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1 Moran models with temporal and spatial

variability

The basic Moran process. We start by defining the classic, non-spatial,
Moran process with constant division and death rates [1]. Assume that there
are N cells that undergo discrete rounds of divisions and deaths. In each
round, one division and one death occur (not necessarily in this order, see
below), such that the total number of cells, N , remains constant. In the
problems studied here, there are two types of cells, to which we will refer
as “wild type” (type A) and “mutant” (type B) cells. In the usual Moran
process, all wild type cells are characterized with a constant division rate, rA,
and a constant death rate, dA. Similarly, mutants have a constant division
rate, rB, and a constant death rate, dB, where in general, rA 6= rB and/or
dA 6= dB. There are two kinds of basic updates that can be formulated
(and will be used here): the Birth-Death (BD) and the Death-Birth (DB)
processes. It has been reported in the literature that the two exhibited
significantly different behavior in the context of game theory [2], in graph-
structured populations [3, 4], and even in the simplest formulations of the
Moran model [5]. Here we describe the two processes.
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• BD. First, a cell is selected for division with a probability that is
proportional to its division rate. For example, if there are m mutants
and N −m wild type cells in the system, the probability that a mutant
cell will divide is given by

P (mut. div.) =
mrB

(N −m)rA +mrB
,

and the probability that a wild type cell will divide is given by P (w.t. div.) =
1− P (mut. div.). A division is followed by a death, with probabilities
proportional to cells’ death rates. We assume that a cell that just di-
vided is excluded from death during the same update. For example,
the probability that a mutant will die, following a division of another
mutant, is given by

P (mut. death|mut. div.) =
(m− 1)dB

(N −m)dA + (m− 1)dB
,

and the probability that a wild type cell will die is given by P (w.t. death|mut. div) =
1− P (mut. death|mut. div). The newly produced offspring of the cell
that divided then replaces the dead cell, and the total population re-
mains at N . The progeny cell retains the type of the parent cells. The
probability of an increase in the number of mutants is given by

P (mut. div.)×P (w.t. death|mut. div) =
mrB

(N −m)rA +mrB
× (N −m)dA

(N −m)dA + (m− 1)dB
,

and the probability of a decrease in the number of mutants is

P (w.t. div.)×P (mut. death|w.t. div) =
(N −m)rA

(N −m)rA +mrB
× mdB

(N −m− 1)dA +mdB
.

• DB. Now, the order of events in a single update is reversed: first, a
cell is chosen for death (proportionally to its death rate), and then a
cell is chosen for division (proportionally to its division rate); the cell
that has died cannot participate in divisions during the same update.
We have, for example,

P (mut. death) =
mdB

(N −m)dA +mdB
,

P (mut. div.|mut. death) =
(m− 1)rB

(N −m)rA + (m− 1)rB
.
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The probability that the number of mutants will increase after one
update is then given by

P (w.t. death)×P (mut. div.|w.t. death) =
(N −m)dA

(N −m)dA +mdB
× mrB

(N −m− 1)rA +mrB
,

and similarly with the probability of mutant decrease.

Interactions on a network. At the next level of complexity, we assume
that cell competition happens only among “neighboring” cells. The notion
of a neighborhood is defined by means of a network, whose edges identify the
neighbors of each cell. Suppose all the locations are numbered by the index
i ∈ [1, N ], and for a given configuration of wild type and mutant cells, we
denote their division and death rates as ri and di. We have ri ∈ {rA, rB} and
di ∈ {dA, dB}. Now, the probabilities of division and death for a given cell
are defined by its own rate and the rates of its neighbors. For example, the
division probability for a cell at location k in a BD process is given by

rk∑
i∈Sk

ri
,

where Sk denotes the set of neighbors of node k. For the death event in
the BD update, conditional probabilities are formulated, where the death
rates of cells in the neighborhood of a given cell are summed up, excluding
the cell that divided in the same update. The total probability of a mutant
number increase/decrease is obtained by summing up the probabilities of all
the individual update possibilities where a mutant division is followed by a
wild type death. Two different networks will be used in this study. One
is the complete graph, such that all cells are neighbors of each other. In
this case, the probability formulas derived for the basic Moran process apply
without change. The second network is a circle, where each cell has exactly
two neighbors. These two regular networks in some sense represent the two
ends of a spectrum, by the number of neighbors that each cell has. The
complete graph leads to the so called “mass-action” dynamics, while a circle
corresponds to the most stringent, “nearest neighbor” 1D spatial constraints.

