
Biophysical Journal, Volume 117
Supplemental Information
Identification of Multiple Kinetic Populations of DNA-Binding Proteins

in Live Cells

Han N. Ho, Daniel Zalami, Jürgen Köhler, Antoine M. van Oijen, and Harshad Ghodke

2

Supplementary table

Table S1. Initial conditions, constraints and termination tolerance used in global fitting. n0 is the

minimum number of counts in the second bin across tl.

Model
Initial

conditions
Bound constraints

Termination

tolerance
Algorithm

MATLAB

function

Mono

(Eq. 2)

kb = 1 s-1

koff = 1 s-1

kb > 0 s-1

0 s-1 < koff < 1/int s-1
10-6

trust-region-

reflective
lsqnonlin

Bi

(Eq. 5)

kb = 1 s-1

koff1 = 1 s-1

B = 0.5

koff2 = 2 s-1

kb > 0

10-3 s-1 < koff1 < 1/int s-1

1/n0 < B < 1 – 1/n0

10-3 s-1 < koff2 < 1/int s-1

10-6
trust-region-

reflective
lsqnonlin

Tri

(Eq. 6)

kb = 1 s-1

koff1 = 0.05

s-1

B1 = 0.3

koff2 = 0.5 s-1

B2 = 0.3

koff2 = 5 s-1

kb > 0 s-1

10-3 s-1 < koff1 < 1/int s-1

1/n0 < B1 < 1 – 1/n0

10-3 s-1 < koff2 < 1/int s-1

1/n0 < B2 < 1 – 1/n0

10-3 s-1 < koff3 < 1/int s-1

B1 + B2 < 1 – 2/n0

10-9
trust-region-

reflective
fmincon

3

Table S2. The tl sets used in the study.

tl sets tl values (s)

10-s 0.1, 0.2, 0.3, 0.4, 0.6, 1, 2, 3, 5, 8, 10

100-s 0.1, 0.3, 0.7, 1, 3, 7, 10, 30, 70, 100

Three- 0.1, 1, 10

Five- 0.1, 0.3, 1, 3, 10

4

Supplementary figures

Figure S1. Schematic of experimental setups in single-molecule live-cell imaging. Bacteria

expressing fluorescently labelled proteins are loaded in a flow cell with a constant supply of media at

30 ºC. The fluorescent label (YPet) is excited with 514-nm light and fluorescence signal is recorded with

an electron-multiplying CCD camera.

5

Figure S2. Schematic of the simulation of the cumulative residence time distribution (CRTD) at

a specified tl. The molecules were generated by a random number generator to produce a group of

numbers following an exponential distribution (defined by koff1, kb, int and tl) (see Eq. 4-6 in main text).

The number generator function was called a few times (typically 3-6) until the number of molecules in

the first bin (n1) of the histogram exceeded the user-specified number of molecules (N1, N1 = A x B in

mono-exponential distribution, or N1 = A x B1 in multiple-exponential distribution). The koff2 and koff3 sub-

populations were simulated in the same manner. Then, molecules from all simulated sub-populations

were pooled and subject to bootstrapping analysis to construct the bootstrapped CRTDs (referred

simply as CRTDs). This procedure was repeated for all specified values of tl. The global fitting was

performed on CRTDs from all tl, using a CRTD for each tl.

6

Figure S3. Scatter plots show distributions of obtained using global fitting on 100 simulated mono-

exponential (<> = 100 s) for each n value. (A) Simulation using the 10-s tl set. (B) Simulation using

the 100-s tl set. (C) Simulated data from (B) were globally fitted with the amplitude as the global

parameter. Apart from this panel, all global fittings in this study were performed with A as the local

parameter. Red bars represent the averages.

