

1

# Supplementary Information for Global change effects on plant communities are magnified by time and the number of global change factors imposed

- 4
- 5 Kimberly J. Komatsu<sup>\*</sup>; Meghan L. Avolio; Nathan P. Lemoine; Forest Isbell; Emily Grman;
- 6 Gregory R. Houseman; Sally E. Koerner; David S. Johnson; Kevin R. Wilcox; Juha M. Alatalo;
- 7 John P. Anderson; Rien Aerts; Sara G. Baer; Andrew H. Baldwin; Jonathan Bates; Carl
- 8 Beierkuhnlein; R. Travis Belote; John Blair; Juliette M.G. Bloor; Patrick J. Bohlen; Edward W.
- 9 Bork; Elizabeth H. Boughton; William D. Bowman; Andrea J. Britton; James F. Cahill, Jr.;
- 10 Enrique Chaneton; Nona Chiariello; Jimin Cheng; Scott L. Collins; J. Hans C. Cornelissen;
- 11 Guozhen Du; Anu Eskelinen; Jennifer Firn; Bryan Foster; Laura Gough; Katherine Gross;
- 12 Lauren M. Hallett; Xingguo Han; Harry Harmens; Mark J. Hovenden; Annika Jagerbrand; Anke
- Jentsch; Christel Kern; Kari Klanderud; Alan K. Knapp; Juergen Kreyling; Wei Li; Yiqi Luo;
- Rebecca L. McCulley; Jennie R. McLaren; J. Patrick Megonigal; John W. Morgan; Vladimir
- 15 Onipchenko; Steven C. Pennings; Janet S. Prevéy; Jodi Price; Peter B. Reich; Clare H. Robinson;
- F. Leland Russell; Osvaldo E. Sala; Eric W. Seabloom; Melinda D. Smith; Nadejda A.
- 17 Soudzilovskaia; Lara Souza; Katherine Suding; K. Blake Suttle; Tony Svejcar; David Tilman;
- 17 Soudzhovskala, Lala Souza, Kallerine Suding, K. Diake Sudie, Tony Svejcal, David Tillian 18 Dedre Tegnetti: Dev Turkington: Shennon White, Zhuwen Yu: Leure Vehdien: Oieng Yu:
- 18 Pedro Tognetti; Roy Turkington; Shannon White, Zhuwen Xu; Laura Yahdjian; Qiang Yu;
- 19 Pengfei Zhang; Yunhai Zhang
- 20
- 21 \*corresponding author: komatsuk@si.edu, 443-482-2218
- 22

# 23 This PDF file includes:

- 24 Materials and Methods
- 25 Appendix 1 Table of coauthor contributions.
- 26 Appendix 2 Table of experiment information.
- 27 Appendix 3 Map of experiment locations.
- 28 Appendix 4 Experiment-level predictors of richness and composition responses.
- 29 Appendix 5 Regression coefficients of treatment magnitude effect on community differences.
- 30 Appendix 6 Experiment and Site Acknowledgements
- 31
- 32 Other supplementary materials for this manuscript include the following:
- 33 Datasets S1
- 34

#### 35 Materials and Methods

36

## 37 Data Collection

38 Criteria for inclusion of a dataset in this analysis were as follows: (1) experimentally manipulate a resource (light, CO<sub>2</sub>, water, nutrients) relative to a control; (2) collect some 39 40 measure of abundance for all species in the community (percent cover, pin hits, stem densities, 41 biomass) to allow for calculation of our community metrics; (3) have at least 3 years of 42 experimental manipulation to allow time for the plant community to respond; (4) have at least 4 43 replicates of each treatment in order to allow a reliable variance estimate to be calculated; and (5) 44 be in an herbaceous ecosystem (grassland, salt marsh, forest understory, etc.) to ensure a 45 response would be observable within the relatively short time frame of most experimental 46 manipulations. All treatments from these experiments (both resource and non-resource 47 manipulation treatments) were included in the database.