Temporal variability. Motivated by the studies of evolution in variable
(random) environments, we formulate the Moran model with temporal ran-
domness. Recall that the processes described above are defined by four con-
stants, which are division and death rates of wild type and mutant cells:
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rA, rB and dA, dB. In the process with temporal randomness, for each time-
step, the division values rA and rB are chosen from a given probability dis-
tribution, see figure 1(a) of the main text for a schematic illustration. In
this paper we focus on the case where the probability distributions of rA
and rB are the same. Similarly, the death rate values dA and dB are chosen
from a single probability distribution. We are interested in mutant fixation
probabilities and times, averaged over all realizations of the rate values.

Note that while our model’s “environment” is set up to change at every
birth/death event, in reality the event time and the physical time are dif-
ferent. This however does not make a difference in the way how individual
organisms experience the environment (in our models). Suppose that time in-
tervals between consecutive birth/death events are distributed exponentially
(with the mean of one time unit) and the environmental states are drawn
from a certain distribution, every (physical) time unit. If we sample such
an environment at time points corresponding to birth/death events, one can
show that even though the sequence of environmental conditions thus ob-
tained is different, the distribution remains the same.

Spatial variability. Finally, we consider the problem where randomness
is spatial, rather than temporal. In this model, fitness values of each cell
are defined by (a) its type and (b) its location. Each realization of the
evolutionary process is characterized by a fixed set of wild type fitness values,
r1A, . . . , r

N
A , and a fixed set of mutant fitness values, r1B, . . . , r

N
B , where the

superscript is referring to a specific location, and the values riA and riB are
iid random variables for 1 ≤ i ≤ N . These values, once assigned, remain
constant throughout the realization, see figure 1(b) of the main text for a
schematic illustration of this model and a comparison with the setting with
temporal randomness (panel (a)). Similarly, death rate values, diA and diB
are assigned randomly for each realization. For a given realization, whenever
a wild type cell happens to be at a location k, it will have the division and
death rates rkA and dkA, respectively. A mutant cell at the same location will
have the division and death rates rkB and dkB. The state of the system at a
given time point is defined by the set ni, 1 ≤ i ≤ N , where ni = 0 if a wild
type cell is at location i, and ni = 1 otherwise.

For the BD process on the complete graph, the probability for a cell at
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location k to divide is given by

nkr
k
B + (1− nk)rkA∑N

j=1(njr
j
B + (1− nj)r

j
A)
.

The probability of a subsequent death at location i 6= k is given by

nid
k
B + (1− ni)d

k
A∑

j 6=k(njd
j
B + (1− nj)d

j
A)
.

The total probability for an increase in the number of mutants can be calcu-
lated by adding the probabilities of all the events where first a mutant cell
divides and then a wild type cell dies:

N∑
k=1

nkr
k
B∑N

j=1(njr
j
B + (1− nj)r

j
A)

∑
i 6=k

(1− ni)d
i
A∑

j 6=k(njd
j
B + (1− nj)d

j
A)
.

The probability of mutant decrease is calculated similarly. For the DB pro-
cess, the order of the events is reversed.

To formulate the problem on a circle, we note that the second event can
only occur in the immediate vicinity of the cell involved in the first event. For
example, the probability of mutant increase for the BD process on a circle is
given by

N∑
k=1

nkr
k
B∑N

j=1(njr
j
B + (1− nj)r

j
A)

∑
i∈{k−1,k+1}

(1− ni)d
k
i∑

j∈{k−1,k+1}(njd
j
B + (1− nj)d

j
A)
,

where we assume periodicity in location numbering, identifying location N+1
with location 1 and location 0 with location N .

