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Supplementary table 

Table S1. Initial conditions, constraints and termination tolerance used in global fitting. n0 is the 

minimum number of counts in the second bin across tl. 

Model 
Initial 

conditions 
Bound constraints 

Termination 

tolerance 
Algorithm 

MATLAB 

function 

Mono 

(Eq. 2) 

kb = 1 s-1 

koff = 1 s-1 

kb > 0 s-1 

0 s-1 < koff < 1/int s-1 
10-6 

trust-region-

reflective 
lsqnonlin 

Bi 

(Eq. 5) 

kb = 1 s-1 

koff1 = 1 s-1 

B = 0.5 

koff2 = 2 s-1 

kb > 0 

10-3 s-1 < koff1 < 1/int s-1 

1/n0 < B < 1 – 1/n0 

10-3 s-1 < koff2 < 1/int s-1 

10-6 
trust-region-

reflective 
lsqnonlin 

Tri 

(Eq. 6) 

kb = 1 s-1 

koff1 = 0.05 

s-1 

B1 = 0.3 

koff2 = 0.5 s-1 

B2 = 0.3 

koff2 = 5 s-1 

kb > 0 s-1 

10-3 s-1 < koff1 < 1/int s-1 

1/n0 < B1 < 1 – 1/n0  

10-3 s-1 < koff2 < 1/int s-1 

1/n0 < B2 < 1 – 1/n0 

10-3 s-1 < koff3 < 1/int s-1 

B1 + B2 < 1 – 2/n0  

10-9 
trust-region-

reflective 
fmincon 
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Table S2. The tl sets used in the study. 

tl sets tl values (s) 

10-s 0.1, 0.2, 0.3, 0.4, 0.6, 1, 2, 3, 5, 8, 10 

100-s 0.1, 0.3, 0.7, 1, 3, 7, 10, 30, 70, 100 

Three- 0.1, 1, 10 

Five- 0.1, 0.3, 1, 3, 10 
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Supplementary figures 

 

Figure S1. Schematic of experimental setups in single-molecule live-cell imaging. Bacteria 

expressing fluorescently labelled proteins are loaded in a flow cell with a constant supply of media at 

30 ºC. The fluorescent label (YPet) is excited with 514-nm light and fluorescence signal is recorded with 

an electron-multiplying CCD camera. 
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Figure S2. Schematic of the simulation of the cumulative residence time distribution (CRTD) at 

a specified tl. The molecules were generated by a random number generator to produce a group of 

numbers following an exponential distribution (defined by koff1, kb, int and tl) (see Eq. 4-6 in main text). 

The number generator function was called a few times (typically 3-6) until the number of molecules in 

the first bin (n1) of the histogram exceeded the user-specified number of molecules (N1, N1 = A x B in 

mono-exponential distribution, or N1 = A x B1 in multiple-exponential distribution). The koff2 and koff3 sub-

populations were simulated in the same manner. Then, molecules from all simulated sub-populations 

were pooled and subject to bootstrapping analysis to construct the bootstrapped CRTDs (referred 

simply as CRTDs). This procedure was repeated for all specified values of tl. The global fitting was 

performed on CRTDs from all tl, using a CRTD for each tl. 
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Figure S3. Scatter plots show distributions of  obtained using global fitting on 100 simulated mono-

exponential (<> = 100 s) for each n value. (A) Simulation using the 10-s tl set. (B) Simulation using 

the 100-s tl set. (C) Simulated data from (B) were globally fitted with the amplitude as the global 

parameter. Apart from this panel, all global fittings in this study were performed with A as the local 

parameter. Red bars represent the averages. 
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Figure S4. Determination of time constants and amplitudes from bi-exponential distributions with an 

intermediate rate (koff1) and a fast rate (koff2 = 10koff1). (A-C) Scatter plots show distributions of B, 1 and 

