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Supplementary table

Table S1. Initial conditions, constraints and termination tolerance used in global fitting. no is the
minimum number of counts in the second bin across 1.
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Table S2. The 1y sets used in the study.

Ty Sets Ty values (s)

10-s 0.1,0.2,0.3,0.4,0.6,1,2,3,5,8,10
100-s 0.1,0.3,0.7,1,3,7, 10, 30, 70, 100
Three- 0.1,1,10

Five- 0.1,0.3,1,3,10




Supplementary figures
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Figure S1. Schematic of experimental setups in single-molecule live-cell imaging. Bacteria
expressing fluorescently labelled proteins are loaded in a flow cell with a constant supply of media at
30 °C. The fluorescent label (YPet) is excited with 514-nm light and fluorescence signal is recorded with

an electron-multiplying CCD camera.
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Figure S2. Schematic of the simulation of the cumulative residence time distribution (CRTD) at
a specified tu. The molecules were generated by a random number generator to produce a group of
numbers following an exponential distribution (defined by ko1, kb, Tint and ) (see Eq. 4-6 in main text).
The number generator function was called a few times (typically 3-6) until the number of molecules in
the first bin (n1) of the histogram exceeded the user-specified number of molecules (N1, N1 = Ax B in
mono-exponential distribution, or N1 = A x B1 in multiple-exponential distribution). The kottz and Kofrs sub-
populations were simulated in the same manner. Then, molecules from all simulated sub-populations
were pooled and subject to bootstrapping analysis to construct the bootstrapped CRTDs (referred
simply as CRTDs). This procedure was repeated for all specified values of 1. The global fitting was
performed on CRTDs from all tu, using a CRTD for each .
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Figure S3. Scatter plots show distributions of t obtained using global fitting on 100 simulated mono-
exponential (<t> = 100 s) for each n value. (A) Simulation using the 10-s w set. (B) Simulation using

the 100-s 1 set. (C) Simulated data from (B) were globally fitted with the amplitude as the global

parameter. Apart from this panel, all global fittings in this study were performed with A as the local
parameter. Red bars represent the averages.
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Figure S4. Determination of time constants and amplitudes from bi-exponential distributions with an
intermediate rate (kor1) and a fast rate (ko2 = 10Korr1). (A-C) Scatter plots show distributions of B, 11 and
T2 obtained using global fitting from 100 simulated distributions for each n value. Each panel
corresponds to a pre-set B, which increases from 10%, 25%, 50%, 75% to 90% from left to right. In
each panel, n increases from 103 (1e3) to 105 (1e5). Dashed lines and red bars represent the true
values and the average respectively. Orange shades represent distributions where o is larger than 0.1
or o</t is larger than 20%. To enhance visibility, outliers (less than 5% when present) were omitted from
scatter plots.
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Figure S5. Bi-exponential distributions with an intermediate rate (ko1 = 0.1 s1) and a fast rate (Kofrz = 1
s1) with infinite counts. (A) Representative Kefrru plots at 20 amplitudes of kof2. From top to bottom, the
amplitude reduces from 95% to 5%. (B) Integrated peak areas as a function of ko2 amplitudes (open
circles). Line is the exponential fit to data points (R% 0.9996). The peak area is calculated as the
difference between areas under the kesrtu plots and the area under the liney = 0.7 + 0.1u.
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Figure S6. Determination of time constants and amplitudes from bi-exponential distributions with a slow
rate (kofrr = 0.01 s1) and an intermediate rate (koz = 0.1 s1). (A-C) Scatter plots show distributions of
B, 11 and t2 obtained from fitting of 100 simulated distributions to bi-exponential model. Each panel
corresponds to a pre-set amplitude of B, which increases from 10%, 25%, 50%, 75% to 90% from left
to right. In each panel, n increases from 103 (1e3) to 106 (1e6). Dashed lines and red bars represent
the true values and the average respectively. Orange shades represent distributions where og is larger
than 0.1 or o/t is larger than 20%. To enhance visibility, outliers (less than 5% when present) were
omitted from scatter plots.
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Figure S7. Determination of time constants and amplitudes from bi-exponential distributions with a slow
rate (Kofr1) and an intermediate rate (ko2 = 10Kofr1), Simulated using the 100-s t set. (A) Kefrty plots of bi-
exponential distributions with kotint of 0.7, ko1 and ko2 of 0.01 and 0.1 s respectively, with 105
observations. The amplitude of kofi1 (B, shown on top) increases from left to right (10% to 90%). Shaded
error bands are standard deviations from ten bootstrapped samples. (B-D) Scatter plots show
distributions of B, 11 and 12 obtained from fitting of 100 simulated distributions to bi-exponential model.
Each panel corresponds to a pre-set amplitude of B, which increases from 10%, 25%, 50%, 75% to
90% from left to right. In each panel, n increases from 102 (1e3) to 10° (1e6). Dashed lines and red bars
represent the true values and the average respectively. Orange shades represent distributions where
os IS larger than 0.1 or o</t is larger than 20%. To enhance visibility, outliers (less than 5% when
present) were omitted from scatter plots.
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Figure S8. Determination of binding lifetimes and amplitudes from bi-exponential distributions with
closely spaced rates (koiz = 3koft1). (A-C) Scatter plots show distributions of B, t1 and t2 obtained from
fitting of 100 simulated distributions for each n value. Each panel corresponds to a pre-set B, which
increases from 10%, 25%, 50%, 75% to 90% from left to right. In each panel, nincreases from 103 (1e3)
to 105 (1e5). Dashed lines and red bars represent the true values and the average respectively. Orange
shades represent distributions where os is larger than 0.1 or o/t is larger than 20%. To enhance
visibility, outliers (less than 5% when present) were omitted from scatter plots.
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Figure S9. Determination of binding lifetimes and amplitudes from tri-exponential distributions with a
slow rate (kof1), an intermediate rate (ko2 = 10koft1) and a fast rate (Kois = 10kotr2), using the 100-s t set.
From left to right, five panels in each row correspond to different amplitudes of each sub-population
(displayed on top). (A-E) Scatter plots show distributions of amplitudes (B1 and Bz), 11, T2 and t3 obtained
using global fitting 100 simulated samples. In each panel, n increases from 103 (1e3) to 10° (1€6).
Dashed lines and red bars represent the true values and the averages respectively. Orange shades
represent distributions where og is larger than 0.1 or o</t is larger than 20%. To enhance visibility,
outliers (less than 5% when present) were omitted from scatter plots.