We are interested in the probability of mutant fixation and the condi-
tional mean fixation time, averaged over all realizations of rate values. In
what follows, we first study the model with temporal, and then with spatial
randomness. For numerical simulations, unless otherwise specified, we use
the two-valued probability distribution of parameter values, where the values
1 + σ and 1− σ occur with equal probabilities.
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2 The effect of temporal randomness on fix-

ation time

The time to fixation results are summarized in table 2 of the main text. We
observe that if the mutant behaves as if it is selected for (i.e. its probability
of fixation increases), its mean conditional time also increases, and if the
mutant’s fixation probability decreases, so does its mean conditional fixation
time. In other words, if mutants are more likely than neutral to fixate, then
in the cases when they do get fixated, the process takes longer on average
under temporal randomness compared with a non-random case (see also [6]
for an insightful discussion of the relationship between fixation probability
and timing). This is related to the phenomenon of balancing selection. Once
a mutant population rises from low numbers (which increases the probability
of fixation), then eventually the resident population becomes a minority and
does not “give up” easily, thus increasing the fixation time.

The reason for this increase in the conditional fixation time can be un-
derstood if we consider different scenarios for random division/death rate
realizations. For concreteness, let us focus on a BD process with random di-
visions, and consider different realizations of the sequence {r(n)B −r

(n)
A }, where

the superscript refers to the time-step. From the mutants’ prospective, there
could be “lucky” and “unlucky” sequences (that is, those sequences that are
characterized by an abundance of positive and negative entries, respectively).
Such sequences are not likely to result in long fixation times: lucky sequences
will lead to a relatively fast mutant fixation, and unlucky sequences are most
likely to result in mutant extinction. Instead, it is well-balanced sequences
that contribute to long mean fixation times.

In figure 1(a) we plot the fixation time, T , vs the realization-mean mutant
advantage,

1

T

T∑
n=1

(r
(n)
B − r

(n)
A ),

which is the mean fitness advantage of mutants for a given realization (the
averaging is performed over the T time steps). Each point corresponds to a
particular realization of the process that ended with mutant fixation (figure
1(a)). Similarly, figure 1(b) shows a graph for the realizations that ended
with mutant extinction. We observe that positive mean mutant advantage
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Figure 1: Temporal randomness: time to fixation. (a) Time of fixation vs realization-
mean mutant advantage for the runs that resulted in mutant fixation. (b) Time of extinc-
tion vs realization-mean mutant advantage for the runs that resulted in mutant extinction.
(c) Numerically obtained histograms of fixation times in the presence and in the absence
of randomness. (d) Time of fixation vs frequency of changes of fortune, for the balanced
runs that resulted in mutant fixation. The total of 107 runs were performed with N = 5
on a complete graph, and σ = 0.9 (anti-correlated mutant and wild type division rates,
complete graph, BD process with random divisions).

values are stronger associated with mutant fixation and negative ones with
extinction. Larger positive and negative mutant advantage values result in
shorter fixation times (or extinction). Further, longer trajectories tend to
have mean mutant advantage close to zero, which corresponds to what we
call “balanced trajectories”.

Panel 1(c) shows a numerically obtained probability distribution of fix-
ation times for the system with temporal randomness and compares it to
that in the absence of randomness. For the parameters used here the mean
conditional fixation time in the non-random case is 16, and that in the pres-
ence of randomness is ≈ 25.34. Since it is balanced sequences that largely
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contribute to this increase, panel 1(d) considers only runs with the mean
mutant advantage in [−0.1, 0.1] (there were about 3× 105 cases of such bal-
anced runs). We examined the correlation of the time to fixation with the
frequency of “changes of fortune” (how many times in the course of a run,
mutant advantage changes to disadvantage or back, divided by the sequence
length, T ). For the particular probability distribution of the division rates,
the mean frequency of changes of fortune is 1/2. We can see that the graph
is skewed to the right, revealing that more frequent (than expected) changes
of fortune associate with longer fixation times.

3 Time to fixation under spatial randomness

Results for fixation time are summarized in table 4 of the main text. We can
see that the relationship between the probability of fixation (table 1) and
mean conditional fixation time is different under spatial randomness, com-
pared to the case of temporal randomness, see tables 1 and 2. The probability
of fixation increases with any type of randomness on both the complete graph
and a circle. For a circle, the time to fixation behaves the same: it increases
with randomness. We previously explained this by noticing that randomness
can create barriers that are hard to overcome. For the complete graph, ran-
domness in deaths again delays fixation. But randomness in divisions speeds
up fixation. This is the only situation where the probability and the time of
fixation have different trends as functions of randomness.