48 Datasets were identified in three ways. First, a comprehensive literature search was 49 performed in Web of Science using the keywords "plant community" combined with one of the following terms: "global change", "nutrient", "nitrogen", "phosphorus", "potassium", 50 "micronutrients", "CO2", "carbon dioxide", "precipitation", "rainfall", "water", "light". The 51 52 titles, abstracts, and methods of all papers returned from these searches were examined to 53 determine whether the experiments described therein met our selection criteria. If the experiment 54 did meet our selection criteria, authors were contacted with a request to provide their raw species 55 composition data for this analysis. Second, long-term research stations were solicited to provide 56 datasets that met our selection criteria. Third, investigators who working group members knew to 57 have long-term global change experiments were solicited to provide datasets that met our 58 selection criteria. Overall, we compiled a database of 105 experiments at 52 sites around the 59 world (Appendices 2 and 3). The experiments represented in this database were conducted in 60 intact, native-dominated herbaceous communities, with a few exceptions (highly invaded: 61 Angelo Coast Range Reserve, Sedgewick Reserve, Spindletop Research Farm; assembled 62 communities: Lindenhof Environmental Station LIND, Cedar Creek LTER BioCON, Konza 63 LTER Prairie RHPs; translocated monoliths: Center for Ecology and Hydrology MEGARICH). 64 Removal of the assembled communities from the analysis did not change our results. 65 For each dataset, we utilized both control and treatment plots for our analyses. 66 Treatments included global change manipulations ranging from one to five simultaneously 67 manipulated factors. The relative abundance of each species was determined for each plot in 68 each year by dividing the species abundance by the sum of all species abundances.

69

## 70 Statistical Analysis

71 Four metrics of plant community differences were calculated for every year for each 72 treatment within each experiment: (1) ln Response Ratio (lnRR) of richness differences; (2) 73 percent (%) richness differences; (3) lnRR of effective species number (eH) differences; and (4) 74 composition differences between the treatment and the control plots. lnRR of richness and 75 effective species number differences were calculated as the natural log of the quotient of average 76 richness or eH between treatment and control plots. Percent richness differences were calculated 77 as the difference in average richness between treatment and control plots divided by the average 78 richness of the control plots (i.e., proportional difference). lnRR of richness differences, percent 79 richness differences, and lnRR of eH differences were qualitatively similar, and therefore results 80 are presented for lnRR of richness differences throughout, with the exception of Table 2 where

81 all three response metrics are shown. Composition differences were calculated using

