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1 Introduction

The household infectious disease model with demography combines a Markov chain model for the evolution
of a household with a Markovian SIR transmission model that incorporates internal mixing within the house-
hold, homogeneous between-household mixing, and age-structured mixing, also on the between-household
scale. As such there are a large number of parameters (Table S1) governing the demographics, epidemiology
and status of a household.

In this supplement we provide a detailed account of the model’s definition and analysis. In Section 2
we explain how to calculate model outputs including the early growth rate and equilibrium prevalence.
In Section 3 we perform sensitivity analysis on the parameters τ and σ. In Section 4 we give a detailed
description of the model structure, and Section 5 explains how to incorporate demographic and contact
survey data into this model. Finally, in Section 6 we detail the calculation of the age structured infection
rate λT .

All of the code used to create the tables and figures in the paper and this supplement is available at
github.com/JBHilton/HiltonKeeling_EndemicDiseases.

2 Calculation of epidemiological quantities

The model we construct in Section 4 is high-dimensional; for N = 5, and using the k values in Table 2 there
are 1170 possible household states. We therefore need to compute some simple aggregate quantities that
inform about the important epidemiological behaviours:

2.1 Disease-free equilibrium and household size distribution

The system of ODEs
dH

dt
= HQDemo(H) (1)

defines the evolution of the demographic class distribution. In the disease-free setting all individuals remain
susceptible, fixing PR at zero, and so in this setting QDemo is constant. The dynamics are then determined
by the linear system

dH

dt
= HQDemo(PR = 0) (2)
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Quantity Meaning
N Household size
Nmax Maximum household size
k Current counter state
T = T (N, k) Current demographic class
kB Number of ticks between births
kL Number of ticks between last birth and first leaving
kR Number of ticks between last child leaving and reset
TB Mean between-birth interval
TL Mean age of child leaving home
TD Life expectancy
TR Mean interval between last child leaving and reset
τ Unit time transmission rate
γ Recovery rate
dC Mean duration of contacts between children of same household
dint Mean time per day spent exposed to internal contacts
dext Mean time per day spent exposed to external contacts
Dext Age-structured profile of external contacts
Dall Age-structured profile of all contacts
βint(= τdint) Internal transmission rate
βext(= τdext) External unstructured transmission rate
λT External age-structured force of infection on individuals in a household in demographic class T (N, k)
σ Convexity parameter measuring proportion of structured transmission
{C1, ..., CK} Set of age classes used for age-structured mixing
ET,i Expected number of individuals in age class Ci in a household in state T

ẼT,i Conditional probability that an individual in age class Ci belongs to a household in state T
Dij Mean daily exposure time of age class Ci individuals to age class Cj individuals
HT Population-level proportion of households in demographic class T
Q Markov chain transition matrix
QDemo Transition matrix associated with demographic events
QInt Transition matrix associated with internal infection events
QExt Transition matrix associated with external infection events
H Distribution of system states
H∗ Equilibrium state distribution
HI=0 Disease-free equilibrium distribution
r Early infectious growth rate
R∗ Household-level reproductive ratio
Ī Population-level infectious prevalence
ĪT Infectious prevalence across households in demographic class T
Īi Infectious prevalence within age class Ci

PR Probability of infection occurring before leaving home

Table 1: Complete list of parameters and outputs associated with the household infectious disease model
with demography.
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The disease-free equilibrium HI=0 distribution is the eigenvector associated with the dominant (zero) eigen-
value of this system [6]. The only states with nonzero probability are those with S = N , so that confining
our attention to these states gives us the equilibrium joint distribution of (N, k). This provides a ready
means of calculating the equilibrium distribution of demographic classes, since the probability HT that a
household is in demographic class T is given by HT = HI=0(N(T ), 0, 0, T ). This distribution of demographic
classes is independent of the infectious status of the system, so that the marginal distribution with respect
to infectious status is always the same as that of HI=0. The disease-free equilibrium HI=0 is used as the
basis for the calculation of early growth behaviour.

2.2 Endemic equilibrium

Following the procedure described by Ross et. al.[15], the equilibrium distribution is calculated by iteratively
converging on a distributionH∗ such that the dominant eigenvalue of Q(H∗) = QDemo(H∗)+QInt+QExt(H

∗)
(by definition this leading eigenvalue is zero) has leading eigenvector H∗.

The external transmission rate matrix QExt depends on H via the variables Ī, ĪT , while QDemo depends
on PR; hence Q and in turn its dominant eigenvector depends on these three variables. We therefore initialise
these three variables so that P 0

R = 0, Ī0 = Ī0T � 1, and calculate the associated transition matrix Q0; the
dominant eigenvector of this matrix is labelled H1. The probability distribution H1 defines values P 1

R, Ī1 and
Ī1T , which in turn define a transition matrix Q1. This leads us to define an iterative process such that Hn+1

is the dominant eigenvector of Qn. We observe that this process rapidly converges on the population level
equilibrium H∗ and associated matrix Q, and offers a robust and reliable means of finding the equilibrium
of this high-dimensional non-linear system of ODEs.

The population-level prevalence is given by

Ī =

∑
S,I,R,T

HS,I,R,T I∑
S,I,R,T

HS,I,R,TN(T )
(3)

and the demographic class-stratified prevalence is given by

ĪT =

∑
S,I,R

HS,I,R,T I∑
S,I,R

HS,I,R,TN(T )
. (4)

where the subscripts relate to a particular element of the vector H.
One way to visualise the equilibrium behaviour is by plotting the distribution of cases per household,

stratified by household demographic class. Figures 3 and 4 of the main paper show bar charts of the
probabilities of I cases appearing in a household of size N with demographic counter from 1 to kB + kL and
kB + kL + 1 to 2kB + kL + kR, corresponding respectively to the first two phases and last two phases of the
demographic model. The probability that a household of size N with 1 ≤ k ≤ kB + kL contains exactly I
infectious cases is given by∑

T∈ZN
Early

∑
S+R=N−I

HS,I,R,T∑
T∈ZN

Early

∑
S,I,R

HS,I,R,T

where ZN
Early = {T : 1 ≤ k(T ) ≤ kB + kL, N(T ) = N}, (5)

whilst the equivalent probabilities for households with kB + kL + 1 ≤ k ≤ 2kB + kL + kR is∑
T∈ZN

Late

∑
S+R=N−I

HS,I,R,T∑
T∈ZN

Late

∑
S,I,R

HS,I,R,T

where ZN
Late = {T : kB + kL + 1 ≤ k(T ) ≤ 2kB + kL + kR, N(T ) = N}. (6)
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The probabilities in Equations (5) and (6) are conditioned on demographic class. As well as the probability
that a household of size N in the early (or late) demographic phases contains I infectious cases, it can also
be useful to plot the the proportion of households which are in the early (respectively late) demographic
phases and are of size N and which contain I infectious cases. This is done by removing the conditioning,
resulting in the respective formulae ∑

T∈ZN
Early

∑
S+R=N−I

HS,I,R,T (7)

and ∑
T∈ZN

Late

∑
S+R=N−I

HS,I,R,T . (8)

The probability distributions defined by Equations (5) and (6) describe the burden of disease on households
of given sizes and ages, whereas the proportions defined by Equations (7) and (8) can be interpreted as
indicating the contribution of each household type to the population-level infectious presence, taking into
account the fact that high disease burdens in rare household types may not contribute much to population-
level transmission. These proportions are plotted in Figures 1 and 2. The bar charts in Figure 1 indicate
that for mumps-like infectious parameters older households without children make large contributions to the
population-level prevalence under all transmission structures, despite infection being comparably rare within
these households. However, Figures 2a and 2b indicate that this is not the case for measles, where the fast
spread of infection means that most adults have already been exposed to infection before establishing their
own household.

