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Supplementary table 

Table S1. Initial conditions, constraints and termination tolerance used in global fitting. n0 is the 

minimum number of counts in the second bin across tl. 

Model 
Initial 

conditions 
Bound constraints 

Termination 

tolerance 
Algorithm 

MATLAB 

function 

Mono 

(Eq. 2) 

kb = 1 s-1 

koff = 1 s-1 

kb > 0 s-1 

0 s-1 < koff < 1/int s-1 
10-6 

trust-region-

reflective 
lsqnonlin 

Bi 

(Eq. 5) 

kb = 1 s-1 

koff1 = 1 s-1 

B = 0.5 

koff2 = 2 s-1 

kb > 0 

10-3 s-1 < koff1 < 1/int s-1 

1/n0 < B < 1 – 1/n0 

10-3 s-1 < koff2 < 1/int s-1 

10-6 
trust-region-

reflective 
lsqnonlin 

Tri 

(Eq. 6) 

kb = 1 s-1 

koff1 = 0.05 

s-1 

B1 = 0.3 

koff2 = 0.5 s-1 

B2 = 0.3 

koff2 = 5 s-1 

kb > 0 s-1 

10-3 s-1 < koff1 < 1/int s-1 

1/n0 < B1 < 1 – 1/n0  

10-3 s-1 < koff2 < 1/int s-1 

1/n0 < B2 < 1 – 1/n0 

10-3 s-1 < koff3 < 1/int s-1 

B1 + B2 < 1 – 2/n0  

10-9 
trust-region-

reflective 
fmincon 
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Table S2. The tl sets used in the study. 

tl sets tl values (s) 

10-s 0.1, 0.2, 0.3, 0.4, 0.6, 1, 2, 3, 5, 8, 10 

100-s 0.1, 0.3, 0.7, 1, 3, 7, 10, 30, 70, 100 

Three- 0.1, 1, 10 

Five- 0.1, 0.3, 1, 3, 10 
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Supplementary figures 

 

Figure S1. Schematic of experimental setups in single-molecule live-cell imaging. Bacteria 

expressing fluorescently labelled proteins are loaded in a flow cell with a constant supply of media at 

30 ºC. The fluorescent label (YPet) is excited with 514-nm light and fluorescence signal is recorded with 

an electron-multiplying CCD camera. 
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Figure S2. Schematic of the simulation of the cumulative residence time distribution (CRTD) at 

a specified tl. The molecules were generated by a random number generator to produce a group of 

numbers following an exponential distribution (defined by koff1, kb, int and tl) (see Eq. 4-6 in main text). 

The number generator function was called a few times (typically 3-6) until the number of molecules in 

the first bin (n1) of the histogram exceeded the user-specified number of molecules (N1, N1 = A x B in 

mono-exponential distribution, or N1 = A x B1 in multiple-exponential distribution). The koff2 and koff3 sub-

populations were simulated in the same manner. Then, molecules from all simulated sub-populations 

were pooled and subject to bootstrapping analysis to construct the bootstrapped CRTDs (referred 

simply as CRTDs). This procedure was repeated for all specified values of tl. The global fitting was 

performed on CRTDs from all tl, using a CRTD for each tl. 
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Figure S3. Scatter plots show distributions of  obtained using global fitting on 100 simulated mono-

exponential (<> = 100 s) for each n value. (A) Simulation using the 10-s tl set. (B) Simulation using 

the 100-s tl set. (C) Simulated data from (B) were globally fitted with the amplitude as the global 

parameter. Apart from this panel, all global fittings in this study were performed with A as the local 

parameter. Red bars represent the averages. 
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Figure S4. Determination of time constants and amplitudes from bi-exponential distributions with an 

intermediate rate (koff1) and a fast rate (koff2 = 10koff1). (A-C) Scatter plots show distributions of B, 1 and 