- 82 multivariate\_difference function of the codyn package in R (Hallet, Avolio et al). Briefly, we
- 83 used Bray-Curtis as our dissimilarity metric to study compositional differences. Our dissimilarity
- 84 matrix was used to make a PCoA for each year of an experiment and composition responses
- 85 were calculated as the Euclidean distance between the centroids of the plant communities in the
- 86 control (*i.e.*, unmanipulated) plots. These composition responses are bounded between 0 and 1,
- and can be altered by (a) species reordering; (b) species turnover; (c) differences in species 87
- 88 richness; and (d) differences in evenness (1).
- 89 Responses of the metrics of plant community differences to explanatory variables at the 90 treatment- and experiment-levels were evaluated. At the treatment level, the treatment type (e.g.,
- 91 CO<sub>2</sub> increase, nutrient addition, irrigation, drought, altered consumer pressure, burning,
- 92 temperature increase, etc; see Appendix 2) was used as the sole explanatory variable. At the
- 93 experiment level, gamma diversity and productivity were included as explanatory variables.
- 94 Gamma diversity was estimated for each experiment in our dataset as the rarefied number of
- 95 species identified across all control plots in all years of the experiment. Rarefied species number
- 96 was calculated using the vegan package (2) in R version 3.4.4 by first deriving species
- 97 accumulation curves for each experiment through resampling of the species richness across all 98
- control plots in all years within each experiment using 100 permutations, and second determining 99 the rarified richness estimate at a sample size of 12 (the lowest sampling effort of control plots
- 100 across all experiments included in our dataset). Productivity was calculated as the average
- 101 aboveground biomass in the control (*i.e.*, unmanipulated) plots across all years of the
- 102 experiment. For experiments where biomass data were not collected (36 of 105 experiments),
- 103 individual investigators provided productivity estimates for the experiment based on expert
- 104 knowledge and the primary literature. At a single research site (e.g., an LTER site), both gamma
- 105 diversity and productivity varied across experiments, but not across treatments within
- 106 experiments. At the site level, mean annual precipitation (MAP) was obtained from the
- 107 WorldCLIM database (http://www.worldclim.org/) using the latitude and longitude of the study
- 108 sites. MAP varied across sites, but not across treatments or experiments within sites.
- 109 We used a Bayesian, multivariate, hierarchical model to analyze richness responses and 110 composition responses. The two response variables (richness and composition responses) constitute a  $N \times K$  response matrix  $Y_{il}$ , where N is the number of observations, K is the number 111 of response variables, and j denotes the  $j^{th}$  experiment from the  $l^{th}$  site. We assumed that the 112 response variables were multivariate-normally distributed around predicted values: 113
- 114
- $Y_{jl} \sim MVN \left(\hat{Y}_{jl}, \sum Y\right)$ where  $\hat{Y}_{jl}$  is the matrix of predicted values for the  $j^{th}$  experiment at the  $l^{th}$  site, and  $\sum Y$  is 115 116 the covariance matrix of the response variables.
- 117 Time was standardized to a mean of 0 prior to analysis for each treatment. The predicted 118 values were quadratic functions of this standardized metric of time:
- $\widehat{Y}_{il} = X_{il}B_{il}$ 119
- where  $X_{jl}$  is the design matrix containing the intercept, linear, and quadratic terms for 120 experiment year, and  $B_{il}$  is a 3 × K matrix containing parameter estimates for both responses. 121 122 The random experiment effects were multivariate-normally distributed around the predicted 123 experiment effect, which was based on site and the type of treatment manipulation. For example, the random effects for overall community difference are denoted  $B_{il}$  and were modeled as: 124

125

$$B_{jl1} \sim MVN \left(G_{l1} + Z_{jl}U_1, \sum B_1\right)$$

This equation states that the predicted value of the time series parameters in the  $j^{th}$ 126 experiment were the site-level time series parameters  $(G_{l1})$ , modified by treatment type. The 127 128 design matrix  $Z_{il}$  contains information on the type of treatment manipulated in the  $j^{th}$ 129 experiment. Treatment type was an effects-coded variable, such that the intercept  $G_{l1}$  represents 130 the overall average time series parameters for a site, and the parameters  $U_1$  are the deviations 131 from the mean caused by global change treatment (as well as interactions with site-level ANPP/gamma diversity). The coefficients  $U_1$  were treated as fixed, and therefore constant for 132 133 every experiment and site.

Mean community parameters were then multivariate-normally distributed around overall
 parameter estimates, augmented by site-level ANPP and rarefied gamma diversity:

136

$$G_{l1} \sim MVN \left(T_1 + E_l D_1, \sum G_1\right)$$

Here,  $E_l$  contains ANPP and gamma diversity for the  $l^{th}$  site, and  $D_1$  contains the parameter estimates for ANPP and gamma diversity effects on each parameter. Because ANPP and gamma diversity were standardized to a mean of 0 prior to analysis, the vector  $T_1$  contains the average intercept, linear, and quadratic estimates in a site of average ANPP and gamma diversity. These analyses were identical for each response variable (*i.e.*, change subscript 1 to 2), and both response variables were standardized prior to analysis.

143 We placed weakly informative priors of N(0,1) on all parameter estimates for B, U, D144 and T (3). These priors state that it is unlikely to find an effect yielding greater than a one 145 standard deviation change in the response variable, and enable us to make multiple comparisons 146 without need for *post-hoc* corrections

147 (http://www.stat.columbia.edu/gelman/research/published/multiple2f.pdf). We also placed

weakly informative priors *LKJ* (2) on all covariance matrices. All models were also run using
 non-informative priors, and qualitatively similar results were obtained.