2 obtained using global fitting from 100 simulated distributions for each n value. Each panel 

corresponds to a pre-set B, which increases from 10%, 25%, 50%, 75% to 90% from left to right. In 

each panel, n increases from 103 (1e3) to 105 (1e5). Dashed lines and red bars represent the true 

values and the average respectively. Orange shades represent distributions where B is larger than 0.1 

or  is larger than 20%. To enhance visibility, outliers (less than 5% when present) were omitted from 

scatter plots. 
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Figure S5. Bi-exponential distributions with an intermediate rate (koff1 = 0.1 s-1) and a fast rate (koff2 = 1 
s-1) with infinite counts. (A) Representative kefftl plots at 20 amplitudes of koff2. From top to bottom, the 
amplitude reduces from 95% to 5%. (B) Integrated peak areas as a function of koff2 amplitudes (open 
circles). Line is the exponential fit to data points (R2: 0.9996). The peak area is calculated as the 
difference between areas under the kefftl plots and the area under the line y = 0.7 + 0.1tl. 
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Figure S6. Determination of time constants and amplitudes from bi-exponential distributions with a slow 

rate (koff1 = 0.01 s-1) and an intermediate rate (koff2 = 0.1 s-1). (A-C) Scatter plots show distributions of 

B, 1 and 2 obtained from fitting of 100 simulated distributions to bi-exponential model. Each panel 

corresponds to a pre-set amplitude of B, which increases from 10%, 25%, 50%, 75% to 90% from left 

to right. In each panel, n increases from 103 (1e3) to 106 (1e6). Dashed lines and red bars represent 

the true values and the average respectively. Orange shades represent distributions where B is larger 

than 0.1 or  is larger than 20%. To enhance visibility, outliers (less than 5% when present) were 

omitted from scatter plots. 



10 

 

 

Figure S7. Determination of time constants and amplitudes from bi-exponential distributions with a slow 

rate (koff1) and an intermediate rate (koff2 = 10koff1), simulated using the 100-s tl set. (A) kefftl plots of bi-

exponential distributions with kbint of 0.7, koff1 and koff2 of 0.01 and 0.1 s-1 respectively, with 105 

observations. The amplitude of koff1 (B, shown on top) increases from left to right (10% to 90%). Shaded 

error bands are standard deviations from ten bootstrapped samples. (B-D) Scatter plots show 

distributions of B, 1 and 2 obtained from fitting of 100 simulated distributions to bi-exponential model. 

Each panel corresponds to a pre-set amplitude of B, which increases from 10%, 25%, 50%, 75% to 

90% from left to right. In each panel, n increases from 103 (1e3) to 106 (1e6). Dashed lines and red bars 

represent the true values and the average respectively. Orange shades represent distributions where 

B is larger than 0.1 or  is larger than 20%. To enhance visibility, outliers (less than 5% when 

present) were omitted from scatter plots. 
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Figure S8. Determination of binding lifetimes and amplitudes from bi-exponential distributions with 

closely spaced rates (koff2 = 3koff1). (A-C) Scatter plots show distributions of B, 1 and 2 obtained from 

fitting of 100 simulated distributions for each n value. Each panel corresponds to a pre-set B, which 

increases from 10%, 25%, 50%, 75% to 90% from left to right. In each panel, n increases from 103 (1e3) 

to 105 (1e5). Dashed lines and red bars represent the true values and the average respectively. Orange 

shades represent distributions where B is larger than 0.1 or  is larger than 20%. To enhance 

visibility, outliers (less than 5% when present) were omitted from scatter plots. 
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Figure S9. Determination of binding lifetimes and amplitudes from tri-exponential distributions with a 

slow rate (koff1), an intermediate rate (koff2 = 10koff1) and a fast rate (koff3 = 10koff2), using the 100-s tl set. 

From left to right, five panels in each row correspond to different amplitudes of each sub-population 

(displayed on top). (A-E) Scatter plots show distributions of amplitudes (B1 and B2), 1, 2 and 3 obtained 

using global fitting 100 simulated samples. In each panel, n increases from 103 (1e3) to 106 (1e6). 