7

Figure S4. Determination of time constants and amplitudes from bi-exponential distributions with an

intermediate rate (koff1) and a fast rate (koff2 = 10koff1). (A-C) Scatter plots show distributions of B, 1 and

2 obtained using global fitting from 100 simulated distributions for each n value. Each panel

corresponds to a pre-set B, which increases from 10%, 25%, 50%, 75% to 90% from left to right. In

each panel, n increases from 103 (1e3) to 105 (1e5). Dashed lines and red bars represent the true

values and the average respectively. Orange shades represent distributions where B is larger than 0.1

or is larger than 20%. To enhance visibility, outliers (less than 5% when present) were omitted from

scatter plots.

8

Figure S5. Bi-exponential distributions with an intermediate rate (koff1 = 0.1 s-1) and a fast rate (koff2 = 1
s-1) with infinite counts. (A) Representative kefftl plots at 20 amplitudes of koff2. From top to bottom, the
amplitude reduces from 95% to 5%. (B) Integrated peak areas as a function of koff2 amplitudes (open
circles). Line is the exponential fit to data points (R2: 0.9996). The peak area is calculated as the
difference between areas under the kefftl plots and the area under the line y = 0.7 + 0.1tl.

9

Figure S6. Determination of time constants and amplitudes from bi-exponential distributions with a slow

rate (koff1 = 0.01 s-1) and an intermediate rate (koff2 = 0.1 s-1). (A-C) Scatter plots show distributions of

B, 1 and 2 obtained from fitting of 100 simulated distributions to bi-exponential model. Each panel

corresponds to a pre-set amplitude of B, which increases from 10%, 25%, 50%, 75% to 90% from left

to right. In each panel, n increases from 103 (1e3) to 106 (1e6). Dashed lines and red bars represent

the true values and the average respectively. Orange shades represent distributions where B is larger

than 0.1 or is larger than 20%. To enhance visibility, outliers (less than 5% when present) were

omitted from scatter plots.

10

Figure S7. Determination of time constants and amplitudes from bi-exponential distributions with a slow

rate (koff1) and an intermediate rate (koff2 = 10koff1), simulated using the 100-s tl set. (A) kefftl plots of bi-

exponential distributions with kbint of 0.7, koff1 and koff2 of 0.01 and 0.1 s-1 respectively, with 105

observations. The amplitude of koff1 (B, shown on top) increases from left to right (10% to 90%). Shaded

error bands are standard deviations from ten bootstrapped samples. (B-D) Scatter plots show

distributions of B, 1 and 2 obtained from fitting of 100 simulated distributions to bi-exponential model.

Each panel corresponds to a pre-set amplitude of B, which increases from 10%, 25%, 50%, 75% to

90% from left to right. In each panel, n increases from 103 (1e3) to 106 (1e6). Dashed lines and red bars

represent the true values and the average respectively. Orange shades represent distributions where

B is larger than 0.1 or is larger than 20%. To enhance visibility, outliers (less than 5% when

present) were omitted from scatter plots.

11

Figure S8. Determination of binding lifetimes and amplitudes from bi-exponential distributions with

closely spaced rates (koff2 = 3koff1). (A-C) Scatter plots show distributions of B, 1 and 2 obtained from

fitting of 100 simulated distributions for each n value. Each panel corresponds to a pre-set B, which

increases from 10%, 25%, 50%, 75% to 90% from left to right. In each panel, n increases from 103 (1e3)

to 105 (1e5). Dashed lines and red bars represent the true values and the average respectively. Orange

shades represent distributions where B is larger than 0.1 or is larger than 20%. To enhance

visibility, outliers (less than 5% when present) were omitted from scatter plots.

12

Figure S9. Determination of binding lifetimes and amplitudes from tri-exponential distributions with a

slow rate (koff1), an intermediate rate (koff2 = 10koff1) and a fast rate (koff3 = 10koff2), using the 100-s tl set.

From left to right, five panels in each row correspond to different amplitudes of each sub-population

(displayed on top). (A-E) Scatter plots show distributions of amplitudes (B1 and B2), 1, 2 and 3 obtained

using global fitting 100 simulated samples. In each panel, n increases from 103 (1e3) to 106 (1e6).

Dashed lines and red bars represent the true values and the averages respectively. Orange shades

represent distributions where B is larger than 0.1 or is larger than 20%. To enhance visibility,

outliers (less than 5% when present) were omitted from scatter plots.