For each parameter, the 95% Bayesian credible interval (CI) was calculated from the posterior simulations. Parameters were considered to be significant if their 95% CI excluded zero. For all models, intercepts (*i.e.*, the initial magnitude of responses) were within the range of variability among control plots (*i.e.*, background variation) and are therefore not presented.

154 Effect size estimates for both metrics of community differences in the final year of each 155 experiment for each treatment were also calculated, as described above. These effect sizes were 156 used to compare the responsiveness of both metrics of plant community differences to global 157 change manipulations using a Bayesian regression analysis examining the effect of the 158 magnitude of either (a) N, (b) drought, or (c) irrigation treatment level on the effect sizes, as well 159 as their interactions with mean annual precipitation (MAP). No other global change treatment in 160 the CoRRE database included enough different levels to perform a similar regression. The N 161 treatment magnitude was included in the model as the absolute amount of N added (g m<sup>-2</sup>), while 162 the drought and irrigation treatment magnitudes were included as a percent change from MAP at 163 the site. Global change manipulations were categorized into treatment categories (single 164 resource, single non-resource, two-way interactions with both treatments manipulating resources, 165 two-way interactions with both treatments manipulating non-resources, two-way interactions 166 with one resource and one non-resource manipulation, three or more way interactions with all 167 treatments manipulating resources, and three or more way interactions with both resource and 168 non-resource manipulations). The number of significant and non-significant temporal trends

- 169 (either significant linear or quadratic effect sizes) across all treatments were tallied for richness
- 170 and composition responses by single-factor global change treatment type (*e.g.*, nitrogen,
- 171 phosphorus, irrigation, drought, etc) and category (*i.e.*, single resource, single non-resource,
- 172 resource\*resource, non-resource\*non-resource, resource\*non-resource, three or more resources,
- and three or more resources and non-resources). The number of significant vs non-significant
- temporal trends for richness and composition responses were compared by treatment type and
- 175 category using a Test of Equal Proportions, with post-hoc comparisons made using Fisher's
- 176 Exact Test in R version 3.4.4. All Bayesian analyses were performed using Python version 3.6.5.
- 177
- 178 **Data availability:** All data is available in the supplementary materials and Tables 2 and 3. All
- 179 statistical code is archived on github in the following respository:
- 180 <u>https://github.com/klapierre/community\_difference\_synthesis</u>.
- 181

182

- Avolio ML, et al. (2015) A framework for quantifying the magnitude and variability of community responses to global change drivers. *Ecosphere* 6(12):1–14.
- Oksanen J, et al. (2018) Vegan: community ecology package. *R Package Version 2 4-6*.
  doi:10.1093/molbev/msv334.
- 187 3. Lemoine NP, et al. (2016) Underappreciated problems of low replication in ecological field
  188 studies. *Ecology* 97(12):3308–3314.

189

| Appendix 1. Author contribution | Appendix | 1. Author | contributions |
|---------------------------------|----------|-----------|---------------|
|---------------------------------|----------|-----------|---------------|