Dashed lines and red bars represent the true values and the averages respectively. Orange shades 

represent distributions where B is larger than 0.1 or  is larger than 20%. To enhance visibility, 

outliers (less than 5% when present) were omitted from scatter plots. 
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Figure S10. Determination of time constants and amplitudes from bi-exponential distributions simulated 

with the five tl set, and an intermediate rate (koff1 = 0.1 s-1) and a fast rate (koff2 = 1 s-1). (A-C) Scatter 

plots show distributions of B, 1 and 2 obtained from fitting of 100 simulated distributions to bi-

exponential model. Each panel corresponds to a pre-set amplitude of B, which increases from 10%, 

25%, 50%, 75% to 90% from left to right. In each panel, n increases from 103 (1e3) to 105 (1e5). Dashed 

lines and red bars represent the true values and the average respectively. Orange shades represent 

distributions where B is larger than 0.1 or  is larger than 20%. To enhance visibility, outliers (less 

than 5% when present) were omitted from scatter plots. 
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Figure S11. Determination of time constants and amplitudes from bi-exponential distributions simulated 

with the three tl set, and an intermediate rate (koff1 = 0.1 s-1) and a fast rate (koff2 = 1 s-1). (A-C) Scatter 

plots show distributions of B, 1 and 2 obtained from fitting of 100 simulated distributions to bi-

exponential model. Each panel corresponds to a pre-set amplitude of B, which increases from 10%, 

25%, 50%, 75% to 90% from left to right. In each panel, n increases from 103 (1e3) to 105 (1e5). Dashed 

lines and red bars represent the true values and the average respectively. Orange shades represent 

distributions where B is larger than 0.1 or  is larger than 20%. To enhance visibility, outliers (less 

than 5% when present) were omitted from scatter plots. 
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Supplementary Notes 

1. Simulation of a set of binding events whose lifetimes follow an exponential distribution 

with user-defined mean 

function [counts, each_molecule] = simulate_res_time(mu,edges,n_count) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Inputs: 

%%  mu: mean of exponential distribution for a particular tl 
%%  edges: bin edges of histograms 

%%  n_count: the number of counts for a particular tl 
%% Outputs: 

%%  counts: vector describing CRTD 

%%  each_molecule: vector containing all random number corresponding to 

%%      lifetimes of binding events 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

each_molecule = [];    
counts = zeros(10,1); 

%% generate a set of random numbers corresponding to lifetimes of binding 

%% events until counts in the first bin exceed user-defined counts 
while counts(1) < n_count 

% single iteration of the exprnd function 
    sim = exprnd(mu,round(n_count/2.71),1); 

% construct the histogram with edges corresponding to frame times 

% N is a vector containing counts in all bins [from the latest iteration] 
    [N,~] = histcounts(sim,edges); 

    counts = counts + N'; % add counts to the previous iterations 
% combine lifetimes of binding events to existing population from previous 

% iteration of the exprnd function 
    each_molecule = [each_molecule; sim];  

end 
end % end of the function 
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2. Simulation of mono-, bi- or tri-exponential distribution across all tl  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Inputs: 

%%  ttl:   vector containing the set of time-lapse intervals 

%%  kb:    photobleaching rate (unit: s-1) 

%%  tint:  camera integration time 

%%  koff1: user-defined off rate 1 

%% koff2: user-defined off rate 2 

%% koff3: user-defined off rate 3 

%% B(1):  amplitude of the first kinetic sub-population 

%% B(2):  amplitude of the second kinetic sub-population 

%% n_count_total: user-defined counts for each simulation 

%% Outputs: 

%%  bin: matrix containing CRTDs for all time-lapse intervals 

%%  d.data: contains the simulated population at a particular time- 

%% lapse interval 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

for i = 1:length(ttl)    % simulate CRTD for each time-lapse interval           
     time = ttl(i)*(0:10)';  % determine frame times for binning 
     %% define exponential distribution for each sub-population 
     keff1 = (kb*tint/ttl(i) + koff1); % effective rate 1 
     % mean of the exponential distribution of the first sub-population 

     mu1 = 1/keff1;  
     keff2 = (kb*tint/ttl(i) + koff2); % effective rate 2 
     % mean of the exponential distribution of the second sub-population 

     mu2 = 1/keff2;  
     keff3 = (kb*tint/ttl(i) + koff3); % effective rate 3 
     % mean of the exponential distribution of the third sub-population 

     mu3 = 1/keff3;  
     %% determine the number of counts for each sub-population based 
     %% on the amplitudes B1 and B2 