2 obtained using global fitting from 100 simulated distributions for each n value. Each panel 

corresponds to a pre-set B, which increases from 10%, 25%, 50%, 75% to 90% from left to right. In 

each panel, n increases from 103 (1e3) to 105 (1e5). Dashed lines and red bars represent the true 

values and the average respectively. Orange shades represent distributions where B is larger than 0.1 

or  is larger than 20%. To enhance visibility, outliers (less than 5% when present) were omitted from 

scatter plots. 
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Figure S5. Bi-exponential distributions with an intermediate rate (koff1 = 0.1 s-1) and a fast rate (koff2 = 1 
s-1) with infinite counts. (A) Representative kefftl plots at 20 amplitudes of koff2. From top to bottom, the 
amplitude reduces from 95% to 5%. (B) Integrated peak areas as a function of koff2 amplitudes (open 
circles). Line is the exponential fit to data points (R2: 0.9996). The peak area is calculated as the 
difference between areas under the kefftl plots and the area under the line y = 0.7 + 0.1tl. 
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Figure S6. Determination of time constants and amplitudes from bi-exponential distributions with a slow 

rate (koff1 = 0.01 s-1) and an intermediate rate (koff2 = 0.1 s-1). (A-C) Scatter plots show distributions of 

B, 1 and 2 obtained from fitting of 100 simulated distributions to bi-exponential model. Each panel 

corresponds to a pre-set amplitude of B, which increases from 10%, 25%, 50%, 75% to 90% from left 

to right. In each panel, n increases from 103 (1e3) to 106 (1e6). Dashed lines and red bars represent 

the true values and the average respectively. Orange shades represent distributions where B is larger 

than 0.1 or  is larger than 20%. To enhance visibility, outliers (less than 5% when present) were 

omitted from scatter plots. 
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Figure S7. Determination of time constants and amplitudes from bi-exponential distributions with a slow 

rate (koff1) and an intermediate rate (koff2 = 10koff1), simulated using the 100-s tl set. (A) kefftl plots of bi-

exponential distributions with kbint of 0.7, koff1 and koff2 of 0.01 and 0.1 s-1 respectively, with 105 

observations. The amplitude of koff1 (B, shown on top) increases from left to right (10% to 90%). Shaded 

error bands are standard deviations from ten bootstrapped samples. (B-D) Scatter plots show 

distributions of B, 1 and 2 obtained from fitting of 100 simulated distributions to bi-exponential model. 

Each panel corresponds to a pre-set amplitude of B, which increases from 10%, 25%, 50%, 75% to 

90% from left to right. In each panel, n increases from 103 (1e3) to 106 (1e6). Dashed lines and red bars 

represent the true values and the average respectively. Orange shades represent distributions where 

B is larger than 0.1 or  is larger than 20%. To enhance visibility, outliers (less than 5% when 

present) were omitted from scatter plots. 
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Figure S8. Determination of binding lifetimes and amplitudes from bi-exponential distributions with 

closely spaced rates (koff2 = 3koff1). (A-C) Scatter plots show distributions of B, 1 and 2 obtained from 

fitting of 100 simulated distributions for each n value. Each panel corresponds to a pre-set B, which 

increases from 10%, 25%, 50%, 75% to 90% from left to right. In each panel, n increases from 103 (1e3) 

to 105 (1e5). Dashed lines and red bars represent the true values and the average respectively. Orange 

shades represent distributions where B is larger than 0.1 or  is larger than 20%. To enhance 

visibility, outliers (less than 5% when present) were omitted from scatter plots. 
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Figure S9. Determination of binding lifetimes and amplitudes from tri-exponential distributions with a 

slow rate (koff1), an intermediate rate (koff2 = 10koff1) and a fast rate (koff3 = 10koff2), using the 100-s tl set. 

From left to right, five panels in each row correspond to different amplitudes of each sub-population 

(displayed on top). (A-E) Scatter plots show distributions of amplitudes (B1 and B2), 1, 2 and 3 obtained 

using global fitting 100 simulated samples. In each panel, n increases from 103 (1e3) to 106 (1e6). 

