Biophysical Journal, Volume 117

Supplemental Information

Identification of Multiple Kinetic Populations of DNA-Binding Proteins in Live Cells

Han N. Ho, Daniel Zalami, Jürgen Köhler, Antoine M. van Oijen, and Harshad Ghodke

Supplementary table

Table S1. Initial conditions, constraints and termination tolerance used in global fitting. n_0 is the minimum number of counts in the second bin across τ_{tl} .

Model	Initial conditions	Bound constraints	Termination tolerance	Algorithm	MATLAB function
Mono (Eq. 2)	$k_{\rm b} = 1 {\rm s}^{-1}$ $k_{\rm off} = 1 {\rm s}^{-1}$	$k_{\rm b} > 0 \ {\rm s}^{-1}$ 0 s ⁻¹ < $k_{\rm off} < 1/\tau_{\rm int} \ {\rm s}^{-1}$	10 ⁻⁶	trust-region- reflective	lsqnonlin
Bi (Eq. 5)	$k_{\rm b} = 1 {\rm s}^{-1}$ $k_{\rm off1} = 1 {\rm s}^{-1}$ B = 0.5 $k_{\rm off2} = 2 {\rm s}^{-1}$	$k_{\rm b} > 0$ $10^{-3} {\rm s}^{-1} < k_{\rm off1} < 1/\tau_{\rm int} {\rm s}^{-1}$ $1/n_0 < B < 1 - 1/n_0$ $10^{-3} {\rm s}^{-1} < k_{\rm off2} < 1/\tau_{\rm int} {\rm s}^{-1}$	10 ⁻⁶	trust-region- reflective	Isqnonlin
Tri (Eq. 6)	$k_{\rm b} = 1 {\rm s}^{-1}$ $k_{\rm off1} = 0.05$ ${\rm s}^{-1}$ $B_1 = 0.3$ $k_{\rm off2} = 0.5 {\rm s}^{-1}$ $B_2 = 0.3$ $k_{\rm off2} = 5 {\rm s}^{-1}$	$k_{\rm b} > 0 {\rm s}^{-1}$ $10^{-3} {\rm s}^{-1} < k_{\rm off1} < 1/\tau_{\rm int} {\rm s}^{-1}$ $1/n_0 < B_1 < 1 - 1/n_0$ $10^{-3} {\rm s}^{-1} < k_{\rm off2} < 1/\tau_{\rm int} {\rm s}^{-1}$ $1/n_0 < B_2 < 1 - 1/n_0$ $10^{-3} {\rm s}^{-1} < k_{\rm off3} < 1/\tau_{\rm int} {\rm s}^{-1}$ $B_1 + B_2 < 1 - 2/n_0$	10 ⁻⁹	trust-region- reflective	fmincon

Table S2. The τ_{ti} sets used in the study.

τ _{tl} sets	τ_{tl} values (s)
10-s	0.1, 0.2, 0.3, 0.4, 0.6, 1, 2, 3, 5, 8, 10
100-s	0.1, 0.3, 0.7, 1, 3, 7, 10, 30, 70, 100
Three-	0.1, 1, 10
Five-	0.1, 0.3, 1, 3, 10

Supplementary figures

Figure S1. Schematic of experimental setups in single-molecule live-cell imaging. Bacteria expressing fluorescently labelled proteins are loaded in a flow cell with a constant supply of media at 30 °C. The fluorescent label (YPet) is excited with 514-nm light and fluorescence signal is recorded with an electron-multiplying CCD camera.

 N_1 - the number of molecules in k_{off1} sub-population (A x B_1)

Figure S2. Schematic of the simulation of the cumulative residence time distribution (CRTD) at a specified τ_{tl} . The molecules were generated by a random number generator to produce a group of numbers following an exponential distribution (defined by k_{off1} , k_b , τ_{int} and τ_{tl}) (see Eq. 4-6 in main text). The number generator function was called a few times (typically 3-6) until the number of molecules in the first bin (n_1) of the histogram exceeded the user-specified number of molecules (N_1 , $N_1 = A \times B$ in mono-exponential distribution, or $N_1 = A \times B_1$ in multiple-exponential distribution). The k_{off2} and k_{off3} subpopulations were simulated in the same manner. Then, molecules from all simulated sub-populations were pooled and subject to bootstrapping analysis to construct the bootstrapped CRTDs (referred simply as CRTDs). This procedure was repeated for all specified values of τ_{tl} . The global fitting was performed on CRTDs from all τ_{tl} , using a CRTD for each τ_{tl} .