13

Figure S10. Determination of time constants and amplitudes from bi-exponential distributions simulated

with the five tl set, and an intermediate rate (koff1 = 0.1 s-1) and a fast rate (koff2 = 1 s-1). (A-C) Scatter

plots show distributions of B, 1 and 2 obtained from fitting of 100 simulated distributions to bi-

exponential model. Each panel corresponds to a pre-set amplitude of B, which increases from 10%,

25%, 50%, 75% to 90% from left to right. In each panel, n increases from 103 (1e3) to 105 (1e5). Dashed

lines and red bars represent the true values and the average respectively. Orange shades represent

distributions where B is larger than 0.1 or is larger than 20%. To enhance visibility, outliers (less

than 5% when present) were omitted from scatter plots.

14

Figure S11. Determination of time constants and amplitudes from bi-exponential distributions simulated

with the three tl set, and an intermediate rate (koff1 = 0.1 s-1) and a fast rate (koff2 = 1 s-1). (A-C) Scatter

plots show distributions of B, 1 and 2 obtained from fitting of 100 simulated distributions to bi-

exponential model. Each panel corresponds to a pre-set amplitude of B, which increases from 10%,

25%, 50%, 75% to 90% from left to right. In each panel, n increases from 103 (1e3) to 105 (1e5). Dashed

lines and red bars represent the true values and the average respectively. Orange shades represent

distributions where B is larger than 0.1 or is larger than 20%. To enhance visibility, outliers (less

than 5% when present) were omitted from scatter plots.

15

Supplementary Notes

1. Simulation of a set of binding events whose lifetimes follow an exponential distribution

with user-defined mean

function [counts, each_molecule] = simulate_res_time(mu,edges,n_count)
%%

%% Inputs:

%% mu: mean of exponential distribution for a particular tl
%% edges: bin edges of histograms

%% n_count: the number of counts for a particular tl
%% Outputs:

%% counts: vector describing CRTD

%% each_molecule: vector containing all random number corresponding to

%% lifetimes of binding events

%%

each_molecule = [];
counts = zeros(10,1);

%% generate a set of random numbers corresponding to lifetimes of binding

%% events until counts in the first bin exceed user-defined counts
while counts(1) < n_count

% single iteration of the exprnd function
 sim = exprnd(mu,round(n_count/2.71),1);

% construct the histogram with edges corresponding to frame times

% N is a vector containing counts in all bins [from the latest iteration]
 [N,~] = histcounts(sim,edges);

 counts = counts + N'; % add counts to the previous iterations
% combine lifetimes of binding events to existing population from previous

% iteration of the exprnd function
 each_molecule = [each_molecule; sim];

end
end % end of the function

16

2. Simulation of mono-, bi- or tri-exponential distribution across all tl

%%

%% Inputs:

%% ttl: vector containing the set of time-lapse intervals

%% kb: photobleaching rate (unit: s-1)

%% tint: camera integration time

%% koff1: user-defined off rate 1

%% koff2: user-defined off rate 2

%% koff3: user-defined off rate 3

%% B(1): amplitude of the first kinetic sub-population

%% B(2): amplitude of the second kinetic sub-population

%% n_count_total: user-defined counts for each simulation

%% Outputs:

%% bin: matrix containing CRTDs for all time-lapse intervals

%% d.data: contains the simulated population at a particular time-

%% lapse interval

%%

for i = 1:length(ttl) % simulate CRTD for each time-lapse interval
 time = ttl(i)*(0:10)'; % determine frame times for binning
 %% define exponential distribution for each sub-population
 keff1 = (kb*tint/ttl(i) + koff1); % effective rate 1
 % mean of the exponential distribution of the first sub-population

 mu1 = 1/keff1;
 keff2 = (kb*tint/ttl(i) + koff2); % effective rate 2
 % mean of the exponential distribution of the second sub-population

 mu2 = 1/keff2;
 keff3 = (kb*tint/ttl(i) + koff3); % effective rate 3
 % mean of the exponential distribution of the third sub-population

 mu3 = 1/keff3;
 %% determine the number of counts for each sub-population based
 %% on the amplitudes B1 and B2