Dashed lines and red bars represent the true values and the averages respectively. Orange shades 

represent distributions where B is larger than 0.1 or  is larger than 20%. To enhance visibility, 

outliers (less than 5% when present) were omitted from scatter plots. 
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Figure S10. Determination of time constants and amplitudes from bi-exponential distributions simulated 

with the five tl set, and an intermediate rate (koff1 = 0.1 s-1) and a fast rate (koff2 = 1 s-1). (A-C) Scatter 

plots show distributions of B, 1 and 2 obtained from fitting of 100 simulated distributions to bi-

exponential model. Each panel corresponds to a pre-set amplitude of B, which increases from 10%, 

25%, 50%, 75% to 90% from left to right. In each panel, n increases from 103 (1e3) to 105 (1e5). Dashed 

lines and red bars represent the true values and the average respectively. Orange shades represent 

distributions where B is larger than 0.1 or  is larger than 20%. To enhance visibility, outliers (less 

than 5% when present) were omitted from scatter plots. 
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Figure S11. Determination of time constants and amplitudes from bi-exponential distributions simulated 

with the three tl set, and an intermediate rate (koff1 = 0.1 s-1) and a fast rate (koff2 = 1 s-1). (A-C) Scatter 

plots show distributions of B, 1 and 2 obtained from fitting of 100 simulated distributions to bi-

exponential model. Each panel corresponds to a pre-set amplitude of B, which increases from 10%, 

25%, 50%, 75% to 90% from left to right. In each panel, n increases from 103 (1e3) to 105 (1e5). Dashed 

lines and red bars represent the true values and the average respectively. Orange shades represent 

distributions where B is larger than 0.1 or  is larger than 20%. To enhance visibility, outliers (less 

than 5% when present) were omitted from scatter plots. 
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Supplementary Notes 

1. Simulation of a set of binding events whose lifetimes follow an exponential distribution 

with user-defined mean 

function [counts, each_molecule] = simulate_res_time(mu,edges,n_count) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Inputs: 

%%  mu: mean of exponential distribution for a particular tl 
%%  edges: bin edges of histograms 

%%  n_count: the number of counts for a particular tl 
%% Outputs: 

%%  counts: vector describing CRTD 

%%  each_molecule: vector containing all random number corresponding to 

%%      lifetimes of binding events 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

each_molecule = [];    
counts = zeros(10,1); 

%% generate a set of random numbers corresponding to lifetimes of binding 

%% events until counts in the first bin exceed user-defined counts 
while counts(1) < n_count 

% single iteration of the exprnd function 
    sim = exprnd(mu,round(n_count/2.71),1); 

% construct the histogram with edges corresponding to frame times 

% N is a vector containing counts in all bins [from the latest iteration] 
    [N,~] = histcounts(sim,edges); 

    counts = counts + N'; % add counts to the previous iterations 
% combine lifetimes of binding events to existing population from previous 

% iteration of the exprnd function 
    each_molecule = [each_molecule; sim];  

end 
end % end of the function 
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2. Simulation of mono-, bi- or tri-exponential distribution across all tl  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Inputs: 

%%  ttl:   vector containing the set of time-lapse intervals 

%%  kb:    photobleaching rate (unit: s-1) 

%%  tint:  camera integration time 

%%  koff1: user-defined off rate 1 

%% koff2: user-defined off rate 2 

%% koff3: user-defined off rate 3 

%% B(1):  amplitude of the first kinetic sub-population 

%% B(2):  amplitude of the second kinetic sub-population 

%% n_count_total: user-defined counts for each simulation 

%% Outputs: 

%%  bin: matrix containing CRTDs for all time-lapse intervals 

%%  d.data: contains the simulated population at a particular time- 

%% lapse interval 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

for i = 1:length(ttl)    % simulate CRTD for each time-lapse interval           
     time = ttl(i)*(0:10)';  % determine frame times for binning 
     %% define exponential distribution for each sub-population 
     keff1 = (kb*tint/ttl(i) + koff1); % effective rate 1 
     % mean of the exponential distribution of the first sub-population 

     mu1 = 1/keff1;  
     keff2 = (kb*tint/ttl(i) + koff2); % effective rate 2 
     % mean of the exponential distribution of the second sub-population 

     mu2 = 1/keff2;  
     keff3 = (kb*tint/ttl(i) + koff3); % effective rate 3 
     % mean of the exponential distribution of the third sub-population 

     mu3 = 1/keff3;  
     %% determine the number of counts for each sub-population based 
     %% on the amplitudes B1 and B2 