Figure S3. Scatter plots show distributions of τ obtained using global fitting on 100 simulated monoexponential ($\langle \tau \rangle = 100$ s) for each *n* value. (A) Simulation using the 10-s τ_{tl} set. (B) Simulation using the 100-s τ_{tl} set. (C) Simulated data from (B) were globally fitted with the amplitude as the global parameter. Apart from this panel, all global fittings in this study were performed with *A* as the local parameter. Red bars represent the averages.

Figure S4. Determination of time constants and amplitudes from bi-exponential distributions with an intermediate rate (k_{off1}) and a fast rate ($k_{off2} = 10k_{off1}$). (A-C) Scatter plots show distributions of *B*, τ_1 and τ_2 obtained using global fitting from 100 simulated distributions for each *n* value. Each panel corresponds to a pre-set *B*, which increases from 10%, 25%, 50%, 75% to 90% from left to right. In each panel, *n* increases from 10³ (1e3) to 10⁵ (1e5). Dashed lines and red bars represent the true values and the average respectively. Orange shades represent distributions where σ_B is larger than 0.1 or σ_{τ}/τ is larger than 20%. To enhance visibility, outliers (less than 5% when present) were omitted from scatter plots.

Figure S5. Bi-exponential distributions with an intermediate rate ($k_{off1} = 0.1 \text{ s}^{-1}$) and a fast rate ($k_{off2} = 1 \text{ s}^{-1}$) with infinite counts. (A) Representative k_{effTt} plots at 20 amplitudes of k_{off2} . From top to bottom, the amplitude reduces from 95% to 5%. (B) Integrated peak areas as a function of k_{off2} amplitudes (open circles). Line is the exponential fit to data points (R²: 0.9996). The peak area is calculated as the difference between areas under the k_{effTt} plots and the area under the line $y = 0.7 + 0.1\tau_{tl}$.

Figure S6. Determination of time constants and amplitudes from bi-exponential distributions with a slow rate ($k_{off1} = 0.01 \text{ s}^{-1}$) and an intermediate rate ($k_{off2} = 0.1 \text{ s}^{-1}$). (A-C) Scatter plots show distributions of *B*, τ_1 and τ_2 obtained from fitting of 100 simulated distributions to bi-exponential model. Each panel corresponds to a pre-set amplitude of *B*, which increases from 10%, 25%, 50%, 75% to 90% from left to right. In each panel, *n* increases from 10³ (1e3) to 10⁶ (1e6). Dashed lines and red bars represent the true values and the average respectively. Orange shades represent distributions where σ_B is larger than 0.1 or σ_{τ}/τ is larger than 20%. To enhance visibility, outliers (less than 5% when present) were omitted from scatter plots.

Figure S7. Determination of time constants and amplitudes from bi-exponential distributions with a slow rate (k_{off1}) and an intermediate rate ($k_{off2} = 10k_{off1}$), simulated using the 100-s τ_{tl} set. (A) $k_{eff}\tau_{tl}$ plots of bi-exponential distributions with $k_{b}\tau_{int}$ of 0.7, k_{off1} and k_{off2} of 0.01 and 0.1 s⁻¹ respectively, with 10⁵ observations. The amplitude of k_{off1} (B, shown on top) increases from left to right (10% to 90%). Shaded error bands are standard deviations from ten bootstrapped samples. (B-D) Scatter plots show distributions of B, τ_1 and τ_2 obtained from fitting of 100 simulated distributions to bi-exponential model. Each panel corresponds to a pre-set amplitude of B, which increases from 10%, 25%, 50%, 75% to 90% from left to right. In each panel, n increases from 10³ (1e3) to 10⁶ (1e6). Dashed lines and red bars represent the true values and the average respectively. Orange shades represent distributions where σ_B is larger than 0.1 or σ_t/τ is larger than 20%. To enhance visibility, outliers (less than 5% when present) were omitted from scatter plots.

Figure S8. Determination of binding lifetimes and amplitudes from bi-exponential distributions with closely spaced rates ($k_{off2} = 3k_{off1}$). (A-C) Scatter plots show distributions of *B*, τ_1 and τ_2 obtained from fitting of 100 simulated distributions for each *n* value. Each panel corresponds to a pre-set *B*, which increases from 10%, 25%, 50%, 75% to 90% from left to right. In each panel, *n* increases from 10³ (1e3) to 10⁵ (1e5). Dashed lines and red bars represent the true values and the average respectively. Orange shades represent distributions where σ_B is larger than 0.1 or σ_{τ}/τ is larger than 20%. To enhance visibility, outliers (less than 5% when present) were omitted from scatter plots.

