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Supporting Information Text12

Experiment 1.13

Effect of time on mean and variance. We ran a Bayesian hierarchical regression to estimate participant-level and group-level slopes14

and Weber fractions, as well as the effects of time on both. We assumed that each individual’s mean estimate and standard15

deviation about that estimate varied linearly as a function of the quantity displayed and logarithmically as a function of time.16

We will call participants’ baseline (independent of time) slopes and Weber fractions β0 and w0; we will denote time t; and17

we will call the effect of time on slopes βt and Weber fractions wt. In order to keep slopes and Weber fractions positive, we18

assume an exponential linking function between slope and the predictors. Specifically, Equations 1 and 2 show how the slope19

and Weber fractions for each participant are calculated:20

β = eβ0+βt·log(t) [1]21
22

w = ew0+wt·log(t) [2]23

Then, each participant’s mean estimate is drawn from a Gaussian centered around β ·N with standard deviation w · β ·N .24

Trials where the eye-tracker did not capture eye-movements (determined by Tobii software) were removed (17 trials); as well25

as estimates that were more or less than 3 standard deviations away from the mean (7 trials). Figure 2 shows the mean slope (2c)26

and Weber fraction (2d) in each time condition; the group-level means are shown in red and each participant’s mean in black.27

If participants’ estimates were un-biased on average then the group mean slopes would be 1; and if time did not have an effect,28

the group mean slopes and Weber fractions would remain constant across time. It is clear visually that participants’ estimates29

are biased and that time had an effect on both the slope and Weber fraction. Table S1 provides the inferred group-level30

regression weights and the uncertainty of the estimate. The fact that the intercept is negative (β0 = −0.24;CI = [−0.28,−0.19])31

indicates a baseline tendency to underestimate. Most significantly, the effect of time on both mean slopes and Weber fractions32

is significantly different than 0: time increases the group mean slope (βt = 0.05; CI = [0.03, 0.09])∗; and it decreases the group33

mean Weber fraction (wt = −0.11; CI = [−0.12,−0.09]). Participants’ average slope increases by about 17% (0.71 to 0.83)34

from the shortest to the longest time condition; and their average Weber fraction decreases by about 21% (0.28 to 0.22).35

Var Value 2.5% 97.5%
β0 -0.24 -0.28 -0.19
βt 0.05 0.03 0.09
w0 -1.42 -1.59 -1.21
wt -0.11 -0.12 -0.09

Table S1. Group-level regression weights and their 95% credible intervals for each condition. For the mean slope, the inferred weights include
the intercept (β0), the effect of time (βt). For Weber fractions, the inferred values are analogous, with the intercept (w0), the effect of time
(wt).

Figure 4a shows the percent of dots within a participants’ gaze for each time condition. As is visually apparent, there36

is a monotonic relationship such that an increase in time increases the number of dots foveated. The average proportion of37

dots within the foveal gaze for each time condition from shortest to longest are 0.18 (SD = 0.03), 0.22 (SD = 0.04), 0.3938

(SD = 0.08), and 0.64 (SD = 0.14). Our prediction is that the increase in the proportion of dots foveated between time39

conditions may account for the observed effects of time on both accuracy and bias towards underestimation.40

Visual fixations mediate effects of time. To quantify whether the effect of time was explained by eye movement patterns, we ran41

another Bayesian regression that was identical to the one reported above, with the addition of random variables for the effect42

of the proportion of dots foveated on the mean and variance of each participant’s estimate. That is, we used the same terms as43

in equations 1 and 2, but added terms βs and ws to the way slope and Weber fraction are computed — each term is multiplied44

by s, representing the proportion of dots foveated. Equations 3 and 4 show the calculation of β and w in full.45

β = eβ0+βt·log(t)+βs·s [3]46
47

w = ew0+wt·log(t)+ws·s [4]48

Table S2 shows the results of this analysis in full. Two findings are worth highlighting. First, the proportion of dots49

foveated significantly affects the mean and variance of participants’ estimates. Second, time no longer has a significant effect50

on either. The effect of foveation on the mean can be seen in Figure 4c: as the proportion of dots foveated increases, so51

do participants’ mean estimates.† Congruently, the regression shows that the group-level mean βs is significantly above 052

(βs = 0.43;CI = [0.26, 0.59]). There is also an effect of foveation on the variance of estimates. Figure 4d shows that as foveation53

increases, Weber fractions tend to decrease. The group-level regression revealed that the effect of foveation is significant54