In figure 2 we can see that there is a significant difference between the
probability distributions of mutant fixation times on the complete graph and
on a circle with the same number of spots. Figure 3 shows that different
fitness configurations correspond to different fixation times. For both the
complete graph (panel (a)) and the circle (panel (b)), we can see that only
configurations with 5 or more (out of 9) favorable mutant spots correspond
to a significant proportion of fixating runs. This result is intuitive, because
configurations with most spots disadvantageous for the mutants will typically
result in mutant extinction, and thus do not contribute to the conditional
fixation time. For configurations with 5 or more favorable spots, the more
favorable spots are allocated to mutants, the shorter the median fixation
time. This is not surprising either, because highly advantageous (for mu-
tants) configurations tend to fixate quickly. There is a significant difference
however between the complete graph and the circle. In the latter system, the
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Figure 2: Numerically obtained probability distributions for the conditional
time to fixation under spatial randomness. Results for a complete graph and
a circle are compared. For these plots we used the BD process with random
divisions, the two-valued division rate distribution with σ = 0.9, N = 9, and
mutant and wild type division rates were anti-correlated. For each of 2N

fitness configurations, 200 and 50 independent realizations were performed
for the complete graph and circle, respectively. Please note the logarithmic
horizontal scale.

decay in median fixation time is very fast, as the number of favorable mutant
spots increases from 5 to 9 (please note the logarithmic vertical axis). We
can see that configurations with 5 favorable mutant spots contribute most
significantly to the very long fixation times.

This is why in figure 4 we focus specifically on the configurations that have
exactly 5 favorable mutant spots. In panel (a), we separated the runs that
had the fastest (the lower quartile) and slowest (the upper quartile) fixation
times, and studied exactly what fitness configurations characterized each
group. It turned out that in the “slow fixation” group, mutant division rates
are favorable (that is, equal 1 + σ) at the original mutant position (that was
fixed to be at spot 1) and in the neighboring spots to both sides, while spots
opposite of position 1 were unfavorable for mutants (division rates 1 − σ).
These spots corresponded to the “dead zones” that we described in [7]. The
mutants spread relatively quickly through the favorable island surrounding
the initial spot, but then it is very difficult to overcome the dead zone, which
results in extremely long fixation times (note that the mean division rates at
the initial mutant position are typically high; in the opposite scenario, quick
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Figure 3: Fixation time for different spatial configurations of the division
rates. All configurations were classified by the number of favorable mutant
spots, i.e. spots where mutant division rate was 1 + σ (horizontal axis). (a)
Complete graph; (b) the circle. Box-and-whisker plots for the fixation times
are presented; the graphs on the top indicate relative contribution of each
configuration group into the total runs that resulted in mutant fixation. The
parameters are the same as in figure 2.

mutant extinction is likely). Now, as we turn to the “fast fixation” group, we
can see that while the division rates at the initial mutant location are still
quite high (for the same reason), spots away from position 1 are equally likely
to be favorable or unfavorable, resulting in the mean division rate of about
1/2. Such configurations correspond to the mutant division rates switching
often from favorable to unfavorable, such that there are no large dead zones.

This is exactly what we see in figure 4(b). For each of the configurations
containing 5 favorable spots, we calculated the number of switches between
1 + σ and 1 − σ, and grouped all runs by the number of such switches. We
can see that 2-switch runs (the ones containing large “dead zones”) have
the largest fixation time, and it decays quickly (please note the logarithmic
vertical axis) as the number of switches increases.

10



Figure 4: Fixation dynamics on a circle: mutant fixation time for configu-
rations with exactly 5 favorable mutant spots. (a) Using the upper and the
lower quartiles of the fixation times, we plotted the mean division rate of
mutants for the spots around the circle. “Fast fixation” refers to the runs
from the lower quartile and “Slow fixation” to the runs from the upper quar-
tile. (b) Box-and-whiskers plot for the fixation times, split by the number of
division rate changes around the circle. The parameters are the same as in
figure 2.
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