12




A 10%

25%

50%

0.8
0.6
0.4

o.é ”‘ %“**%W

T

1e3 3e3 1e4 3e4 1e5

Counts

1e3 3e3 1e4 3e4 1e5 1e3 3e3 1e4 3e4 1e5

e

PRGN O W

1e3 3e3 1e4 3e4 1e5 1e3 3e3 1e4 3e4 1e5

Counts

1e3 3e3 1e4 3e4 1e5 1e3 3e3 1e4 3e4 1e5

a3 o~

oy

e ;@ﬁ.m*

1e3 3e3 1e4 3e4 1e5 1e3 3e3 1e4 3e4 1e5 1e3 3e3 1e4 3e4 1e5 1e3 3e3 1ed 3e4 1e5 1e3 3e3 1e4 3ed4 1e5

Counts

Figure S10. Determination of time constants and amplitudes from bi-exponential distributions simulated
with the five 1 set, and an intermediate rate (ko = 0.1 s1) and a fast rate (ko2 = 1 s1). (A-C) Scatter
plots show distributions of B, t1 and t2 obtained from fitting of 100 simulated distributions to bi-
exponential model. Each panel corresponds to a pre-set amplitude of B, which increases from 10%,
25%, 50%, 75% to 90% from left to right. In each panel, n increases from 103 (1e3) to 105 (1e5). Dashed
lines and red bars represent the true values and the average respectively. Orange shades represent
distributions where og is larger than 0.1 or o</ is larger than 20%. To enhance visibility, outliers (less
than 5% when present) were omitted from scatter plots.
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Figure S11. Determination of time constants and amplitudes from bi-exponential distributions simulated
with the three tu set, and an intermediate rate (ko1 = 0.1 s'1) and a fast rate (ko2 = 1 s7%). (A-C) Scatter
plots show distributions of B, t1 and t2 obtained from fitting of 100 simulated distributions to bi-
exponential model. Each panel corresponds to a pre-set amplitude of B, which increases from 10%,

25%, 50%, 75% to 90% from left to right. In each panel, n increases from 102 (1e3) to 10° (1e5). Dashed
lines and red bars represent the true values and the average respectively. Orange shades represent
distributions where og is larger than 0.1 or o</t is larger than 20%. To enhance visibility, outliers (less
than 5% when present) were omitted from scatter plots.
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Supplementary Notes