Age structured mixing is defined in terms of a set of discrete age classes C1, ..., CK , which are listed
for our UK- and Kenya-like populations in Table 4. The age-structured transmission process is detailed in
Sections 4.1 and 6 and in its implementation we calculate the expected prevalence within the household of
an individual of age class Ci. This gives an indication of each age class’s exposure to household infection
and their contribution to the population-level age-structured transmission dynamics. The prevalences give
us a further visualisation of the model’s equilibrium behaviour and are plotted as bar charts in Figures 3
and 4. Figure 3 suggests that moving between different transmission pathways has a limited impact on the
distribution of infection. Figure 4 indicates that Kenya’s burden of disease is more skewed towards younger
age classes than that of the UK, implying a younger age at first infection. The “elder” age class C6 in the
Kenya-like population corresponds precisely to members of two-person households whose children have left
home (provided they had children in the first place), so that the relatively high prevalence associated with
age class C6 indicates a relatively high burden of disease in these older households.
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Homogeneous Mixing
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Age-Structured Mixing
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(c)

Household-Structured Mixing
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(d)

Full Model
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Figure 1: Percentage distribution of cases per household stratified by the size (and demographic status
– young / old) of the household, for the four different models. The distributions are not conditioned on
household size, so that the size of each bar corresponds to the absolute proportion of households in a given
aggregation of demographic-infectious states. This should be compared to Figure 3 of the main paper which
presents the equivalent distributions conditioned on household size. Blue bars correspond to the first two
phases of the demographic process (prior to the eldest child leaving home), red bars correspond to the third
and fourth phases (after the eldest child has left). The pink open bars correspond to the results from the
random-mixing model, which are shown for ease of comparison; the open circles show the total amount of
infection in the households accounting for multiple infections.
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UK, Measles
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(b)

Kenya, Measles
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(c)

UK, Mumps
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(d)

Kenya, Mumps
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Figure 2: Percentage distribution of cases per household stratified by demographic class under UK- and
Kenya-like demographic parameters for measles and mumps-like infectious parameters.The distributions are
not conditioned on household size, so that the size of each bar corresponds to the absolute proportion of
households in a given aggregation of demographic-infectious states. This should be compared to Figure 4
of the main paper which presents the equivalent distributions conditioned on household size. Blue bars
correspond to the first two phases of the demographic process (prior to the eldest child leaving home), red
bars correspond to the third and fourth phases (after the eldest child has left). The open circles show the
total amount of infection in the households accounting for multiple infections.
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(b)

Age Structured Mixing
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(c)

Household-Structured Mixing
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(d)

Full Model
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Figure 3: Equilibrium infectious prevalence by age class in the four transmission models, using parameters
for the UK and mumps. The bars show the mean prevalence level across all household types that contain
at least one individual of type Ci; as such this illustrates how households with younger individuals are most
likely to be infected. Here the six age-classes are: C1 under 1, C2 1-2 years old, C3 3-5 years old, C4 6-10
years old, C5 11-16 years old, C6 17 or over; where ages are rounded down to the whole year.
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(b)

Kenya, Measles
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(c)

UK, Mumps
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(d)

Kenya, Mumps
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Figure 4: Equilibrium infectious prevalence by age class under UK- and Kenya-like demographic parameters
for measles and mumps-like infectious parameters. The bars show the mean prevalence level across all
household types that contain at least one individual of type Ci. We note that the six age-classes differ for
the UK and Kenyan population. For the UK: C1 under 1, C2 1-2 years old, C3 3-5 years old, C4 6-10 years
old, C5 11-16 years old, C6 17 or over; while for Kenya: C1 under 1, C2 1-5 years old, C3 6-15 years old, C4

16-19 years old, C5 20-50 years old, C6 51 or over; here all ages are rounded down to the whole year.
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2.3 Early growth rate r

The early exponential growth rate of the infection, r, is found by integrating forward the short time-scale
dynamics

dH

dt
= HQ(H) = H(QInt + QExt(H)).

starting close to the disease-free equilibrium HI=0. This process can be achieved with far greater efficiency
by linearising about this disease-free equilibrium, assuming that the number of households that contain
infectious or recovered individuals is small (order ε) during this early growth phase. This linearisation is
equivalent to assuming that only totally susceptible households get infected by external processes (the chance
of an already infected household getting infected for a second time is order ε2 and can be ignored). The linear
equations can be solved by an eigenvalue approach, with the leading eigenvalue giving the early exponential
growth rate r and the associate eigenvector HQ giving the quasi-equilibrium distribution of infection across
household types.

2.4 Household level reproduction ratio R∗

The household level reproduction ratio R∗ is defined as the expected number of new household outbreaks
initiated by an averge household outbreak in a pristine population, or in other words the total number of
successful external transmissions made by the members of an average household during an outbreak in that
household. In a household-structured epidemic, R∗ is an important threshold parameter in the sense that
global epidemics are possible only if R∗ exceeds one [2, 3]. Our calculation method is equivalent to the
path integral formula for R∗ used by Ross et. al. [15], generalised to a disease with multiple transmission
pathways.

From the dominant eigenvector HQ of the linearised system, we are able to calculate both the mean level

of infection (Ī) and the structured infection rate (λT ). Together with the disease-free equilibrium, these
early invasion parameters allow us to define the rate that new households are infected:

Rate of Infection, λ = HI=0QExt(Ī , λT )

which is proportional to the distribution of newly infected household Hnew, with the proportionally constant
defined such that this distribution sums to one. We now define separate equations for the evolution of
households and the generation of external infection:

dH

dt
= HQDemo(PR = 0) +HQInt ≈ HQInt (9)

and
dR

dt
= HI=0QExt(H) (10)

with the starting conditions H = Hnew and R = 0. The sum over all components of the vector R gives
the number of externally infected households by an average newly infected household, and in the long-term
this sum has limit R∗. Since the size of the within-household outbreak is bounded by household size N ,
the probability of the outbreak ending will quickly converge towards 1 after around N/γ units of time, and
hence the value of R∗ can also be computed by integrating equations (9) and (10) over such time-scales.