     % counts of the first kinetic sub-population 
     n_count1 = round(B(1)*n_count_total);  
     % counts of the second kinetic sub-population 

     n_count2 = round(B(2)*n_count_total); 

     % counts of the third kinetic sub-population             
     n_count3 = n_count_total - n_count1 - n_count2; 
     % bin1, bin2 and bin3 are vectors containing CRTDs of koff1, koff2 and       

     % koff3 sub-population respectively 
     % population1, population2 and population3 are vectors containing  

     % simulated koff1, koff2 and koff3 sub-population respectively. 
     bin2 = zeros(10,1); population2 = []; 
     bin3 = zeros(10,1); population3 = []; 
     % simulate koff1 sub-population 

     [bin1, population1] = simulate_res_time(mu1,time,n_count1); 
     % simulate koff2 sub-population 

     if n_count2 > 1 
          [bin2, population2] = simulate_res_time(mu2,time,n_count2);             
     end 
     % simulate koff3 sub-population 

     if n_count3 > 1 
          [bin3, population3] = simulate_res_time(mu3,time,n_count3); 
     end 
     % combine CRTDs from sub-population CRTDs 
            bin(:,i) = bin1 + bin2 + bin3; 
     % combine simulated population from simulated sub-populations 

     d(i).data = [population1; population2; population3];             
end 
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3. Global fitting 

function [p_out] = globalFit(i_model, X, Y, tint)  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Inputs: 

%%  i_model = 1 – mono-exponential model 

%% i_model = 2 – bi-exponential model 

%% i_model = 3 – tri-exponential model 

%%  X: matrix containing frame times of all time-lapse intervals 

%%  - row: frame times corresponding to one time-lapse interval 

%%  - column: increase in frame times 

%%  Y: matrix containing simulated CRTDs of all time-lapse intervals 

%% tint: camera integration time 

%% para: initial conditions 

%%   - mono-exponential model: [kb, koff1, counts] 

%%   - bi-exponential model: [kb, koff1, B1, koff2, counts] 

%%   - tri-exponential model: [kb, koff1, B1, koff2, B2, koff3, counts] 

%% lb: lower constraints 

%%   - mono-exponential model: [kb, koff1, counts] 

%%   - bi-exponential model: [kb, koff1, B1, koff2, counts] 

%%   - tri-exponential model: [kb, koff1, B1, koff2, B2, koff3, counts] 

%% ub: upper constraints 

%%   - mono-exponential model: [kb, koff1, counts] 

%%   - bi-exponential model: [kb, koff1, B1, koff2, counts] 

%%   - tri-exponential model: [kb, koff1, B1, koff2, B2, koff3, counts] 

%% Outputs: 

%%  p_out: vector containing outcomes of global fitting 

%%  - p(1): kb 

%%  - p(2): koff1 

%%  - p(3): B1 

%%  - p(4): koff2 

%%  - p(5): B2 

%%  - p(6): koff3 

%%  - p(7): 1 – B1 – B2 

%%  - p(8)-p(end): counts at time 0 for all time-lapse intervals 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Known Parameters 
ttl = X(:,1); % vector containing all time-lapse intervals 
a_para = Y(:,1); % Initialize the vector for counts at time 0 
weights = ones(size(X)); % fitting weights 
lower_B = 1/min(a_para(a_para>0)); % the lower bound for the amplitudes 
upper_koff = 1/tint;     % the upper bound for off rates 
if i_model == 1   % fitting to mono-exponential function                              
     para = [1,  1, a_para']; % initial conditions: kb, koff1, counts 
     lb   = [0,  0, zeros(size(ttl))']; % lower bounds: kb, koff1, counts 
     % upper bounds: kb, koff1, counts 

     ub   = [Inf,upper_koff, Inf*ones(size(ttl))']; 
     % define function to minimize 

     f1 = @(p)(   (model(i_model,p,X,tint,ttl)-Y).*weights );  
     opts = optimset('Display','off'); 
     % Global fitting using the lsqnonlin function 
     [p] = lsqnonlin(f1,para,lb,ub,opts);   
     p_out = [p(1:2),1,zeros(1,4),p(3:end)]; 
elseif i_model == 2 % fitting to bi-exponential function         
     para = [1, 1, 0.5, 2, a_para']; 
     lb   = [0, 1e-3, lower_B, 1e-3, zeros(size(ttl))']; 
     ub   = [Inf, upper_koff, 1-lower_B, upper_koff, Inf*ones(size(ttl))'];  
     % define function to minimize 