 % counts of the first kinetic sub-population
 n_count1 = round(B(1)*n_count_total);
 % counts of the second kinetic sub-population

 n_count2 = round(B(2)*n_count_total);

 % counts of the third kinetic sub-population
 n_count3 = n_count_total - n_count1 - n_count2;
 % bin1, bin2 and bin3 are vectors containing CRTDs of koff1, koff2 and

 % koff3 sub-population respectively
 % population1, population2 and population3 are vectors containing

 % simulated koff1, koff2 and koff3 sub-population respectively.
 bin2 = zeros(10,1); population2 = [];
 bin3 = zeros(10,1); population3 = [];
 % simulate koff1 sub-population

 [bin1, population1] = simulate_res_time(mu1,time,n_count1);
 % simulate koff2 sub-population

 if n_count2 > 1
 [bin2, population2] = simulate_res_time(mu2,time,n_count2);
 end
 % simulate koff3 sub-population

 if n_count3 > 1
 [bin3, population3] = simulate_res_time(mu3,time,n_count3);
 end
 % combine CRTDs from sub-population CRTDs
 bin(:,i) = bin1 + bin2 + bin3;
 % combine simulated population from simulated sub-populations

 d(i).data = [population1; population2; population3];
end

17

3. Global fitting

function [p_out] = globalFit(i_model, X, Y, tint)
%%

%% Inputs:

%% i_model = 1 – mono-exponential model

%% i_model = 2 – bi-exponential model

%% i_model = 3 – tri-exponential model

%% X: matrix containing frame times of all time-lapse intervals

%% - row: frame times corresponding to one time-lapse interval

%% - column: increase in frame times

%% Y: matrix containing simulated CRTDs of all time-lapse intervals

%% tint: camera integration time

%% para: initial conditions

%% - mono-exponential model: [kb, koff1, counts]

%% - bi-exponential model: [kb, koff1, B1, koff2, counts]

%% - tri-exponential model: [kb, koff1, B1, koff2, B2, koff3, counts]

%% lb: lower constraints

%% - mono-exponential model: [kb, koff1, counts]

%% - bi-exponential model: [kb, koff1, B1, koff2, counts]

%% - tri-exponential model: [kb, koff1, B1, koff2, B2, koff3, counts]

%% ub: upper constraints

%% - mono-exponential model: [kb, koff1, counts]

%% - bi-exponential model: [kb, koff1, B1, koff2, counts]

%% - tri-exponential model: [kb, koff1, B1, koff2, B2, koff3, counts]

%% Outputs:

%% p_out: vector containing outcomes of global fitting

%% - p(1): kb

%% - p(2): koff1

%% - p(3): B1

%% - p(4): koff2

%% - p(5): B2

%% - p(6): koff3

%% - p(7): 1 – B1 – B2

%% - p(8)-p(end): counts at time 0 for all time-lapse intervals

%%

%% Known Parameters
ttl = X(:,1); % vector containing all time-lapse intervals
a_para = Y(:,1); % Initialize the vector for counts at time 0
weights = ones(size(X)); % fitting weights
lower_B = 1/min(a_para(a_para>0)); % the lower bound for the amplitudes
upper_koff = 1/tint; % the upper bound for off rates
if i_model == 1 % fitting to mono-exponential function
 para = [1, 1, a_para']; % initial conditions: kb, koff1, counts
 lb = [0, 0, zeros(size(ttl))']; % lower bounds: kb, koff1, counts
 % upper bounds: kb, koff1, counts

 ub = [Inf,upper_koff, Inf*ones(size(ttl))'];
 % define function to minimize

 f1 = @(p)((model(i_model,p,X,tint,ttl)-Y).*weights);
 opts = optimset('Display','off');
 % Global fitting using the lsqnonlin function
 [p] = lsqnonlin(f1,para,lb,ub,opts);
 p_out = [p(1:2),1,zeros(1,4),p(3:end)];
elseif i_model == 2 % fitting to bi-exponential function
 para = [1, 1, 0.5, 2, a_para'];
 lb = [0, 1e-3, lower_B, 1e-3, zeros(size(ttl))'];
 ub = [Inf, upper_koff, 1-lower_B, upper_koff, Inf*ones(size(ttl))'];
 % define function to minimize

 f1 = @(p)((model(i_model,p,X,tint,ttl)-Y).*weights);
 opts = optimset('Display','off');