|                       |        |        |          |          | Developed |          |                |       |                |
|-----------------------|--------|--------|----------|----------|-----------|----------|----------------|-------|----------------|
| Author                | CoRRE  | CoRRE  | CoRRE    | Provided | Research  | Analyzed | Contributed to | Wrote | Contributed to |
|                       | Leader | Member | Database | Raw Data | Questions | Data     | Data Analyses  | Paper | Paper Writing  |
| Kimberly J. Komatsu   | Х      | Х      | Х        | Х        | Х         | Х        | Х              | Х     | Х              |
| Meghan L. Avolio      | Х      | Х      | Х        | Х        | Х         | Х        | Х              |       | Х              |
| Nathan P. Lemoine     |        | Х      |          |          | Х         | Х        | Х              |       | Х              |
| Forest Isbell         |        | Х      |          | X        | Х         | Х        | Х              |       | Х              |
| Emily Grman           |        | Х      |          |          | Х         | Х        | Х              |       | Х              |
| Gregory R. Houseman   |        | Х      |          | Х        | Х         |          | Х              |       | Х              |
| Sally E. Koerner      |        | Х      |          | Х        | Х         |          | Х              |       | Х              |
| David S. Johnson      |        | Х      |          | X        | Х         |          | Х              |       | Х              |
| Kevin R. Wilcox       |        | Х      |          | X        | Х         |          | Х              |       | Х              |
| Juha M. Alatalo       |        |        |          | Х        |           |          | X              |       |                |
| John P. Anderson      |        |        |          | Х        |           |          |                |       |                |
| Rien Aerts            |        |        |          | X        |           |          |                |       | Х              |
| Sara G. Baer          |        |        |          | Х        |           |          |                |       | Х              |
| Andrew H. Baldwin     |        |        |          | X        |           |          |                |       | Х              |
| Jonathan Bates        |        |        |          | X        |           |          |                |       | Х              |
| Carl Beierkuhnlein    |        |        |          | X        |           |          |                |       | Х              |
| R. Travis Belote      |        |        |          | X        |           |          |                |       | Х              |
| John Blair            |        |        |          | X        |           |          |                |       |                |
| Juliette M. G. Bloor  |        |        |          | Х        |           |          | X              |       | Х              |
| Patrick J. Bohlen     |        |        |          | Х        |           |          |                |       |                |
| Edward W. Bork        |        |        |          | Х        |           |          |                |       | Х              |
| Elizabeth H. Boughton |        |        |          | Х        |           |          |                |       | Х              |
| William D. Bowman     |        |        |          | Х        |           |          |                |       |                |
| Andrea J. Britton     |        |        |          | Х        |           |          | X              |       | X              |
| James F. Cahill, Jr.  |        |        |          | Х        |           |          | X              |       |                |
| Enrique Chaneton      |        |        |          | Х        |           |          | Х              |       | Х              |
| Nona Chiariello       |        |        |          | Х        |           |          | X              |       |                |
| Jimin Cheng           |        |        |          | Х        |           |          |                |       |                |

|                        |        |        |          |          | Developed |          |                |       |              |
|------------------------|--------|--------|----------|----------|-----------|----------|----------------|-------|--------------|
| Author                 | CoRRE  | CoRRE  | CoRRE    | Provided | Research  | Analyzed | Contributed to | Wrote | Contributed  |
|                        | Leader | Member | Database | Raw Data | Questions | Data     | Data Analyses  | Paper | Paper Writin |
| Scott L. Collins       |        |        |          | Х        |           |          |                |       | Х            |
| J. Hans C. Cornelissen |        |        |          | Х        |           |          | Х              |       |              |
| Guozhen Du             |        |        |          | Х        |           |          |                |       |              |
| Anu Eskelinen          |        |        |          | Х        |           |          | Х              |       | Х            |
| Jennifer Firn          |        |        |          | Х        |           |          | X              |       | X            |
| Bryan Foster           |        |        |          | Х        |           |          |                |       | X            |
| Laura Gough            |        |        |          | Х        |           |          | Х              |       | Х            |
| Katherine Gross        |        |        |          | Х        |           |          |                |       | X            |
| Lauren M. Hallett      |        |        |          | Х        |           |          |                |       | Х            |
| Xingguo Han            |        |        |          | Х        |           |          |                |       |              |
| Harry Harmens          |        |        |          | Х        |           |          | Х              |       | Х            |
| Mark J. Hovenden       |        |        |          | Х        |           |          |                |       | Х            |
| Annika K. Jagerbrand   |        |        |          | Х        |           |          |                |       |              |
| Anke Jentsch           |        |        |          | Х        |           |          |                |       | Х            |
| Christel Kern          |        |        |          | Х        |           |          | Х              |       |              |
| Kari Klanderud         |        |        |          | Х        |           |          |                |       |              |
| Alan K. Knapp          |        |        |          | Х        |           |          |                |       | Х            |
| Juergen Kreyling       |        |        |          | Х        |           |          | Х              |       | Х            |
| Wei Li                 |        |        |          | Х        |           |          |                |       |              |
| Yiqi Luo               |        |        |          | Х        |           |          |                |       |              |
| Rebecca L. McCulley    |        |        |          | Х        |           |          | Х              |       | X            |
| Jennie R. McLaren      |        |        |          | Х        |           |          | Х              |       | X            |
| J. Patrick Megonigal   |        |        |          | Х        |           |          | X              |       |              |
| Ulf Molau              |        |        |          | Х        |           |          |                |       |              |
| John Morgan            |        |        |          | Х        |           |          | Х              |       | Х            |
| Vladimir Onipchenko    |        |        |          | Х        |           |          | X              |       |              |
| Steven C. Pennings     |        |        |          | Х        |           |          | X              |       | X            |
| Janet S. Prevéy        |        |        |          | Х        |           |          |                |       | X            |
| Jodi N. Price          |        |        |          | X        |           |          | X              |       | X            |