2.5 Childhood infection probability PR at equilibrium

The probability PR of an individual being infected during childhood and thus being recovered when they
start a new household is determined by the distribution of household infectious profiles at the end of the
second and third phases of the demographic process. Denote by P ′R the probability that the parents of the
household have infectious status R when the household is initiated at k = 0. When the counter reaches
k = kB + kL or k = 2kB + kL, a child is removed from the household, with an infectious status chosen
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according to the infectious status of the household, (S, I,R). Since the household contains an expected 2P ′R
individuals who were recovered at the start of the household’s lifetime, we remove these individuals from our
consideration, so that the child leaving the household is chosen from a pool of S + I +R− 2P ′R individuals
of whom R− 2P ′R are in the recovered class. This gives rise to the formula

PR =
1∑

T∈ZLeave

HS,I,R,T

∑
T∈ZLeave

∑
S,I,R

HS,I,R,T

R− 2P ′R
N − 2P ′R

where ZLeave = T : k(T ) = kB + kL or k(T ) = 2kB + kL.

(11)
Equation 11 defines PR based on its “last generation” value P ′R. At endemic equilibrium PR is constant
across generations, and its value is found by performing the endemic equilibrium calculation detailed in
Section 2.2, using Equation 11 to update PR at each step.

3 Parameter sensitivity

The household infectious disease model is a Markov process with a large number of states and many pa-
rameters. We conducted some basic sensitivity analysis by calculating the behaviour of the epidemiological
quantities defined in Section 2 as functions of transmission rate τ and σ, a tuning parameter which controls
the degree of age-structure in external transmission. External transmission occurs as a convex combina-
tion of a structured and an unstructured term, with homogeneous external transmission at σ = 0 and
fully age-structured external transmission at σ = 1. By choosing specific transmission parameters along
with these extreme values of σ, the transmission component of our model can be reduced to homogeneous,
purely age-structured, and purely household-structured dynamics, as is explained in Section 4.3. Without
household structure, incrementing between σ = 0 and σ = 1 tunes the model from homogeneous to purely
age-structured mixing, whereas with household structure, it tunes from the purely household-structured
transmission model to the fully structured household infectious disease model with demography.

Dependence on τ is plotted in Figures 5 to 8. To gain a broad understanding of behaviour, we calculated
dependence in UK- and Kenya-like settings for infectious periods of 7 and 14 days, under all four trans-
mission models. The value of τ ranged from 0.1 to 2. The procedure for estimating τ defined in Section 5
gives τ = 0.412 for mumps and τ = 1.782 for measles, meaning our analysis ranges between low and high
levels of transmissibility. The early growth parameters r and R∗ are approximately linear in τ , as is to be
expected since transmission intensifies with increasing τ . Figure 5 demonstrates that early growth is consis-
tently slowed when contacts are structured by household, but that age structure appears to have minimal
effect. Figure 6 indicates that age structure boosts household-to-household transmission since the full model
with both age and household structure produces higher values of R∗ than the purely household-structured
model. We note here that in the absence of household structure (i.e. for the homogeneous and purely
age-structured model), R∗ is equal to the basic reproductive number R0. The plots in Figure 7 suggest
that although Equilibrium prevalence Ī increases sharply with smaller values of τ , transmission is limited by
demographic constraints. Comparing the results for γ−1 = 7 and γ−1 = 14 demonstrates the intuitive result
that doubling the infectious period doubles this demographically-imposed maximum prevalence. Childhood
infection probability PR, plotted in Figure 8, increases towards 1 with τ . Infection during childhood is con-
sistently most likely under purely age-structured mixing, which facilitates the spread of infection specifically
between households containing young children, and least likely under purely household-structured mixing,
which impedes between-household transmission.

Dependence on σ is plotted in Figures 9 to 12 for measles- and mumps-like transmission parameters
in UK- and Kenya-like demographic settings, in the absence and presence of household-structured mixing.
Dependence of the early growth parameters on σ is extremely weak, although under measles-like parameters
there is a noticeable increase in R∗ in the full age- and household-structured model. As in Figure 6, the
curves for the model without household structure correspond to basic reproductive ratio R0. The dependence
of prevalence on σ, plotted in Figure 11, suggest that stratifying transmission by household consistently
decreases prevalence, although only by a small amount (at most a few cases per hundred thousand people).
The details of the relationship between Ī and σ are specific to the population-disease setting in question,
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although differences in transmission structure appear to be more relevant for mumps. Figure 12 demonstrates
that increased age-structured mixing increases the probability of exposure to disease during childhood in all
demographic and infectious settings.

Taken together, the results of the sensitivity analysis indicate that the early growth parameters are
smoothly dependent on the transmission parameters. The equilibrium behaviour displays complex depen-
dence on transmission parameters, but is qualitatively similar across the two demographic settings we have
studied. This in turn suggests that model behaviour is robust with respect to the demographic parameters.
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Figure 5: Early growth rate r as a function of transmission rate τ across a contact. Results are shown for
UK- and Kenya-like demographic parameters, and for average infectious periods of 7 and 14 days. We note
that the the growth rate increases close to linearly with increasing transmission rate.
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Figure 6: Household-level reproductive ratio R∗ as a function of transmission rate τ across a contact. Results
are shown for UK- and Kenya-like demographic parameters, and for average infectious periods of 7 and 14
days. There is clear non-linear behaviour for models with household structure due to the amplification of
early infection within the household.
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Figure 7: Equilibrium infectious prevalence Ī as a function of transmission rate τ across a contact. Results
are shown for UK- and Kenya-like demographic parameters, and for average infectious periods of 7 and 14
days. The prevalence rapidly asymptotes with increasing transmission, only in low transmission setting do
individuals escape infection.
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Figure 8: Endemic childhood infection probability PR as a function of transmission rate τ across a contact.
Results are shown for UK- and Kenya-like demographic parameters, and for average infectious periods of 7
and 14 days. Due to the different population structure, results for the UK require higher rates of transmission
before reaching their asymptote.
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Figure 9: Early growth rate r as a function of structure parameter σ under UK- and Kenya-like demo-
graphic parameters for measles and mumps-like infectious parameters. Scaling the amount of age-structured
compared to random transmission has limited impact on the early growth rate in all scenarios.
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Figure 10: Household-level reproductive ratio R∗ as a function of structure parameter σ under UK- and
Kenya-like demographic parameters for measles and mumps-like infectious parameters.
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Figure 11: Equilibrium infectious prevalence Ī as a function of structure parameter σ under UK- and Kenya-
like demographic parameters for measles and mumps-like infectious parameters.
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Figure 12: Endemic childhood infection probability PR as a function of structure parameter σ under UK-
and Kenya-like demographic parameters for measles and mumps-like infectious parameters.
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4 Model Description

We now describe the two main components of the model: the epidemiological component and the demographic
component, which to a large extent operate independently. Throughout the model description, the unit of
time is one day.