18

 % Global fitting using the lsqnonlin function
 [p] = lsqnonlin(f1,para,lb,ub,opts);
 % assign the smaller off rate to be koff1
 p_temp = sortrows([p(2) p(3); p(4) (1 - p(3))]);
 p_temp = p_temp';
 p_out = [p(1), p_temp(:)', zeros(1,2), p(5:end)];
elseif i_model == 3
 para = [1, 0.05, 0.3, 0.5, 0.3, 5, a_para'];
 lb = [0, 1e-3, lower_B, 1e-3, lower_B, 1e-3, zeros(size(ttl))'];
 ub = [Inf, upper_koff, 1-lower_B, upper_koff, 1-lower_B,upper_koff,

 Inf*ones(size(ttl))'];
 % define function to minimize

 f1 = @(p)(sum(sum((model(i_model,p,X,tint,ttl)-Y).^2.*weights,2)));
 opts = optimoptions('fmincon', 'MaxFunctionEvaluations',10000,...
 'MaxIter',3000,'Algorithm','interior-point','StepTolerance',

 1.0000e-9);
 b = 1-2*lower_B;
 A = [0,0,1,0,1,0,zeros(1,size(a_para,1))];
 % Global fitting using the fmincon function

 [p] = fmincon(f1,para,A,b,[],[],lb,ub,[],opts);
 % assign the smallest off rate to be koff1 and the second smallest to

 % be koff2

 p_temp = sortrows([p(2) p(3); p(4) p(5); p(6) (1-p(3)-p(5))]);
 p_temp = p_temp';
 p_out = [p(1),p_temp(:)',p(7:end)];
end
end % end of function

4. Define fitting models

function f = model(i_model,para,X,tint,ttl)

%%

%% Inputs:

%% i_model = 1 – mono-exponential model

%% i_model = 2 – bi-exponential model

%% i_model = 3 – tri-exponential model

%% para: global parameters

%% X: frame times

%% tint: camera integration times

%% ttl: time-lapse time

%%

% ampl: vector containing counts for all time-lapse intervals
p = tint./ttl; p = p(:);
if i_model == 1
 kb = para(1);
 koff1 = para(2);
 ampl = para(3:end);
 % mono-exponential model

 f = (ampl'*ones(1,size(X,2))).*
 (exp(-((kb.*p + koff1)*ones(1,size(X,2))).*X));
elseif i_model == 2 % bi-exponential model
 kb = para(1);
 koff1 = para(2);
 B1 = para(3);
 koff2 = para(4);
 ampl = para(5:end);
 % bi-exponential model

 f = (ampl'*ones(1,size(X,2))).*(B1.*exp(-((kb.*p + koff1)*

 ones(1,size(X,2))).*X)+(1-B1).*exp(-(kb.*p + koff2)*

 ones(1,size(X,2)).*X));

19

elseif i_model == 3
 kb = para(1);
 koff1 = para(2); B1 = para(3);
 koff2 = para(4); B2 = para(5);
 koff3 = para(6);
 ampl = para(7:end);
 % tri-exponential model

 f = (ampl'*ones(1,size(X,2))).*
 (B1.*exp(-((kb.*p + koff1) * ones(1,size(X,2))).*X)
 + B2.* exp(-(kb.*p + koff2)*ones(1,size(X,2)).*X)+
 (1-B1-B2).* exp(-(kb.*p + koff3)*ones(1,size(X,2)).*X));
end
end % end of function