|                         |        |        |          |          | Developed |          |                |       |                |
|-------------------------|--------|--------|----------|----------|-----------|----------|----------------|-------|----------------|
| Author                  | CoRRE  | CoRRE  | CoRRE    | Provided | Research  | Analyzed | Contributed to | Wrote | Contributed to |
|                         | Leader | Member | Database | Raw Data | Questions | Data     | Data Analyses  | Paper | Paper Writing  |
| Peter Reich             |        |        |          | Х        |           |          |                |       | Х              |
| Clare H. Robinson       |        |        |          | Х        |           |          |                |       |                |
| F. Leland Russell       |        |        |          | Х        |           |          |                |       | Х              |
| Osvaldo E. Sala         |        |        |          | Х        |           |          | Х              |       |                |
| Eric W. Seabloom        |        |        |          | Х        |           |          | Х              |       | Х              |
| Melinda D. Smith        |        |        |          | Х        |           |          |                |       | Х              |
| Nadia A. Soudzilovskaia |        |        |          | Х        |           |          | X              |       | Х              |
| Lara Souza              |        |        |          | Х        |           |          | X              |       | Х              |
| Katherine Suding        |        |        |          | Х        |           |          |                |       | Х              |
| K. Blake Suttle         |        |        |          | Х        |           |          | X              |       | Х              |
| Tony Svejcar            |        |        |          | Х        |           |          |                |       | Х              |
| David Tilman            |        |        |          | Х        |           |          |                |       | Х              |
| Pedro Tognetti          |        |        |          | Х        |           |          | Х              |       | Х              |
| Roy Turkington          |        |        |          | Х        |           |          |                |       |                |
| Shannon R. White        |        |        |          | Х        |           |          |                |       |                |
| Zhuwen Xu               |        |        |          | Х        |           |          | X              |       |                |
| Laura Yahdjian          |        |        |          | Х        |           |          |                |       | Х              |
| Qiang Yu                |        |        |          | Х        |           |          |                |       |                |
| Pengfei Zhang           |        |        |          | Х        |           |          |                |       | Х              |
| Yunhai Zhang            |        |        |          | Х        |           |          |                |       | Х              |

Appendix 2. Details about experiments included in these analyses. Experiment indicates the name of the experiment included in the analysis. Site:Community Type indicates the experimental site at which the experiment is housed, and if the site has multiple community types sampled then which community types were considered. Lat and Long indicate the latitude and longitude of the site, respectively. Years indicates length of experiment in years; # trt indicates the number of treatments from the experiment that were included in our analysis; manipulation indicates the types of global change driver the experiment manipulated (B=burning, C=CO<sub>2</sub>, H=herbivore presence, L=tilling, M=mowing/clipping, N=nutrients, P=plant manipulation, T=temperature, W=water); MAP indicates mean annual precipitation at the site (mm); MAT indicates mean annual temperature at the site (°C); gamma diversity indicates the rarefied number of species across all plots and years within each experiment; ANPP indicates average aboveground net primary productivity (g m<sup>-2</sup>) under control conditions within the experiment.