     % counts of the first kinetic sub-population 
     n_count1 = round(B(1)*n_count_total);  
     % counts of the second kinetic sub-population 

     n_count2 = round(B(2)*n_count_total); 

     % counts of the third kinetic sub-population             
     n_count3 = n_count_total - n_count1 - n_count2; 
     % bin1, bin2 and bin3 are vectors containing CRTDs of koff1, koff2 and       

     % koff3 sub-population respectively 
     % population1, population2 and population3 are vectors containing  

     % simulated koff1, koff2 and koff3 sub-population respectively. 
     bin2 = zeros(10,1); population2 = []; 
     bin3 = zeros(10,1); population3 = []; 
     % simulate koff1 sub-population 

     [bin1, population1] = simulate_res_time(mu1,time,n_count1); 
     % simulate koff2 sub-population 

     if n_count2 > 1 
          [bin2, population2] = simulate_res_time(mu2,time,n_count2);             
     end 
     % simulate koff3 sub-population 

     if n_count3 > 1 
          [bin3, population3] = simulate_res_time(mu3,time,n_count3); 
     end 
     % combine CRTDs from sub-population CRTDs 
            bin(:,i) = bin1 + bin2 + bin3; 
     % combine simulated population from simulated sub-populations 

     d(i).data = [population1; population2; population3];             
end 
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3. Global fitting 

function [p_out] = globalFit(i_model, X, Y, tint)  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Inputs: 

%%  i_model = 1 – mono-exponential model 

%% i_model = 2 – bi-exponential model 

%% i_model = 3 – tri-exponential model 

%%  X: matrix containing frame times of all time-lapse intervals 

%%  - row: frame times corresponding to one time-lapse interval 

%%  - column: increase in frame times 

%%  Y: matrix containing simulated CRTDs of all time-lapse intervals 

%% tint: camera integration time 

%% para: initial conditions 

%%   - mono-exponential model: [kb, koff1, counts] 

%%   - bi-exponential model: [kb, koff1, B1, koff2, counts] 

%%   - tri-exponential model: [kb, koff1, B1, koff2, B2, koff3, counts] 

%% lb: lower constraints 

%%   - mono-exponential model: [kb, koff1, counts] 

%%   - bi-exponential model: [kb, koff1, B1, koff2, counts] 

%%   - tri-exponential model: [kb, koff1, B1, koff2, B2, koff3, counts] 

%% ub: upper constraints 

%%   - mono-exponential model: [kb, koff1, counts] 

%%   - bi-exponential model: [kb, koff1, B1, koff2, counts] 

%%   - tri-exponential model: [kb, koff1, B1, koff2, B2, koff3, counts] 

%% Outputs: 

%%  p_out: vector containing outcomes of global fitting 

%%  - p(1): kb 

%%  - p(2): koff1 

%%  - p(3): B1 

%%  - p(4): koff2 

%%  - p(5): B2 

%%  - p(6): koff3 

%%  - p(7): 1 – B1 – B2 

%%  - p(8)-p(end): counts at time 0 for all time-lapse intervals 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Known Parameters 
ttl = X(:,1); % vector containing all time-lapse intervals 
a_para = Y(:,1); % Initialize the vector for counts at time 0 
weights = ones(size(X)); % fitting weights 
lower_B = 1/min(a_para(a_para>0)); % the lower bound for the amplitudes 
upper_koff = 1/tint;     % the upper bound for off rates 
if i_model == 1   % fitting to mono-exponential function                              
     para = [1,  1, a_para']; % initial conditions: kb, koff1, counts 
     lb   = [0,  0, zeros(size(ttl))']; % lower bounds: kb, koff1, counts 
     % upper bounds: kb, koff1, counts 

     ub   = [Inf,upper_koff, Inf*ones(size(ttl))']; 
     % define function to minimize 

     f1 = @(p)(   (model(i_model,p,X,tint,ttl)-Y).*weights );  
     opts = optimset('Display','off'); 
     % Global fitting using the lsqnonlin function 
     [p] = lsqnonlin(f1,para,lb,ub,opts);   
     p_out = [p(1:2),1,zeros(1,4),p(3:end)]; 
elseif i_model == 2 % fitting to bi-exponential function         
     para = [1, 1, 0.5, 2, a_para']; 
     lb   = [0, 1e-3, lower_B, 1e-3, zeros(size(ttl))']; 
     ub   = [Inf, upper_koff, 1-lower_B, upper_koff, Inf*ones(size(ttl))'];  
     % define function to minimize 