Figure S9. Determination of binding lifetimes and amplitudes from tri-exponential distributions with a slow rate (k_{off1}), an intermediate rate ($k_{off2} = 10k_{off1}$) and a fast rate ($k_{off3} = 10k_{off2}$), using the 100-s τ_{t1} set. From left to right, five panels in each row correspond to different amplitudes of each sub-population (displayed on top). (A-E) Scatter plots show distributions of amplitudes (B_1 and B_2), τ_1 , τ_2 and τ_3 obtained using global fitting 100 simulated samples. In each panel, *n* increases from 10³ (1e3) to 10⁶ (1e6). Dashed lines and red bars represent the true values and the averages respectively. Orange shades represent distributions where σ_B is larger than 0.1 or σ_{τ}/τ is larger than 20%. To enhance visibility, outliers (less than 5% when present) were omitted from scatter plots.

Figure S10. Determination of time constants and amplitudes from bi-exponential distributions simulated with the five τ_{tl} set, and an intermediate rate ($k_{off1} = 0.1 \text{ s}^{-1}$) and a fast rate ($k_{off2} = 1 \text{ s}^{-1}$). (A-C) Scatter plots show distributions of *B*, τ_1 and τ_2 obtained from fitting of 100 simulated distributions to bi-exponential model. Each panel corresponds to a pre-set amplitude of *B*, which increases from 10%, 25%, 50%, 75% to 90% from left to right. In each panel, *n* increases from 10³ (1e3) to 10⁵ (1e5). Dashed lines and red bars represent the true values and the average respectively. Orange shades represent distributions where σ_B is larger than 0.1 or σ_{τ}/τ is larger than 20%. To enhance visibility, outliers (less than 5% when present) were omitted from scatter plots.

Figure S11. Determination of time constants and amplitudes from bi-exponential distributions simulated with the three τ_{tl} set, and an intermediate rate ($k_{off1} = 0.1 \text{ s}^{-1}$) and a fast rate ($k_{off2} = 1 \text{ s}^{-1}$). (A-C) Scatter plots show distributions of *B*, τ_1 and τ_2 obtained from fitting of 100 simulated distributions to bi-exponential model. Each panel corresponds to a pre-set amplitude of *B*, which increases from 10%, 25%, 50%, 75% to 90% from left to right. In each panel, *n* increases from 10³ (1e3) to 10⁵ (1e5). Dashed lines and red bars represent the true values and the average respectively. Orange shades represent distributions where σ_B is larger than 0.1 or σ_{τ}/τ is larger than 20%. To enhance visibility, outliers (less than 5% when present) were omitted from scatter plots.

Supplementary Notes

1. Simulation of a set of binding events whose lifetimes follow an exponential distribution with user-defined mean

```
function [counts, each molecule] = simulate res time(mu,edges,n count)
%% Inputs:
%% mu: mean of exponential distribution for a particular \tau_{t1}
88
     edges: bin edges of histograms
88
    n count: the number of counts for a particular 	au_{t1}
%% Outputs:
88
   counts: vector describing CRTD
88
     each molecule: vector containing all random number corresponding to
                   lifetimes of binding events
응응
each molecule = [];
counts = zeros(10,1);
%% generate a set of random numbers corresponding to lifetimes of binding
%% events until counts in the first bin exceed user-defined counts
while counts(1) < n count</pre>
% single iteration of the exprnd function
   sim = exprnd(mu,round(n count/2.71),1);
% construct the histogram with edges corresponding to frame times
% N is a vector containing counts in all bins [from the latest iteration]
    [N,~] = histcounts(sim,edges);
   counts = counts + N'; % add counts to the previous iterations
% combine lifetimes of binding events to existing population from previous
% iteration of the exprnd function
   each molecule = [each molecule; sim];
end
end % end of the function
```