4.1 Epidemiological model

The infectious process is modelled as a continuous-time Markov process with four events: recovery and
infection via three routes. Recovery occurs at rate γI, where γ−1 is the expected length of the infectious
period, and results in the transition (S, I,R, k)→ (S, I,R+ 1, k). The three routes of infection all result in
the same transmission event (S, I,R, k)→ (S − 1, I + 1, R, k), but are associated with different rates. These
routes and their associated rates are defined as follows:

1) The first route of infection is through internal contacts between members of the same household, who
mix homogeneously with frequency dependent transmission. The choice of frequency-dependent transmission
is motivated by the Bayesian analysis of household transmission data conducted by Cauchemez et al.[4], which
suggests that within-household mixing is substantially closer to the frequency-dependent ideal than to the
density-dependent ideal. Let dint be the average time per day which individuals spend exposed to members
of their own household, and let τ be the unit time rate of transmission of infection. Then the internal
person-to-person transmission rate is given by βint = τdint and, from the frequency dependence assumption,
the internal transmission events occur at a rate βintSI/(N − 1), where S, I and N refer to the susceptible
individuals, infected individuals, and total occupancy of the household.

2) The second route of infection is through unstructured external contacts between members of distinct
households. We assume that transmission occurs at the same unit time rate τ as for internal contacts, and
define dext to be the average time per day which individuals spend exposed to individuals from outside their
own household. Then unstructured transmission events occur at a rate (1 − σ)βextSĪ, where βext = τdext
and σ is a tuning parameter which defines the level of structure in the external contact process, and Ī is the
mean level of infection in the population.

3) The third route of infection is through age-structured external contacts. We define K discrete age
classes C1, ..., CK such that every individual belongs to exactly one of these classes. Each individual in the
household is exposed to infection based on an age-structured contact profile, and acts as a channel along
which infection passes into the household. The age-structured contact profile for an individual in age class
Ci is a row vector Di of length K whose jth entry is the mean time per day in which an individual in age
class Ci is exposed to members age class Cj . We stress that these entries record the total time spent in
contact with members of Cj with individual contacts counted separately, so that the total exposure time
per day may exceed one day if multiple simultaneous exposures are common. Taking these vectors together
defines a K ×K matrix of exposure durations D where Di,j is the average contact time per day between
a single individual of age class Ci and the entire age class Cj . When multiplied by the transmission rate
τ this defines a Who-Acquires-Infection-From-Whom (WAIFW) matrix, as is used in typical age-structured
transmission models[8]. In our model the ages of the individuals in the household are not directly observable
but are correlated with the demographic class (T ); however, we can calculate the age-structured force of
infection λT on individuals in a household in demographic class T (N, k) by inferring a mean age profile
for the household and applying the WAIFW-type dynamics to this profile. This calculation is somewhat
involved and is covered in more depth in Section 6. Our model does not keep track of individual household
members (in the sense that we do not know “who” is infectious) and so we assume that all members of the
household act as channels of infection which can infect all of the others, which means the rate of infection
in a household in state (S, I,R, T (N, k)) is λTS.

The household infectious disease model with demography assumes internal contacts to be homogeneous, so
that only consider external contacts are considered in the construction of the contact profiles. We accordingly
denote the resulting contact profile matrix Dext. Two of the special cases of the transmission model defined
in Section 4 4.3 involve a profile which include both internal and external contacts, and we denote the
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resulting contact profile matrix by Dall. The calculation of the contact profile matrices and the values used
in our analysis are presented in Section 5.

4.2 Demographic model

The demographic model presents a simplified account of the evolution of a nuclear family, which we refer to
as a household. The household initially consists of two individuals, the ”parents”. The parents reproduce,
adding children to the household. At some point they stop reproducing, and after some amount of time the
now-adult children start to leave the household in the same order that they were born. Once all the children
are gone, the parents remain in the household for some period of time after which they are replaced by a
new couple, and the process begins again. In this way we can maintain a fixed population size of households,
but have a birth-rate that is higher than the death-rate due to the emigration of young-adults when they
leave home if there isn’t sufficient space in the population. Throughout we assume that couples who begin
a household stay together for life and that there is zero mortality in childhood. For the purposes of our
epidemic model, we also assume that new couples are drawn at randomly from the appropriate cross-section
of the population, so that the couples starting new households are statistically identical to the children
leaving home. With these assumptions in mind, we now give a formal description of the model.

Parameter Description UK-like population Kenya-like population
TB Mean between-birth interval 1096 (=3 years) 1071 (=35.2 months)
kB Number of ticks between births 2 2
TL Mean age of child leaving home 9131 (=25 years)[5] 8291 (=22.7 years)
kL Number of ticks between last birth and first leaving 4 4
TD Life expectancy 29,220 (=80 years) 24,472 (=67 years)
kR Number of ticks between last child leaving and reset 5 5

Table 2: Parameter values for the demographic process; all times are given in days with appropriate con-
versions to a more human scale. The k values, which determine the Gamma distribution shape parameters,
were chosen to produce reasonably . The between-birth interval for the UK was from the ONS[12] and for
Kenya was from the DHS[9, 72]. The mean age at leaving home for the UK was from Eurostat[5] and for
Kenya was from the DHS[9, 60]. The life expectancy for the UK was from the ONS[14] and for Kenya was
from the KHDSS[16]. The parameter estimations are explained in more detail in Section 5.

The evolution of a household is defined in terms of four demographic phases and events which occur
at the end of each phase, with the potential for some phases to occur multiple times in succession. The
demographic class is defined uniquely by the pair (N, k), independent of the infectious state of the individuals
within the household. The current phase is indexed by the value of k with specific values of k triggering
the end-of-phase events which can cause a change in N or k. Because k increments at exponential time
intervals, the demographic process is a continuous-time Markov chain, and the demographic events occur at
Erlang distributed intervals. The parameters of the demographic process are listed in Table 2. We define
the probability that a randomly chosen household produces NC children over its lifetime to be PC [NC ],
with expectation N̄C . We will always assume that there exists a maximum household size Nmax such
that PC [N − 2] = 0 for all N = 2 + NC ≥ Nmax. These distributions are listed for UK-like and Kenya-
like populations in Table 3. This distribution for the number of children gives rise to a set of stopping

probabilities Pstop[N ] = PC [N − 2]/(1−
N−3∑
n=0

PC [n]), defined as the probability that a household of total size

N (including the parents) stops producing children. We note that Pstop[2] = PC [0] and that Pstop[N ] = 0
for N = 2 +NC ≥ Nmax. The demographic events and associated k-phases are as follows:

1. Waiting for a child: 1 ≤ k ≤ kB . In this phase k increments at a rate kB/TB so that the expected
length of the phase is TB , the expected interval between births. When incrementing from k = kB , a new
(susceptible) child is added to the household which either stops producing children with probability
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Pstop[N ] or repeats this phase (resetting k = 1) and has another child with probability 1 − Pstop[N ].
Thus at the end of this phase the status of the household either transitions (S, I,R, kB) → (S +
1, I, R, kB + 1) with probability Pstop[N ] or transitions (S, I,R, kB)→ (S + 1, I, R, 1) with probability
1− Pstop[N ].