     f1 = @(p)(   (model(i_model,p,X,tint,ttl)-Y).*weights ); 
     opts = optimset('Display','off'); 
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     % Global fitting using the lsqnonlin function 
     [p] = lsqnonlin(f1,para,lb,ub,opts); 
      % assign the smaller off rate to be koff1 
      p_temp = sortrows([p(2) p(3); p(4) (1 - p(3))]); 
      p_temp = p_temp';  
      p_out  = [p(1), p_temp(:)', zeros(1,2), p(5:end)]; 
elseif i_model == 3 
      para = [1, 0.05, 0.3, 0.5, 0.3, 5, a_para']; 
      lb   = [0, 1e-3, lower_B, 1e-3, lower_B, 1e-3, zeros(size(ttl))']; 
      ub   = [Inf, upper_koff, 1-lower_B, upper_koff, 1-lower_B,upper_koff,   

  Inf*ones(size(ttl))']; 
      % define function to minimize 

      f1 = @(p)( sum(sum((model(i_model,p,X,tint,ttl)-Y).^2.*weights,2 ))); 
      opts = optimoptions('fmincon', 'MaxFunctionEvaluations',10000,... 
            'MaxIter',3000,'Algorithm','interior-point','StepTolerance', 

  1.0000e-9); 
      b = 1-2*lower_B; 
      A = [0,0,1,0,1,0,zeros(1,size(a_para,1))]; 
      % Global fitting using the fmincon function 

      [p] = fmincon(f1,para,A,b,[],[],lb,ub,[],opts);              
      % assign the smallest off rate to be koff1 and the second smallest to 

 % be koff2 

 p_temp = sortrows([p(2) p(3); p(4) p(5); p(6) (1-p(3)-p(5))]); 
      p_temp = p_temp';    
      p_out = [p(1),p_temp(:)',p(7:end)]; 
end 
end % end of function 

 
4. Define fitting models 

function f = model(i_model,para,X,tint,ttl) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Inputs: 

%%  i_model = 1 – mono-exponential model 

%% i_model = 2 – bi-exponential model 

%% i_model = 3 – tri-exponential model 

%%  para: global parameters 

%%  X:    frame times 

%%  tint: camera integration times 

%%  ttl: time-lapse time 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% ampl: vector containing counts for all time-lapse intervals 
p = tint./ttl; p = p(:); 
if i_model == 1  
    kb = para(1); 
    koff1 = para(2); 
    ampl = para(3:end); 
    % mono-exponential model 

    f = (ampl'*ones(1,size(X,2))).* 
        (exp(-((kb.*p + koff1)*ones(1,size(X,2))).*X));    
elseif i_model == 2 % bi-exponential model 
    kb = para(1);     
    koff1 = para(2); 
    B1 = para(3); 
    koff2 = para(4); 
    ampl = para(5:end); 
    % bi-exponential model 

    f = (ampl'*ones(1,size(X,2))).*(B1.*exp(-((kb.*p + koff1)* 

 ones(1,size(X,2))).*X)+(1-B1).*exp(-(kb.*p + koff2)* 

 ones(1,size(X,2)).*X)); 
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elseif i_model == 3 
    kb = para(1); 
    koff1 = para(2);    B1 = para(3); 
    koff2 = para(4);    B2 = para(5); 
    koff3 = para(6); 
    ampl = para(7:end); 
    % tri-exponential model 

    f = (ampl'*ones(1,size(X,2))).* 
        (B1.*exp(-((kb.*p + koff1) * ones(1,size(X,2))).*X) 
        + B2.* exp( -(kb.*p + koff2)*ones(1,size(X,2)).*X )+ 
        (1-B1-B2).* exp( -(kb.*p + koff3)*ones(1,size(X,2)).*X )); 
end    
end % end of function 

 

 

 

 

 

 

 

 