2. Simulation of mono-, bi- or tri-exponential distribution across all τ_{ti}

```
%% Inputs:
88
   ttl: vector containing the set of time-lapse intervals
           photobleaching rate (unit: s^{-1})
88
     kb:
    tint: camera integration time
88
    koff1: user-defined off rate 1
88
    koff2: user-defined off rate 2
88
88
    koff3: user-defined off rate 3
    B(1): amplitude of the first kinetic sub-population
88
88
    B(2): amplitude of the second kinetic sub-population
응응
     n count total: user-defined counts for each simulation
%% Outputs:
88
    bin: matrix containing CRTDs for all time-lapse intervals
     d.data: contains the simulated population at a particular time-
88
88
     lapse interval
for i = 1:length(ttl)
                      % simulate CRTD for each time-lapse interval
    time = ttl(i)*(0:10)'; % determine frame times for binning
    %% define exponential distribution for each sub-population
    keff1 = (kb*tint/ttl(i) + koff1); % effective rate 1
    % mean of the exponential distribution of the first sub-population
    mu1 = 1/keff1;
    keff2 = (kb*tint/ttl(i) + koff2); % effective rate 2
    % mean of the exponential distribution of the second sub-population
    mu2 = 1/keff2;
    keff3 = (kb*tint/ttl(i) + koff3); % effective rate 3
    % mean of the exponential distribution of the third sub-population
    mu3 = 1/keff3;
    %% determine the number of counts for each sub-population based
    %% on the amplitudes B1 and B2
    % counts of the first kinetic sub-population
    n count1 = round(B(1)*n count total);
    % counts of the second kinetic sub-population
    n count2 = round(B(2)*n count total);
    % counts of the third kinetic sub-population
    n count3 = n count total - n count1 - n count2;
    % bin1, bin2 and bin3 are vectors containing CRTDs of koff1, koff2 and
    % koff3 sub-population respectively
    % population1, population2 and population3 are vectors containing
    % simulated koff1, koff2 and koff3 sub-population respectively.
    bin2 = zeros(10,1); population2 = [];
    bin3 = zeros(10,1); population3 = [];
    % simulate koff1 sub-population
    [bin1, population1] = simulate res time(mul,time,n count1);
    % simulate koff2 sub-population
    if n_count2 > 1
          [bin2, population2] = simulate res time(mu2,time,n count2);
    end
    % simulate koff3 sub-population
    if n count3 > 1
         [bin3, population3] = simulate res time(mu3,time,n count3);
    end
    % combine CRTDs from sub-population CRTDs
           bin(:,i) = bin1 + bin2 + bin3;
    % combine simulated population from simulated sub-populations
    d(i).data = [population1; population2; population3];
end
```