0 1 2 3 4(+) 5 6 7 8 9 10+
UK, ONS Data[13] 17 18 37 17 1
Kenya, DHS[9] 1.9 3.8 9.8 12.9 15.0 13.2 11.9 10.8 7.8 5.0 7.9

Table 3: Percentage distribution of women by number of live-born children, which we use as a proxy for the
distribution of children born to a pair of parents in our model. Data for the UK is from the ONS[13], data
for Kenya is from the DHS[9, 71]. The parameter estimations are explained in more detail in Section 5.

2. Waiting for eldest child to mature: kB + 1 ≤ k ≤ kB + kL. In this phase k increments at a rate
kL/(TL − (N − 3)TB) so that the expected length of the phase is TL − (N − 3)TB . When exiting
state k = kB + kL the eldest child leaves the household. This child has (N − 3) younger siblings and
thus has already lived through (N − 3) phases of expected length TB , giving them an expected age of
TL when they leave home. If N > 3 the counter increments from kB + kL to kB + kL + 1, entering
the waiting period for the next child to leave home. If N = 3 the counter increments straight to
2kB + kL, entering the waiting period for renewal of the household. Using the reasoning outlined in
Section 2.5, the infectious status of the eldest child is chosen by considering the infectious status of
the entire household and removing from consideration any adults who were recovered when the house
was established at T (2, 0) = 0. We thus choose uniformly from the infectious status (S, I,R) of the
household, discounting R and N by 2PR when R ≥ 2, PR when R = 1, and 0 when R = 0. This
procedure gives rise to a fairly complicated set of transition probabilities which are summarised in the
following table:

Number of recovered individuals Probability of transition
(S, I,R)→ (S − 1, I, R) (S, I,R)→ (S, I − 1, R) (S, I,R)→ (S, I,R− 1)

R = 0 S
N

I
N 0

R = 1 S
N−PR

I
N−PR

1−PR

N−PR

R ≥ 2 S
N−2PR

I
N−2PR

R−2PR

N−2PR

3. Waiting for other children to leave: kB + kL + 1 ≤ k ≤ 2kB + kL. In this phase k increments at a rate
kB/TB so that the lengths of these intervals are distributed identically to those of the between-birth
intervals. At the end of this interval the oldest child remaining in the household leaves home; the age
of this child is distributed identically to the age of the first child to leave home. If N > 3 the counter
transitions from 2kB +kL back to kB +kL +1 and repeat this phase for the next oldest child, otherwise
the counter increments to 2kB +kL + 1, moving the household into the last phase of the demographics.
The infectious status of the leaving child is chosen according to the same procedure as that of the
eldest child to leave home.

4. Waiting for household replacement: 2kB + kL + 1 ≤ k ≤ 2kB + kL + kR. In this phase k increments
at a rate kR/TR, where TR = TD − (1 − PC [0])TL − N̄CTB − TL gives the expected time between
a couple’s eldest child leaving (if they have a child) and the couple’s replacement by a new nuclear
family. Note that this expectation includes couples who do not have any children and thus enter this
phase immediately after leaving home. This formulation means that individuals are actively involved
with epidemic processes for an average time that is equal to the life expectancy, TD. When the old
inhabitants are replaced the new couple are each drawn uniformly at random from the set of children
leaving home (see Demographic Events 2 and 3). Leaving children are each either recovered (with
probability PR) or susceptible (with probability 1 − PR); the absence of infectious cases justified by
the difference in timescales between the demographic process and the infectious period of the diseases
of interested. Its calculation is detailed in Section 2.5. This new couple have children with probability
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Figure 13: The state of the demographics is defined by the household size N and ticker state k. Each row
corresponds to one phase of the household’s lifespan, proceeding from birth phase to first leaving phase to
second leaving phase to reset phase. The intervals between transitions are follow an Erlang distribution.
Here the maximum household size is 5.

1−PC [0], leading them into the first phase (k = 1), otherwise they move straight into the fourth phase
(k = 2kB+kL+1). With these considerations in mind, we transition (S, I,R, 2kB+kL+kR)→ (s, 0, r, 1)
with probability PC [0]× (1−PR)s ×P r

R × (1 + sr) or (S, I,R, 2kB + kL + kR)→ (s, 0, r, 2kB + kL + 1)
with probability (1− PC [0])× (1− PR)s × P r

R × (1 + sr).

The demographic model is illustrated schematically in Figure 13 for a system with maximum household size
of N = 5 (or NC = 3).

4.3 Special cases

The household infectious disease model with demography includes three standard transmission models that
we consider as special cases. Setting σ = 0, βint = 0, and βext = τdall, where dall = dint + dext is the
total time per day which individuals spend exposed to other members of the population, defines a random
mixing model equivalent to the standard homogeneous SIR model with frequency-dependent transmission,
independent of age- and household-structure. Setting σ = 1 and βint = 0 and using the contact profile Dall

to define the transmission rates, defines a purely age-structured model in which transmission obeys WAIFW-
type dynamics with no household structure. Finally, setting σ = 0 with βint = τdint and βext = τdext defines
a purely household-structured model with two distinct levels of mixing but no consideration of age structure.
All three cases retain the underlying demographic process outlined in Section 4 4.2, despite the differences in
how population structure influences the transmission process. For ease of reference, we refer to the standard
case with σ = 1 as the full age- and household-structured model or simply the full model. In the full model
there is a distinction between internal and external mixing, with global mixing being entirely age-stratified.
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5 Incorporating data sources

Modelling the events of the infectious process requires knowledge of the infection’s per unit time transmission
rate and its recovery rate, along with all the appropriate contact durations. The first two quantities are
disease-specific, whereas the contact durations are features of the population. The recovery rate is the
reciprocal of the mean infectious duration, which is directly measurable. Informed by the values reported
by Anderson and May[1], we choose infectious periods of 7 days for measles and 8 days for mumps. To
calculate the unit time transmission rate, we refer to Hope-Simpson[7], who provides empirical transmission
probabilities for both measles and mumps amongst British children belonging to the same household. Denote
the observed transmission probability by p and the mean per-day contact duration between children of the
same household by dC . Then the expected contact time between two children during the infectious period
is γ−1dC and so under the assumption of a Poisson transmission process

p = 1− exp(−τγ−1dC). (12)

Rearranging Equation 12 gives

τ = − γ

dC
log(1− p). (13)

This calculation requires an estimate of dC , which can be obtained from contact survey data. In our results
we used the value obtained from the POLYMOD study for the UK[11], taking the mean duration across all
contacts with “Home” listed as a contact location in which both the study participant and their contact are
aged 16 or under. We do not attempt to adjust for the five decades separating the populations of Hope-
Simpson’s study and the POLYMOD survey, although in a practical setting it is important that the contact
duration and transmission probability be estimated from the same population.