(ws = −0.67, CI = [−0.95,−0.27]). Finally, consistent with our hypothesis, the effects of time were no longer significantly55

different than 0 when accounting for the visual samples. The lack of a time effect on the mean (when conditioning on percent56

of dots foveated) can be seen clearly in Figure 4b which shows the average deviation as a function of dots foveated and colored57

by time: if there were a significant effect of time over-and-above the differences driven by fixations, the regression lines for each58

time condition would be non-overlapping.59

∗CI here indicates the credible interval, not the confidence interval.
†Note that the lines are non-linear in Figures 4c and 4d because the y-axis measures are collapsed over other predictors.
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Var Value 2.5% 97.5%
β0 -0.74 -0.87 -0.65
βt -0.00 -0.02 0.03
βs 0.43 0.26 0.59
w0 -0.98 -0.74 -1.21
wt 0.05 -0.03 0.12
ws -0.67 -0.95 -0.27

Table S2. Group-level regression weights and their 95% confidence intervals for each condition. For the mean slope, the inferred weights
include the intercept (β0), the effect of time (βt), and the effect of the percent of dots seen (βs). For Weber fractions, the inferred values are
analogous, with the intercept (w0), the effect of time (wt), and the effect of the percent of dots seen (ws).

Analysis within time conditions. To verify the robustness of the the finding that mean estimates increase with greater foveation,60

we ran a secondary analysis to test the effect of foveation within each time condition. Specifically, we ran four (Bayesian) linear61

regressions with group-level and subject-level parameters representing the effect of foveation on slopes (βs), in addition to62

independent slope (β0) and Weber (w0) parameters. We used the un-standardized proportion of dots foveated to allow us to63

compare the effect of foveation across the time conditions. For a given number of dots displayed, N , the model assumed that64

estimates were drawn from a Gaussian centered around (β0 + βs) ·N with standard deviation w0 · β ·N . The results of these65

regressions are shown in Table S3. Corroborating the findings from previous analyses, the proportion of dots foveated has a66

significant positive effect on mean estimates within each time condition (though it is marginal at 0.1s). The inferred slopes do67

not significantly differ from one another.68

Time (s) βs 2.5% 97.5%
0.1 0.27 -0.01 0.60
0.3 0.31 0.05 0.44
1 0.40 0.21 0.60
3 0.26 0.13 0.43

Table S3. Group-level regression weights and their 95% confidence intervals for the effect of foveation on slopes in each time condition.

Experiment 2. To analyze the discrimination experiment, we ran a regression analogous to the one used for the estimation task,69

but predicting the probability of guessing the second array given the participant’s mean slope (β0), mean Weber fraction (w0),70

and the effect of the duration of the stimuli on the mean (βt) and the Weber fraction (wt). If n1 is the number of dots in the71

first display and n2 is the number of dots in the second display, then the ratio is defined as (n1−n2)√
(n2

1+n2
2)
. If t1 and t2 are the72

display times of the first and second stimulus, then the probability a participant chooses the second screen is given below in73

Equation 5.74

p(choose 2) = 1
2 + 1

2erf

(
n2 · eβ0+βt·log(t2) − n1 · eβ0+βt·log(t1)
√

2ew0+wt·log(t1)+wt·log(t2)
√

(n2
1 + n2

2)

)
[5]75

The results of the regression are shown in Table S4. Corroborating the estimation task, the effects of time on both the76

group-level mean estimate (βt) and Weber fraction (wt) are significantly different than 0. Moreover, they were in the same77

direction as in the estimation task: mean estimates increase (βt = 0.05; CI = [0.04, 0.07]) and Weber fractions decrease78

(wt = −0.07; CI = [−0.12,−0.02]).79

Var Value 2.5% 97.5%
β0 -1.22 -1.53 -0.99
βt 0.05 0.04 0.07
w0 -1.73 -1.14 -2.31
wt -0.07 -0.12 -0.02

Table S4. Group-level regression weights and their 95% credible intervals for each condition in the discrimination task using only time as a
predictor for the mean and variance. For the mean slope, the inferred weights include the intercept (β0), the effect of time (βt). For Weber
fractions, the inferred values are analogous, with the intercept (w0), the effect of time (wt).

Recency bias cannot explain effects of time. An alternative account of our finding that people respond that the second stimulus is80

more numerous than the first in the Short-Long condition than the Long-Short condition is that it is a mere effect of recency81

(1). We can test this possibility in our design by comparing responses across the conditions where the second stimulus’ duration82

is held constant. That is, comparing responses in the Short-Long to the Long-Long condition; and comparing responses in the83

Long-Short condition to the Short-Short condition. In both cases, recency could not explain differences in perceived numerosity.84
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If longer duration does, in fact, increase perceived numerosity, then participants should rate the first stimulus in the Short-Long85

as less numerous than the second relative to the first stimulus in the Long-Long condition.86