|            |                                 |       |         |       | #   |              |      |     | gamma     |      |
|------------|---------------------------------|-------|---------|-------|-----|--------------|------|-----|-----------|------|
| Experiment | Site:Community Type             | Lat.  | Long.   | years | trt | manipulation | MAP  | MAT | diversity | ANPP |
| 246Nfert   | Niwot Ridge LTER:               | 40.05 | -105.58 | 11    | 3   | Ν            | 705  | -1  | 43        | 126  |
| BFFert     | Kluane Lake:                    | 61.07 | -138.38 | 10    | 3   | H, N         | 369  | -4  | 28        | 145  |
| BGP        | Konza LTER:                     | 39.08 | -96.58  | 25    | 15  | B, M, N      | 866  | 12  | 60        | 407  |
| BioCON     | Cedar Creek LTER:               | 45.40 | -93.20  | 14    | 3   | C, N         | 750  | 6   | 14        | 397  |
|            | Niwot Ridge LTER:dry            |       |         |       |     |              |      |     |           |      |
| Bowman     | meadow                          | 40.05 | -105.58 | 11    | 3   | N            | 705  | -1  | 50        | 152  |
|            | Niwot Ridge LTER:wet            |       |         |       |     |              |      |     |           |      |
| Bowman     | meadow                          | 40.05 | -105.58 | 7     | 3   | N            | 705  | -1  | 32        | 265  |
|            | Gap Prairie Farm Rehabilitation |       |         |       |     |              |      |     |           |      |
| CCD        | Administration:                 | 49.34 | -104.66 | 3     | 11  | M, T, W      | 357  | 3   | 18        | 132  |
| CCD        | Kinsella Research Ranch:        | 53.00 | -111.52 | 3     | 17  | M, T, W      | 430  | 1   | 20        | 191  |
|            | Riding Mountain National        |       |         |       |     |              |      |     |           |      |
| CCD        | Park:                           | 50.66 | -99.97  | 3     | 11  | M, T, W      | 513  | 0   | 28        | 282  |
| CLIP       | Latnjajaure Field Station:heath | 69.35 | 18.48   | 7     | 3   | Ν, Τ         | 818  | 1   | 7         | 476  |
|            | Latnjajaure Field               |       |         |       |     |              |      |     |           |      |
| CLIP       | Station:meadow                  | 69.35 | 18.48   | 7     | 3   | Ν, Τ         | 818  | 1   | 7         | 383  |
| Clonal     | Allegan State Game Area:        | 42.55 | -85.99  | 10    | 7   | N, P         | 940  | 8   | 46        | 211  |
| Culardoch  | Culardoch Experimental Site:    | 57.07 | -3.33   | 6     | 7   | B, M, N      | 1118 | 4   | 23        | 105  |
|            | Smithsonian Environmental       |       |         |       |     |              |      |     |           |      |
| CXN        | Research Center:                | 38.87 | -76.55  | 10    | 3   | C, N         | 1072 | 13  | 3         | 637  |
| e001       | Cedar Creek LTER:Field A        | 45.40 | -93.20  | 31    | 3   | Ν            | 750  | 6   | 27        | 511  |