It should be noted here that in the calculation of the transmission rates τ we have explicitly assumed
that the infectious period of both diseases is a fixed interval (of duration γ−1); for measles and mumps this
is a reasonable assumption and hence provides an accurate approximation to the expected transmission rate
across any given contact. However for modelling simplicity and to lower the dimensionality of the system we
have a single infectious class with a fixed recovery rate, which leads to exponentially distributed infectious
times. When we consider external and age-structured contacts, because we assume that these contacts
occur at random, the exponentially distributed infectious times combined with the transmission rate τ
still gives us the correct expected number of infection events. However, the repeated nature of contacts
within a household together with the exponentially distributed infectious times leads to an under-estimation
of the expected number of secondary cases. Given the potential for huge differences between households
of the 1950’s which underpins Hope-Simpson’s observations[7], and the modern households that are the
focus for this study, we feel this approximation is reasonable. Alternatively, given more up-to-date data on
within-household transmission (and potentially about transmission to non-household members) we could use
different transmission rates for the two settings. The option of using a more realistic Erlang distribution
for the infectious period would lead to a large increase in the dimensionality of the system and would make
many of the calculations infeasible.

The contact durations required for our model can be estimated from social contact survey data on the
population of interest. Given a sample set of contact events with durations, age of the participants, and
an indication of whether the participants share a household, we can calculate the following parameters by
taking the average duration of contacts of the specified type:

1. dint, the average time per day which individuals spend exposed to members of their own household.

2. dext, the average time per day which individuals spend exposed to individuals from outside their own
household.

3. dC , the average duration of contacts between two children within the same household.

4. D, the contact profile matrix with Dij telling us the average time per day which individuals in age
class Ci spend exposed to individuals in age class Cj .
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We estimate contact durations and profiles for the UK from the data obtained through the POLYMOD
study[11], and for Kenya from that obtained through the Health and Demographic Surveillance System
(HDSS) in Kilifi, coastal Kenya[10]. Both datasets are publicly available as supplementary material attached
to their respective publications. The POLYMOD data does not state which of a participant’s contacts share
a household with them, but it does give a list of locations at which each contact was encountered. As
an approximation, we will define any contact for which “Home” is listed as a location to be an internal
contact, and all others to be external. The HDSS dataset specifies whether or not two contacts share a
household so that we can directly classify internal and external contacts from the data. Ages are specified
in the POLYMOD study to the nearest year, so that we can estimate a contact profile matrix using any set
of age classes. We choose a relatively low number of age-classes to reduce the computational burden, and
concentrate on younger age-groups given our focus of capturing the infection dynamics of childhood diseases.
The HDSS study only asked participants to assign their contacts to one of six age classes: Infant (< 1 year
old), pre-school (1-5 years), primary school (6-15 years), secondary school (15-19 years), adult (20-49 years),
and elderly (> 50 years). The HDSS data can thus only be easily used in models with this set of age classes
(or some aggregation of them), and so we use these for our Kenya-like population. The age classes used in
our two models and their sizes as percentage distributions are listed in Table 4.

Population C1 C2 C3 C4 C5 C6

UK-like ¡1 1-2 3-5 6-10 11-16 17-98
Percentage distribution 2% 2% 3% 9% 8% 77%
Kenya-like ¡1 1-5 6-15 16-19 20-50 > 50
Percentage distribution 2% 10% 14% 2% 40% 31%

Table 4: Age classes used in our models of UK-like and Kenya-like populations along with their associated
percentage distributions. Age class boundaries are in years. Percentages may not sum to one hundred due
to rounding.

For a given set of contact survey results let M be the total number of study participants,and J be the
total number of recorded contacts,with each contact reported by exactly one participant. The data associated
with the jth recorded contact can be written as the vector (mj , dj , Lj , a

1
j , a

2
j ), where mj ∈ 1, ...,M encodes

the identity of the study participant who reported the contact, dj is the duration of the contact event, Lj

encodes the location of the contact, a1j is the age of the study participant, and a2j is the age of their contact.
Specifically, we will use the encoding L = 0 for internal contacts and L = 1 for external contacts. Then the
mean total exposure time experienced by individuals of age class Ck to individuals of age class Cl in location
L is given by

1

M

M∑
m=1

J∑
j=1

dj1mj=m1Lj=L1a1
j∈Ck

1a2
j∈Cl

, (14)

where 1 is the indicator function equal to 1 if the given condition is satisfied and zero otherwise. Using this
formula, we obtain the equations

dint =
1

M

M∑
m=1

J∑
j=1

dj1mj=m1Lj=0 (15)

dext =
1

M

M∑
m=1

J∑
j=1

dj1mj=m1Lj=1 (16)

Dij =
1

M

M∑
m=1

J∑
j=1

dj1mj=m1Lj=11a1
j∈Ck

1a2
j∈Cl

. (17)

In the purely age-structured model, the age-structured contact profiles are required across the entire popu-
lation rather than just across the external contacts. The (i, j)th entry of the contact profile matrix is then
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given by

1

M

M∑
m=1

J∑
j=1

dj1mj=m1a1
j∈Ck

1a2
j∈Cl

, (18)

where we have removed the location-based restriction.
The average child-to-child contact duration dC is the mean duration of all internal (household) contacts

in which both the study participant and their contact belong to one of the “child” age classes (C1 to C5 of
the UK-like population and C1 to C4 of the Kenya-like population). We will denote the union of the “child”
age classes by C̃. Note that this corresponds to the mean length of a single contact, rather than of a total
exposure time across multiple contacts, so the average is taken across all contact events rather than across
all study participants. This gives rise to the formula

dc =

J∑
j=1

dj1Lj=01a1
j∈C̃

1a2
j∈C̃

J∑
j=1

1Lj=01a1
j∈C̃

1a2
j∈C̃

. (19)

The values of the daily exposure durations dint, dext, and dall are listed in Table 5. The age class-stratified
exposure matrices are stated in Tables 7 and 8 and visualised in Figure 14. In the UK-like population, younger
children tend to experience low levels of interaction with anyone outside the “adult” age class C6, with the
individuals they do interact with presumably being parents and other carers. Assortative mixing only
becomes a substantial factor once children enter age class C4, covering ages 6-10. Interactions in the Kenya-
like population are less assortative than in the UK but individuals spend longer exposed to other members
of the population, particularly those from outside the household. Table 6 lists class-stratified exposure
durations under the assumption of homogeneous mixing, calculated by multiplying the relevant location-
stratified exposure duration by the proportion of the population in the specified age class. Comparing the
resulting profiles by the matrices in Tables 7 and 8 makes it clear whether age-structured mixing increases
or decreases the level of contact between a given pair of age classes.

Exposure parameter UK-like population Kenya-like population
dint 0.382 0.445
dext 0.397 0.746
dall 0.779 1.191

Table 5: Daily exposure durations by location. UK values are derived from the POLYMOD study[11],
Kenya values are derived from Kiti et. al.[10].