We ran two logistic regressions to determine the effect of increasing the first stimulus’ duration. The first regression was run87

on only the conditions where the second stimulus was 0.1s (short) and the second regression was run on only the conditions88

where the second stimulus was 1s (long). The ratio of the numerosities presented was also entered as a predictor. Responding89

that the first stimulus was greater numerosity than the second was coded as 0 and responding that the second was greater90

than the first was coded as 1.91

The results of this analysis revealed effects of stimulus duration in the predicted direction. The first regression — looking at92

the conditions when the second stimulus was short — showed a significant effect of the first stimulus’ duration (β = −0.32; z =93

−4.04; p < 0.001), such that increasing the presentation duration of the first stimulus increased participants’ likelihood of94

reporting that the first stimulus was of greater numerosity. Likewise, the same effect was revealed in the second regression95

(β = −0.19; z = −2.22 p = 0.03), looking at the conditions when the second stimulus was long. Taken together, these findings96

effectively rule out the possibility that a recency bias explains the patterns in our data; instead, longer duration of presentation97

itself seems to increase perceived numerosity.98

Visual fixations mediate effects of time. To determine if this observed effect of time is mediated by visual fixations, we ran a99

regression identical to the one above with the effect of the percent of dots foveated added as a predictor of both the mean100

estimate and Weber fraction. The results of the regression are shown in Table S5. Most importantly, the effect of the percent101

of dots foveated on the mean is positive (βs = 2.93;CI = [0.24, 4.01]); and the effect on the Weber fraction is negative102

(ws = −0.14;CI = [−0.21,−0.05]). The effect of time on the slope is negligible (βt = −0.01;CI = [−0.07, 0.03]); but there is103

still an effect of time on the Weber fraction (wt = −0.07;CI = [−0.14,−0.02]), indicating that the percent of dots foveated104

probably does not entirely mediate the effect of time on accuracy.

Var Value 2.5% 97.5%
β0 -0.29 -0.94 0.41
βt -0.01 -0.07 0.03
βs 2.93 0.24 4.01
w0 -0.96 -0.61 -1.36
wt -0.07 -0.14 -0.02
ws -0.14 -0.21 -0.05

Table S5. Group-level regression weights and their 95% credible intervals for each condition in the discrimination task, including parameters
for time an the percent of dots foveated as parameters affecting mean slopes and Weber fractions. For the mean slope, the inferred weights
include the intercept (β0), the effect of time (βt), and the effect of the percent of dots seen (βs). For Weber fractions, the inferred values are
analogous, with the intercept (w0), the effect of time (wt), and the effect of the percent of dots seen (ws).

105

Model.106

Model implementation. The full model is given below. The subscripts for each variable denote whether that variable applies to107

foveal (F) or peripheral (P) dots; and whether that variable is at the group-level (G) or at the subject-level (S). All variables108

that have only one subscript apply to both foveal and peripheral dots, so the subscript denotes only whether it is a group- or109

subject-level variable. The mean of a participant’s estimate, µ, is a function of five quantities: the number of foveated (NF )110

and peripheral (NP ) dots; the proportion of screen area foveated (AF ) and peripheral (AP ); and the total number of times all111

the dots were re-fixated (ND). Each of these parameters has a corresponding inferred weight in the regression.112

βF,G, βP,G, βN,G, βD,G ∼ N (0, 100)113
114

σF,G, σP,G, σN,G, σD,G ∼ |N (0, 100)|115
116

γF,G, γP,G ∼ Beta(1, 1)117
118

λG ∼ Exp(1)119

βF,S ∼ N (βF,G, σ2
F,G)120

121

βP,S ∼ N (βP,G, σ2
P,G)122

123

βN,S ∼ N (βN,G, σ2
N,G)124

125

βD,S ∼ N (βD,G, σ2
P,G)126

γF,S ∼ Beta(λγF,G, λ(1− γF,G))127
128

γP,S ∼ Beta(λγP,G, λ(1− γP,G))129

µS = (1 + βD,S ·ND) (βF,S ·NF · (1/AF )γF,S ) + βP,S ·NF · (1/AP )γP,S
130
131

σS = βN,S · µS132
133

E ∼ N (µS , σ2
S)134
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Model inference. The values for parameters in the model were inferred using the gradient-based MCMC sampler NUTS (2) which135

was implemented in the Python package PyMC3 (as were all the hierarchical models) (3). Two chains were ran for 10,000 steps136

each.137

Model results. The important group-level parameters are given in Table S6. Importantly, foveated dots have a significantly greater138

effect on the mean estimate (βfoveal = 0.88; CI = [0.79, 0.96]) than those on the periphery (βperipheral = 0.47; CI = [0.36, 0.55]).139

Figure 6b shows the regression weights of βfoveal on and βperipheral. Note also that the difference in β values here is actually140

underestimate of the difference in the relative contributions to the mean, since it does not take into account the amount of re-141

scaling by area, which happens to be slightly greater for peripheral regions. However, re-scaling is inferred to have only a miniscule142

influence for both the area foveated (γfoveal = 0.11;CI = [0.04, 0.18]) and not foveated (γperipheral = 0.11;CI = [0.01, 0.23]).143