     f1 = @(p)(   (model(i_model,p,X,tint,ttl)-Y).*weights ); 
     opts = optimset('Display','off'); 
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     % Global fitting using the lsqnonlin function 
     [p] = lsqnonlin(f1,para,lb,ub,opts); 
      % assign the smaller off rate to be koff1 
      p_temp = sortrows([p(2) p(3); p(4) (1 - p(3))]); 
      p_temp = p_temp';  
      p_out  = [p(1), p_temp(:)', zeros(1,2), p(5:end)]; 
elseif i_model == 3 
      para = [1, 0.05, 0.3, 0.5, 0.3, 5, a_para']; 
      lb   = [0, 1e-3, lower_B, 1e-3, lower_B, 1e-3, zeros(size(ttl))']; 
      ub   = [Inf, upper_koff, 1-lower_B, upper_koff, 1-lower_B,upper_koff,   

  Inf*ones(size(ttl))']; 
      % define function to minimize 

      f1 = @(p)( sum(sum((model(i_model,p,X,tint,ttl)-Y).^2.*weights,2 ))); 
      opts = optimoptions('fmincon', 'MaxFunctionEvaluations',10000,... 
            'MaxIter',3000,'Algorithm','interior-point','StepTolerance', 

  1.0000e-9); 
      b = 1-2*lower_B; 
      A = [0,0,1,0,1,0,zeros(1,size(a_para,1))]; 
      % Global fitting using the fmincon function 

      [p] = fmincon(f1,para,A,b,[],[],lb,ub,[],opts);              
      % assign the smallest off rate to be koff1 and the second smallest to 

 % be koff2 

 p_temp = sortrows([p(2) p(3); p(4) p(5); p(6) (1-p(3)-p(5))]); 
      p_temp = p_temp';    
      p_out = [p(1),p_temp(:)',p(7:end)]; 
end 
end % end of function 

 
4. Define fitting models 

function f = model(i_model,para,X,tint,ttl) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Inputs: 

%%  i_model = 1 – mono-exponential model 

%% i_model = 2 – bi-exponential model 

%% i_model = 3 – tri-exponential model 

%%  para: global parameters 

%%  X:    frame times 

%%  tint: camera integration times 

%%  ttl: time-lapse time 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% ampl: vector containing counts for all time-lapse intervals 
p = tint./ttl; p = p(:); 
if i_model == 1  
    kb = para(1); 
    koff1 = para(2); 
    ampl = para(3:end); 
    % mono-exponential model 

    f = (ampl'*ones(1,size(X,2))).* 
        (exp(-((kb.*p + koff1)*ones(1,size(X,2))).*X));    
elseif i_model == 2 % bi-exponential model 
    kb = para(1);     
    koff1 = para(2); 
    B1 = para(3); 
    koff2 = para(4); 
    ampl = para(5:end); 
    % bi-exponential model 

    f = (ampl'*ones(1,size(X,2))).*(B1.*exp(-((kb.*p + koff1)* 

 ones(1,size(X,2))).*X)+(1-B1).*exp(-(kb.*p + koff2)* 

 ones(1,size(X,2)).*X)); 
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elseif i_model == 3 
    kb = para(1); 
    koff1 = para(2);    B1 = para(3); 
    koff2 = para(4);    B2 = para(5); 
    koff3 = para(6); 
    ampl = para(7:end); 
    % tri-exponential model 

    f = (ampl'*ones(1,size(X,2))).* 
        (B1.*exp(-((kb.*p + koff1) * ones(1,size(X,2))).*X) 
        + B2.* exp( -(kb.*p + koff2)*ones(1,size(X,2)).*X )+ 
        (1-B1-B2).* exp( -(kb.*p + koff3)*ones(1,size(X,2)).*X )); 
end    
end % end of function 

 

 

 

 

 

 

 

 