C1 C2 C3 C4 C5 C6

UK, external contacts 0.007 0.007 0.013 0.037 0.031 0.303
UK, all contacts 0.013 0.013 0.026 0.072 0.060 0.594
Kenya, external contacts 0.016 0.078 0.103 0.018 0.299 0.231
Kenya, all contacts 0.025 0.125 0.165 0.029 0.478 0.369

Table 6: Expected daily exposure times to each class under homogeneous mixing, obtained by multiplying
the distributions in Table 4 by the exposure durations in Table 5. For each population-location combination,
the exposure profile is the same for each age class.
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Dext Dall

C1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 C6

C1 0.030 0.000 0.000 0.007 0.006 0.072 C1 0.031 0.009 0.027 0.138 0.060 0.508
C2 0.016 0.031 0.042 0.019 0.000 0.125 C2 0.026 0.042 0.073 0.097 0.033 0.410
C3 0.000 0.013 0.089 0.023 0.001 0.099 C3 0.011 0.035 0.111 0.102 0.026 0.416
C4 0.000 0.002 0.018 0.501 0.020 0.150 C4 0.003 0.007 0.052 0.601 0.099 0.481
C5 0.000 0.001 0.002 0.039 0.573 0.145 C5 0.002 0.008 0.013 0.104 0.696 0.411
C6 0.001 0.001 0.004 0.022 0.013 0.302 C6 0.003 0.007 0.019 0.067 0.061 0.525

Table 7: UK age-stratified matrices Dext and Dall of daily exposure durations across external and all
contacts respectively. These are derived from the data provided by the study POLYMOD study in the
UK [11]. The ith row is the average daily contact profile for a member of age class Ci. This matrix is
visualised in Figure 14a and 14c

Dext Dall

C1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 C6

C1 0.009 0.079 0.157 0.049 0.128 0.033 C1 0.015 0.219 0.354 0.099 0.317 0.069
C2 0.018 0.190 0.199 0.054 0.136 0.040 C2 0.042 0.307 0.455 0.109 0.309 0.082
C3 0.022 0.143 0.394 0.108 0.122 0.032 C3 0.040 0.276 0.610 0.152 0.275 0.065
C4 0.022 0.082 0.240 0.272 0.222 0.041 C4 0.034 0.143 0.376 0.322 0.341 0.085
C5 0.027 0.083 0.114 0.095 0.412 0.120 C5 0.048 0.190 0.232 0.142 0.524 0.140
C6 0.015 0.051 0.097 0.057 0.291 0.111 C6 0.028 0.113 0.176 0.102 0.390 0.131

Table 8: Kenyan age-stratified matrices Dext and Dall of daily exposure durations across external and all
contacts respectively. These are derived from the data provided by the study of Kiti et. al. [10] in coastal
Kenya. The ith row is the average daily contact profile for a member of age class Ci. This matrix is visualised
in Figure 14b.

The demographic parameters can be fitted using data available from statistical surveys. Fitting the
Erlang shape parameters kB , kL, and kR would require detailed knowledge of the waiting time distributions,
and so we choose values which reduce the variance of these times relative to an exponential distribution whilst
still keeping the total number of states in the system relatively low. The choices of expectation parameters
TB , TL, and TD are informed by data.

For the UK, we estimate TB as approximately 3 years based on the estimates of median interval between
births provided by the Office for National Statistics (ONS)[12]. In 2017 these were 36 months between first
and second birth, 35 between second and third, and 34 between third and fourth. In the absence of more
information, we assume that the median gives a good approximation of the mean value. The average age
at leaving the parental household TL is provided directly by Eurostat[5]. The choice of 80 years for the
life expectancy for TD is motivated by the life tables for England provided by the ONS, in which children
born in England in 2016 are predicted to survive 79.46 (male) and 83.10 (female) years. Given our focus
on childhood infections, we believe that the life expectancy within the model should have relatively limited
impact.

For Kenya, our estimates of TB and TL are from the Kenya Demographic and Health Survey (DHS)
2014[9]. The median birth interval is estimated to be 35.2 months in the coastal region where Kilifi is
located[9, 72], and as with the UK we will assume this gives a good approximation of the mean value. We
approximate average age at leaving home by the average age at first marriage. The DHS provides the median
age at first marriage stratified by county, and for Kilifi provides values of 18.9 for women and 24.8 for men[9,
60]. Taking an unweighted average and assuming that the mean is well approximated by the median, we use
21.9 as our average age at leaving. The profile of the KHDSS by Scott et al. lists life expectancies of 69.5
for men and 75.4 for women[16], and so we set TD to be the mean of these two values, 72.45.

The distribution PC of the total number of children born in a household over its lifetime can be estimated
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Figure 14: Average exposure duration matrices based on: (graph a) external contacts in the UK, ignoring
contacts made within the household; (graph b) external contacts in Kenya, ignoring household contacts;
(graph c) all contacts in the UK, including both household and external contacts; and (graph d) all contacts
in Kenya. Profiles are derived from the data of the POLYMOD study for the UK [11] and the study of Kiti
et. al. for Kenya[10].
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from age-stratified records of the number of children born to women in the population of interest. The ONS
provides a percentage distribution of the number of children born to women who were born in 1970[13].
Assuming that this cohort has now stopped having children, we can take this distribution to be the total
number of children born to a woman over a lifetime, which we use as PC in our UK-like population. For
the Kenya-like population, we use the percentage distribution of number of children born to women aged 44
to 49 years old, which is provided by the DHS[9, 71]. These distributions are listed in Table 3. The data
sources list the maximum number of children as 4+ and 10+ respectively, which in our model we replace
with their exact values. Based on the values we assign to TB , TL, and PC in the Kenya-like population, we
see that the maximum number of children in a household is 10 but the age at leaving home for an elder
sibling TL is less than 8TB , meaning that for families with nine or ten children the time intervals in the
second phase of the demographic model will have negative length. To avoid this problem we aggregate the
entries of PC corresponding to NC > TL

TB
+ 1 so that the age of the eldest child when the youngest child is

born, (NC − 1)TB , is less than the expected age at leaving TL. In the case of Kenya this means we set the
maximum number of children to be 8, with probability equal to the DHS-derived probability that 8 or more
children are born.
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6 Calculation of the age-structured rate of infection F

In this section we explain in detail the calculation of the age-structured rate of infection, denoted λ. This is
a vector indexed by the demographic class T (N, k). The T th entry λT is the age-structured force of infection
experienced by and individual residing within a household in demographic class T .