3. Global fitting

```
function [p out] = globalFit(i model, X, Y, tint)
%% Inputs:
88
     i model = 1 - mono-exponential model
     i model = 2 - bi-exponential model
22
88
     i model = 3 - tri-exponential model
88
     X: matrix containing frame times of all time-lapse intervals
22
           - row: frame times corresponding to one time-lapse interval
응응
           - column: increase in frame times
응응
     Y: matrix containing simulated CRTDs of all time-lapse intervals
응응
     tint: camera integration time
응응
    para: initial conditions
응응
       - mono-exponential model: [kb, koff1, counts]
88
       - bi-exponential model: [kb, koff1, B1, koff2, counts]
       - tri-exponential model: [kb, koff1, B1, koff2, B2, koff3, counts]
88
88
    lb: lower constraints
88
       - mono-exponential model: [kb, koff1, counts]
22
       - bi-exponential model: [kb, koff1, B1, koff2, counts]
88
       - tri-exponential model: [kb, koff1, B1, koff2, B2, koff3, counts]
응응
    ub: upper constraints
88
       - mono-exponential model: [kb, koff1, counts]
88
       - bi-exponential model: [kb, koff1, B1, koff2, counts]
응응
       - tri-exponential model: [kb, koff1, B1, koff2, B2, koff3, counts]
%% Outputs:
%% p out: vector containing outcomes of global fitting
88
           - p(1): kb
응응
           - p(2): koff1
응응
           - p(3): B1
응응
           - p(4): koff2
응응
           - p(5): B2
           - p(6): koff3
88
88
           - p(7): 1 - B1 - B2
88
           - p(8)-p(end): counts at time 0 for all time-lapse intervals
%% Known Parameters
ttl = X(:,1); % vector containing all time-lapse intervals
a_para = Y(:,1); % Initialize the vector for counts at time 0
weights = ones(size(X)); % fitting weights
lower B = 1/min(a para(a para>0)); % the lower bound for the amplitudes
upper koff = 1/tint; % the upper bound for off rates
if i model == 1 % fitting to mono-exponential function
    para = [1, 1, a para']; % initial conditions: kb, koff1, counts
    lb = [0, 0, zeros(size(ttl))']; % lower bounds: kb, koff1, counts
     % upper bounds: kb, koff1, counts
    ub = [Inf,upper_koff, Inf*ones(size(ttl))'];
    % define function to minimize
    f1 = Q(p) (
                 (model(i_model,p,X,tint,ttl)-Y).*weights);
    opts = optimset('Display', 'off');
    % Global fitting using the lsqnonlin function
     [p] = lsqnonlin(f1,para,lb,ub,opts);
    p_out = [p(1:2),1,zeros(1,4),p(3:end)];
elseif i model == 2 % fitting to bi-exponential function
    para = [1, 1, 0.5, 2, a_para'];
         = [0, 1e-3, lower_B, 1e-3, zeros(size(ttl))'];
    lb
         = [Inf, upper_koff, 1-lower_B, upper_koff, Inf*ones(size(ttl))'];
    ub
    \% define function to minimize
                 (model(i_model,p,X,tint,ttl)-Y).*weights);
    f1 = @(p)(
    opts = optimset('Display', 'off');
```

```
% Global fitting using the lsqnonlin function
     [p] = lsqnonlin(f1,para,lb,ub,opts);
      & assign the smaller off rate to be koff1
      p \text{ temp} = \text{sortrows}([p(2) \ p(3); \ p(4) \ (1 - p(3))]);
      p temp = p temp';
      p_out = [p(1), p_temp(:)', zeros(1,2), p(5:end)];
elseif i model == 3
      para = [1, 0.05, 0.3, 0.5, 0.3, 5, a para'];
      lb
           = [0, 1e-3, lower B, 1e-3, lower B, 1e-3, zeros(size(ttl))'];
      ub
           = [Inf, upper_koff, 1-lower_B, upper_koff, 1-lower_B, upper_koff,
            Inf*ones(size(ttl))'];
      % define function to minimize
      f1 = @(p) ( sum(sum((model(i model,p,X,tint,ttl)-Y).^2.*weights,2 )));
      opts = optimoptions('fmincon', 'MaxFunctionEvaluations', 10000,...
            'MaxIter', 3000, 'Algorithm', 'interior-point', 'StepTolerance',
            1.0000e-9);
      b = 1-2*lower B;
      A = [0,0,1,0,1,0,zeros(1,size(a para,1))];
      % Global fitting using the fmincon function
      [p] = fmincon(f1,para,A,b,[],[],lb,ub,[],opts);
      % assign the smallest off rate to be koff1 and the second smallest to
      % be koff2
      p temp = sortrows([p(2) p(3); p(4) p(5); p(6) (1-p(3)-p(5))]);
      p temp = p temp';
      p_out = [p(1),p_temp(:)',p(7:end)];
end
```

end % end of function

4. Define fitting models

```
function f = model(i model,para,X,tint,ttl)
%% Inputs:
22
     i model = 1 - mono-exponential model
     i model = 2 - bi-exponential model
88
     i model = 3 - tri-exponential model
88
     para: global parameters
응응
     X: frame times
응응
     tint: camera integration times
88
88
     ttl: time-lapse time
% ampl: vector containing counts for all time-lapse intervals
p = tint./ttl; p = p(:);
if i model == 1
   kb = para(1);
   koff1 = para(2);
   ampl = para(3:end);
   % mono-exponential model
   f = (ampl'*ones(1, size(X, 2))).*
       (exp(-((kb.*p + koff1)*ones(1,size(X,2))).*X));
elseif i model == 2 % bi-exponential model
   kb = para(1);
   koff1 = para(2);
   B1 = para(3);
   koff2 = para(4);
   ampl = para(5:end);
   % bi-exponential model
   f = (ampl'*ones(1,size(X,2))).*(B1.*exp(-((kb.*p + koff1)*
     ones(1,size(X,2))).*X)+(1-B1).*exp(-(kb.*p + koff2)*
     ones(1,size(X,2)).*X));
```

```
elseif i_model == 3
    kb = para(1);
    koff1 = para(2); B1 = para(3);
    koff2 = para(4); B2 = para(5);
    koff3 = para(6);
    ampl = para(7:end);
    % tri-exponential model
    f = (ampl'*ones(1,size(X,2))).*
        (B1.*exp(-((kb.*p + koff1) * ones(1,size(X,2))).*X)
            + B2.* exp( -(kb.*p + koff2)*ones(1,size(X,2)).*X)+
            (1-B1-B2).* exp( -(kb.*p + koff3)*ones(1,size(X,2)).*X ));
end
```

```
end % end of function
```