2*lower_B;
 A = [0,0,1,0,1,0,zeros(1,size(a_para,1))];
 % Global fitting using the fmincon function

 [p] = fmincon(f1,para,A,b,[],[],lb,ub,[],opts);
 % assign the smallest off rate to be koff1 and the second smallest to

 % be koff2

 p_temp = sortrows([p(2) p(3); p(4) p(5); p(6) (1-p(3)-p(5))]);
 p_temp = p_temp';
 p_out = [p(1),p_temp(:)',p(7:end)];
end
end % end of function

4. Define fitting models

function f = model(i_model,para,X,tint,ttl)

%%

%% Inputs:

%% i_model = 1 – mono-exponential model

%% i_model = 2 – bi-exponential model

%% i_model = 3 – tri-exponential model

%% para: global parameters

%% X: frame times

%% tint: camera integration times

%% ttl: time-lapse time

%%

% ampl: vector containing counts for all time-lapse intervals
p = tint./ttl; p = p(:);
if i_model == 1
 kb = para(1);
 koff1 = para(2);
 ampl = para(3:end);
 % mono-exponential model

 f = (ampl'*ones(1,size(X,2))).*
 (exp(-((kb.*p + koff1)*ones(1,size(X,2))).*X));
elseif i_model == 2 % bi-exponential model
 kb = para(1);
 koff1 = para(2);
 B1 = para(3);
 koff2 = para(4);
 ampl = para(5:end);
 % bi-exponential model

 f = (ampl'*ones(1,size(X,2))).*(B1.*exp(-((kb.*p + koff1)*

 ones(1,size(X,2))).*X)+(1-B1).*exp(-(kb.*p + koff2)*

 ones(1,size(X,2)).*X));

19

elseif i_model == 3
 kb = para(1);
 koff1 = para(2); B1 = para(3);
 koff2 = para(4); B2 = para(5);
 koff3 = para(6);
 ampl = para(7:end);
 % tri-exponential model

 f = (ampl'*ones(1,size(X,2))).*
 (B1.*exp(-((kb.*p + koff1) * ones(1,size(X,2))).*X)
 + B2.* exp(-(kb.*p + koff2)*ones(1,size(X,2)).*X)+
 (1-B1-B2).* exp(-(kb.*p + koff3)*ones(1,size(X,2)).*X));
end
end % end of function