The contact profile matrix D and transmission rate τ define mixing between age classes, so that the rate
at which an infectious individual of age class Cj transmits infection to an individual of age class Ci is τDij .
We define age-structured mixing on the level of households by assuming that each member of the household
forms an age-structured channel along which infection can leave and enter the household. Because our model
does not directly keep track of the ages and infection status of each individual household member, we assume
that these channels result in exposure to the total amount of infection within the household. Let ET,i be
the expected number of individuals in age class Ci belonging to a household in demographic class T . The
calculation of this expectation is outlined in Section 6.1. The expected total time which the members of a
household in demographic class T are exposed to individuals of age class Cj is then∑

i

ET,iDi,j . (20)

Given the probability HT that a household is in demographic class T , we can define

Ẽi,T =
HTET,i∑

T

HTET,i
, (21)

the probability that an individual of age class Ci belongs to a household in demographic class T . The
expected amount of infection in an age class Cj individual’s household is thus∑

U

Ẽj,U ĪU . (22)

This quantity can be interpreted as the household-level prevalence associated with age class Cj and is plotted
in figs. 3 and 4. Taking Equations 20 and 22 together, the expected per-member rate of transmission to a
household in demographic class T is given by

λT =
∑
i,j

ET,i

NT
βext
i,j

∑
U

HUEU,j
ĪU
Pj
. (23)

Using I to denote the vector with T th entry ĪT , Equation 23 can be rewritten as the matrix expression

λ = τEDẼI. (24)

6.1 Calculation of ET,i

In the following calculation we will take advantage of the fact that the two age partitions we defined in
Table 4 include a broadly defined adult range (16-98 years in the UK-like population), with the Kenya-like
population further dividing this into adults of roughly child-rearing age (20-50 years) and elders (> 50 years).
We make the approximation that in the UK-like population the “parents” of the household always belong
to the adult class, and that in the Kenya-like population they belong to the adult class for states with
k ≤ 2kB + kL and to the elder class for states with k > 2kB + kL, so that the transition occurs when the
last of their children leave home. Our calculation can thus be restricted to the expected number of children
of age class Ci in a household in demographic class T , which we denote ẼT,i. For the UK-like population we

then have ET,6 = ẼT,6 + 2 for all T , whereas for the Kenya-like population we have ET,5 = ẼT,5 + 2 for all

T with k(T ) ≤ 2kB + kL, and ET,6 = ẼT,6 + 2 for all T with k(T ) > 2kB + kL, with ET,i = ẼT,i elsewhere
in both cases.
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In the calculations that follow we define the instantaneous age profile x = (x1, ..., xNC
) to be the exact

ages of the NC = N(T ) − 2 children in a household, taking the oldest first (i.e. x1 > x2 > . . . > xNC
).

Our approach is then as follows: derive an expression for the distribution of (x1, ..., xNC
), and subsequently

integrate this expression to get the expected number of children in each age class.
Distribution of the instantaneous age profile.Although the elements of the instantaneous age profile
x are heavily correlated, the time intervals between births are independently Erlang distributed. Define
y = (y1, ..., yNC

) with yi = xi−xi+1 for i = 1, ..., NC−1 and yNC
= xNC

. This vector is uniquely determined
by x. The first NC − 1 elements of y are realisations of the inter-birth waiting time from the demographic
model, making them independently Erlang distributed with shape parameter kB and rate parameter kB/TB .
The final element yNC

is the age of the youngest child, whose distribution is dependent on the value of k as
follows:

1. 1 ≤ k ≤ kB . In this case the youngest child’s life covers the first k ticks of the first phase of the
demographic model and so yNC

is Erlang distributed with shape parameter k − 1 and rate parameter
kB/TB .

2. kB + 1 ≤ k ≤ kB + kL. In this case the youngest child’s life covers the first k ticks of the second phase
of the demographic model and so yNC

is Erlang distributed with shape parameter k− kB − 1 and rate
parameter kL/(TL − (N − 3)TN ).

3. kB + kL + 1 ≤ k ≤ 2kB + kL. This case is more complicated because the demographic class T (N, k)
does not tell us how many elder siblings the child has had and thus how many times this phase of
the demographics has already been repeated. If M elder siblings have already left the household, the
youngest child will have experienced kL time intervals at rate kL/(TL−(N−3)TB) and (M−1)∗kL+k−1
at rate kB/TB , meaning that its age will be hypoexponentially distributed with a parameter vector
consisting of kL copies of the first rate and (M − 1) ∗ kL + k − 1 copies of the second. Denote this
parameter vector by ΛM .Then the probability of the youngest child being of age yNC

is

Nmax−N∑
M=1

Pstop[M +N ]fHypoexp(yNC
|ΛM ), (25)

where fHypoexp(·|ΛM ) is the probability density function of the hypoexponential distribution with
parameter vector ΛM .

Since there are no children present in the fourth phase of the demographics, these three cases cover all
possibilities.

The probability density function of x for a household in demographic class T (N, k) is thus

fAge(x|T ) =



fErl(xNC
|k, kB

TB
)
NC−1∏
i=1

fErl(xi − xi+1|kB , kB

TB
) 1 ≤ k ≤ kB

fErl(xNC
|k − kB − 1,

kL
TL − (N − 3)TB

)
NC−1∏
i=1

fErl(xi − xi+1|kB , kB

TB
) kB + 1 ≤ k ≤ kB + kL

Nmax−N∑
M=1

Pstop[M +N ]fHypoexp(yNC
|Λ)

NC−1∏
i=1

fErl(xi − xi+1|kB , kB

TB
) kB + kL,1 + 1 ≤ k ≤ 2kB + kL.

(26)
which relies on both Erlang (fErl) and hypoexponential (fHypoexp) probability density functions. Because the
Erlang and hypoexponential distributions are only defined for positive waiting times, the distribution fAge is
only defined when x1 < x2 < ... < xNC

, and so we set fAge(x|T ) = 0 whenever this is not the case. For ease
of notation we use fAge(x1, ..., xNC

) to denote the probability density evaluated at the vector (x1, ..., xNC
),

dropping the internal set of brackets. Notice that for all n < NC ,

fAge(x1, . . . xn, nn+1, . . . , xNC
) = fAge(xn+1, . . . , xNC

)

n∏
i=1

fErl(xi − xi+1|kB ,
kB
TB

), (27)
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a fact which we will use in the calculation of ẼT,i.

Age class probabilities. Let Li and Ui be respectively the lower and upper boundaries of the age class
Ci. Then ET,i is precisely the expected number of children between ages Li and Ui within a household in
demographic class T . This is the sum over the NC children of the probability that the nth child is in the
age interval (Li, Ui), giving rise to the formula

ẼT,i =

NC∑
n=1

∫
RNC

fAge(x|T )1Li<xn<Ui
dx, (28)

with 1 being the indicator function. Define En(a, b) to be nth term of this sum,

En(Li, Ui) =

∫
RN

fAge(x|T )1Li<xn<Ui dx (29)

=

∞∫
0

...

Ui∫
min(Li,xn+1)

...

∞∫
x2

fAge(x|T ) dx1...dxn...dxNC
, (30)

with the lower limits of each integral arising from the fact that fAge is zero unless x1 > x2 > ... > xNC
.

Because the age of the nth child is independent of that of its elder siblings, the interior n − 1 integrals
evaluate to 1 and we obtain

En(Li, Ui) =

∞∫
0

...

b∫
min(a,xn+1)

fAge(xn, ..., xNC
|T )dxn...dxNC

, (31)

which we compute by Monte Carlo integration. Although this calculation of ẼT,i is computationally intensive,
we note that it only needs to be performed once for any given population parameters.
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