Figure 6c shows the values of γfoveal and γperipheral. That no subject has a value above 0.5 for either γfoveal or γperipheral is144

strong evidence that re-normalization by area is not an important factor in estimating numerosity. Double-counting seems to145

also have minimal effect on the mean estimate (βdouble = 0.01;CI = [0.00, 0.05]). The average contribution of each one of these146

factors at each time condition is shown in Figure 6d.147

Var Value 2.5% 97.5%
βfoveal 0.88 0.79 0.96

βperipheral 0.47 0.36 0.55
γfoveal 0.11 0.04 0.18

γperipheral 0.11 0.01 0.23
βdouble 0.01 0.00 0.05

Table S6. Group-level regression weights and their 95% credible intervals for the effect of dots foveated (βfoveal) and not foveated
(βperipheral) on the mean estimate; for the effect of re-foveating on the mean (βdouble) and for the foveal re-scaling factor (γfoveal) and
the peripheral re-scaling factor (γperipheral).

Foveation analysis. It will be important for future research to better determine how saccades are programmed, since this may148

explain some influence of the properties of visual displays on numerical estimation (4, 5), including biases introduced by object149

clustering (6). Research has shown that a pre-saccadic selection process takes place over competing regions in the visual150

periphery (7). Indeed, in our tasks, there is likely a non-random nature to participants’ saccades — this is suggested by the151

fixation paths in Figure 3. After starting at center fixation, participants tended to fixate regions of the screen that had higher152

density; and their gaze remained in higher density regions for longer. We computed the mean x- and y- coordinates of the153

displayed dots for each trial in the 3-second time condition (where participants could saccade freely). We found that the mean154

x-coordinate of the dots significantly correlated with the participant’s mean x-coordinate gaze (r = 0.27, p < 0.001); this is155

likewise true for the y-coordinates (r = 0.34, p < 0.001). This is consistent with previous results showing that people tend to156

look towards the greater of two quantities first and for longer in a quantity discrimination task (8).157

Continuous variables.158
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Fig. S1. The percent deviation of estimates from the true number of dots (y-axis) as a function of the percent of the average cortical magnification (x-axis) of each dot displayed
in a trial. Each time condition is grouped by color.

Analysis using cortical magnification factor. In our primary analysis, we considered a dot “foveated” if it fell within a 5◦ window159

around someone’s gaze for more than 50ms. While this measure has the benefit of simplicity, the exact values are somewhat160

arbitrary. A somewhat more complicated, but less ad hoc approach, would be to use the cortical magnification factor, which is161

known to predict visual acuity (e.g. 9). The cortical magnification factor (CMF) is inversely proportional to the eccentricity of162

an object from someone’s gaze. For each trial, we calculated the CMF for each dot based on the minimum distance between163

each dot and the participants’ gaze (in terms of visual degrees). We took the mean CMF over all dots and used that as a164
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predictor of the mean and variance of estimates. The results revealed no substantial differences between this metric and the165

one used in the main text. Figure S1 shows, for example, the relationship between the CMF and participants’ errors. There is166

clearly no substantial difference in the qualitative result, as can be seen by comparing this to Figure 4b.167

Analysis using convex hull. There is an ongoing debate about the importance of continuous variables such as area, density, and168

convex hull on number estimation (e.g. 10–13). Our experimental design was not suited to testing whether people were using169

these types of heuristics (nor was it intended to). In particular, total area was perfectly correlated with number since the170

size of the dots was constant across trials. Convex hull was also strongly correlated with the total number of dots displayed,171

however there was enough random variation to allow us to test its influence on numerical estimation. Given the dependence of172

estimates on eye movements, one might expect greater underestimation from displays with greater convex hull. To evaluate173

this, we ran a regression to predict percent estimation error (signed, so not absolute error) from the number of dots shown, the174

proportion of dots foveated, and the convex hull of the dots. There was a significant effect of the number of dots on estimation175

error, such that participants’ bias to under-estimate increased with the number of dots (β = −0.24; t = −6.43; p < 0.001), even176

controlling for convex hull. The effect of convex hull trended in the same direction, but 1/4th the size and was only marginally177

significant (β = −0.06; t = −1.74; p = 0.08). Consistent with previous analyses, foveating a greater proportion of the dots has178

the opposite effect, pushing estimates higher (β = 0.14; t = 6.14; p < 0.001). These results therefore indicate that there are179

strong effects of number over and above convex hull, and weak-to-nonexistent effects of convex hull controlling for number and180

foveation. Interestingly, the influence of convex hull (to the extent it is present) is in the opposite direction as has been found181

previously (12).182
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