1. Simulation of a set of binding events whose lifetimes follow an exponential distribution
with user-defined mean

simulate res time (mu,edges,n count)
[ole) 00000
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mu: mean of exponential distribution for a particular Tt::

edges: bin edges of histograms

n_count: the number of counts for a particular 1.
Outputs:

counts: vector describing CRTD

each molecule: vector containing all random number corresponding to
lifetimes binding events

d° d° ° o° o° o° d° P
d° 0 ° o° o° o° oo P

each molecule = [];
counts = zeros(10,1);
%% generate a set of random numbers corresponding to lifetimes of binding
%% events until counts in the first bin exceed user-defined counts
while counts(l) < n_count
% single iteration of the exprnd function
sim = exprnd(mu, round(n_count/2.71),1);
construct the histogram with edges corresponding to frame times
N is a vector containing counts in all bins [from the latest iteration]
[N,~] = histcounts(sim,edges);
counts = counts + N'; % add counts to the previous iterations
combine lifetimes of binding events to existing population from previous
% iteration of the exprnd function
each molecule = [each molecule; sim];
end
end % end of the function

o° oo

o
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2. Simulation of mono-, bi- or tri-exponential distribution across all

000000000000000000000000 oo

%% Inputs
%% ttl: vector containing the set of time-lapse intervals
%% kb: photobleaching rate (unit: s7!)
%% tint: camera integration time
%% koffl: user-defined off rate 1
%% koff2: user-defined off rate 2
%% koff3: user-defined off rate 3
%% B(l): amplitude of the first kinetic sub-population
%% B(2): amplitude of the second kinetic sub-population
%% n _count total: user-defined counts for each simulation
%% Outputs:
%% bin: matrix containing CRTDs for all time-lapse intervals
%% d.data: contains the simulated population at a particular time-
%% lapse interval
for i = l:length(ttl) % simulate CRTD for each time-lapse interval
time = ttl(i)*(0:10)"'; % determine frame times for binning
%% define exponential distribution for each sub-population
keffl = (kb*tint/ttl (i) + koffl); % effective rate 1

% mean of the exponential distribution of the first sub-population

mul = 1/keffl;

keff2 = (kb*tint/ttl(i) + koff2); % effective rate 2

% mean of the exponential distribution of the second sub-population

mu2 = 1/keff2;

keff3 = (kb*tint/ttl(i) + koff3); % effective rate 3

% mean of the exponential distribution of the third sub-population

mu3 = 1/keff3;

% determine the number of counts for each sub-population based

% on the amplitudes Bl and B2

counts of the first kinetic sub-population

countl = round(B(1l)*n_ count total);

counts of the second kinetic sub-population

count2 = round(B(2)*n_count total);

counts of the third kinetic sub-population

~count3 = n_count total - n _countl - n_count2;

binl, bin2 and bin3 are vectors containing CRTDs of koffl, koff2 and
koff3 sub-population respectively

populationl, population2 and population3 are vectors containing
simulated koffl, koff2 and koff3 sub-population respectively.

o oo oe

ol

oe

o 3

in2 = zeros(10,1); population2 = [];
in3 = zeros(10,1); population3 = [];
simulate koffl sub-population
binl, populationl] = simulate res time (mul,time,n countl);

0 — o0 O O o0 0 o° oo I

simulate koff2 sub-population
if n count2 > 1

[bin2, population2] = simulate res time (mu2, time,n count2);
end

% simulate koff3 sub-population
if n count3 > 1

[bin3, population3] = simulate res time (mu3, time,n count3);
end
% combine CRTDs from sub-population CRTDs
bin(:,1) = binl + bin2 + bin3;
% combine simulated population from simulated sub-populations
d(i) .data = [populationl; population2; population3];

end
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3. Global fitting

function [p out] = globalFit (i model, X, Y, tint)

%% Inputs:

%% 1 model = 1 - mono-exponential model

%% i model = 2 - bi-exponential model

%% i model = 3 - tri-exponential model

%% X: matrix containing frame times of all time-lapse intervals

%% - row: frame times corresponding to one time-lapse interval
%% - column: increase in frame times

%% Y: matrix containing simulated CRTDs of all time-lapse intervals
%% tint: camera integration time

%% para: initial conditions

%% - mono-exponential model: [kb, koffl, counts]

%% - bi-exponential model: [kb, koffl, Bl, koff2, counts]

%% - tri-exponential model: [kb, koffl, Bl, koff2, B2, koff3, counts]
%% 1b: lower constraints

$% - mono-exponential model: [kb, koffl, counts]

%% - bi-exponential model: [kb, koffl, B1l, koff2, counts]

%% - tri-exponential model: [kb, koffl, Bl, koff2, B2, koff3, counts]
%% ub: upper constraints

$% - mono-exponential model: [kb, koffl, counts]

%% - bi-exponential model: [kb, koffl, B1l, koff2, counts]

- tri-exponential model: [kb, koffl, B1l, koff2, B2, koff3, counts]
%% Outputs:

%% p_out: vector containing outcomes of global fitting
%% - p(l): kb
%% - p(2): koffl
$% - p(3): Bl
%% - p(4): koff2
%% - p(5): B2
%% - p(6): koff3
%% p(7): 1 - Bl - B2
%% - p(8)-p(end): counts at time 0 for all time-lapse intervals
%% Known Parameters
ttl = X(:,1); % vector containing all time-lapse intervals
a para = Y(:,1); % Initialize the vector for counts at time O
weights = ones(size(X)); % fitting weights
lower B = 1/min(a_para(a_para>0)); % the lower bound for the amplitudes
upper koff = 1/tint; % the upper bound for off rates
if 1 model == % fitting to mono-exponential function
para = [1, 1, a para']; % initial conditions: kb, koffl, counts
1b = [0, 0, zeros(size(ttl))']; % lower bounds: kb, koffl, counts
% upper bounds: kb, koffl, counts
ub = [Inf,upper koff, Inf*ones(size(ttl))'];
% define function to minimize
f1 = @ (p) ( (model (i model,p,X,tint,ttl)-Y).*weights );

opts = optimset ('Display', 'off');
% Global fitting using the lsgnonlin function
[p] = lsgnonlin(fl,para,lb,ub,opts);

p out = [p(l:2),1,zeros(1,4),p(3:end)];

elseif i model == % fitting to bi-exponential function
para = [1, 1, 0.5, 2, a para'];
1b = [0, 1le-3, lower B, le-3, zeros(size(ttl))'];
ub = [Inf, upper koff, l-lower B, upper koff, Inf*ones(size(ttl))'];
% define function to minimize
f1 = Q(p) ( (model (1 model, p,X,tint,ttl)-Y).*weights );

opts = optimset ('Display','off'");
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% Global fitting using the lsgnonlin function
[p] = lsgnonlin(fl,para,lb,ub,opts);

% assign the smaller off rate to be koffl

p_temp = sortrows ([p(2) p(3); p(4) (1 - p(3))]);

p_temp = p temp';

p out = [p(l), p temp(:)', zeros(l,2), p(5:end)];
elseif i model ==

para = [1, 0.05, 0.3, 0.5, 0.3, 5, a para'];

1b = [0, 1le-3, lower B, le-3, lower B, le-3, zeros(size(ttl))'];

ub = [Inf, upper koff, 1l-lower B, upper koff, 1l-lower B,upper koff,
Inf*ones (size (ttl)) '];

% define function to minimize

fl = @(p) ( sum(sum( (model (i model,p,X,tint,ttl)-Y)."2.*weights,2 )));

opts = optimoptions('fmincon', 'MaxFunctionEvaluations',10000,...
'MaxIter',3000, 'Algorithm', '"interior-point', 'StepTolerance',
1.0000e-9);

b = 1-2*lower B;

A =10,0,1,0,1,0,zeros(l,size(a para,1))];

% Global fitting using the fmincon function

[p] = fmincon(fl,para,’A,b,[]1,[]1,1b,ub, [],0pts);

% assign the smallest off rate to be koffl and the second smallest to

% be koff2

p_temp = sortrows([p(2) p(3); p(4) p(5); p(6) (1-p(3)-p(5))1);

p_temp = p temp';

p out = [p(l),p temp(:)',p(7:end)];

end % end of function

4. Define fitting models

9900000000000 0000000000000000000000000000000

%% i model = 1 - mono-exponential model

5% i model = 2 - bi-exponential model
5% 1 model = 3 - tri-exponential model
%% para: global parameters

%% X: frame times

%% tint: camera integration times

5% ttl: time-lapse time

% ampl: vector containing counts for all time-lapse intervals
tint./ttl; p = p(:);

f i model ==

kb = para(l);

koffl = para(2);

ampl = para(3:end);

o)

% mono-exponential model

f = (ampl'*ones(l,size(X,2))).*
(exp (= ((kb.*p + koffl)*ones(l,size(X,2))).*X));
elseif i model == % bi-exponential model

kb = para(l);

koffl = para(2);

Bl = para(3);

koff2 = para(4);
ampl = para(5:end);

o)

% bi-exponential model

f = (ampl'*ones(l,size(X,2))).*(Bl.*exp(-((kb.*p + koffl)™*
ones(l,size(X,2))).*X)+(1-Bl).*exp(-(kb.*p + koff2)*
ones (l,size(X,2)).*X));
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elseif i model ==
kb = para(l);

koffl = para(2); Bl = para(3);

koff2 = para(4); B2 = para(b);

koff3 = para(6);

ampl = para(7:end);

% tri-exponential model

f = (ampl'*ones(l,size(X,2))).*
(Bl.*exp (- ((kb.*p + koffl) * ones(l,size(X,2))).*X)
+ B2.* exp( -(kb.*p + koff2)*ones(l,size(X,2)).*X )+
(1-B1-B2) .* exp( —-(kb.*p + koff3)*ones(l,size(X,2)).*X ));

end
end $ end of function
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