|            |                                               |        |         |       | #   |              |      |     | gamma     |      |
|------------|-----------------------------------------------|--------|---------|-------|-----|--------------|------|-----|-----------|------|
| Experiment | Site:Community Type                           | Lat.   | Long.   | years | trt | manipulation | MAP  | MAT | diversity | ANPP |
| e001       | Cedar Creek LTER:Field B                      | 45.40  | -93.20  | 31    | 3   | Ν            | 750  | 6   | 27        | 422  |
| e001       | Cedar Creek LTER:Field C                      | 45.40  | -93.20  | 31    | 3   | Ν            | 750  | 6   | 34        | 614  |
| e001       | Cedar Creek LTER:Field D                      | 45.40  | -93.20  | 31    | 3   | Ν            | 750  | 6   | 46        | 519  |
| e002       | Cedar Creek LTER:Field A                      | 45.40  | -93.20  | 10    | 3   | Ν            | 750  | 6   | 23        | 170  |
| e002       | Cedar Creek LTER:Field B                      | 45.40  | -93.20  | 10    | 3   | Ν            | 750  | 6   | 24        | 230  |
| e002       | Cedar Creek LTER:Field C                      | 45.40  | -93.20  | 10    | 3   | Ν            | 750  | 6   | 42        | 288  |
| E6         | Kansas University Field<br>Station:type 1     | 39.05  | -95.20  | 11    | 7   | Ν            | 965  | 12  | 11        | 301  |
| E6         | Kansas University Field<br>Station:type 2     | 39.05  | -95.20  | 11    | 7   | N            | 965  | 12  | 11        | 301  |
| EDGE       | Central Plains Experimental<br>Range:         | 40.82  | -104.57 | 4     | 2   | W            | 366  | 10  | 42        | 94   |
| EDGE       | High Plains Grassland Research<br>Station:    | 41.18  | -104.90 | 4     | 2   | W            | 415  | 8   | 55        | 137  |
| EDGE       | Konza LTER:                                   | 39.08  | -96.58  | 4     | 2   | W            | 866  | 12  | 43        | 413  |
| EDGE       | Saline Experimental Range:                    | 39.09  | -99.14  | 4     | 2   | W            | 581  | 12  | 68        | 246  |
| EDGE       | Sevilleta LTER:EB                             | 34.40  | -106.67 | 5     | 3   | W            | 231  | 12  | 47        | 66   |
| EDGE       | Sevilleta LTER:EG                             | 34.40  | -106.67 | 5     | 3   | W            | 231  | 12  | 36        | 98   |
| EVENT2     | Ecological-Botanical Garden:                  | 49.92  | 11.58   | 5     | 3   | W            | 674  | 8   | 34        | 612  |
| Exp1       | Allegan State Game Area:                      | 42.55  | -85.99  | 8     | 5   | N, P         | 940  | 8   | 36        | 141  |
| FACE       | Pontville Small Arms Range<br>Complex:        | -42.70 | 147.27  | 8     | 3   | С, Т         | 647  | 11  | 20        | 285  |
| FACE       | Oak Ridge National<br>Laboratory:             | 35.90  | -84.33  | 11    | 1   | С            | 1356 | 13  | 32        | 169  |
| Fireplots  | Macarthur Agro-Ecological<br>Research Center: | 27.15  | -81.20  | 9     | 15  | B, H, N      | 1218 | 22  | 58        | 967  |
| GANE       | Svalbard:                                     | 78.93  | 11.83   | 3     | 5   | N            | 414  | -7  | 13        | 2    |
| GB         | Northern Great Basin<br>Experimental Range:   | 43.48  | -119.72 | б     | 3   | W            | 269  | 7   | 18        | 407  |
| GCE        | Jasper Ridge Biological<br>Station:           | 37.38  | -122.23 | 13    | 15  | C, N, T, W   | 675  | 13  | 25        | 400  |

| Exponimont  | Site: Community Type     | Lat    | Long    | NOORG | #<br>tet | moninulation | MAD  | мат | gamma     | A NIDD |
|-------------|--------------------------|--------|---------|-------|----------|--------------|------|-----|-----------|--------|
| Experiment  | Site:Community Type      | Lat.   | Long.   | years | lri      | manipulation | MAP  | MAI | alversity | ANPP   |
| GFP         | Konza LTER:20 year burn  | 39.08  | -96.58  | 3     | 3        | M, W         | 866  | 12  | 36        | 490    |
| GFP         | Konza LTER:4 year burn   | 39.08  | -96.58  | 3     | 3        | M, W         | 866  | 12  | 35        | 368    |
| GFP         | Konza LTER:annual burn   | 39.08  | -96.58  | 3     | 3        | M, W         | 866  | 12  | 35        | 469    |
| GFP         | Kruger National Park:    | -24.40 | 31.78   | 3     | 3        | M, W         | 573  | 22  | 25        | 567    |
| GrazePrecip | SFREC:G2                 | 39.25  | -121.28 | 3     | 2        | H, W         | 1019 | 15  | 18        | 323    |
| GrazePrecip | SFREC:G4                 | 39.25  | -121.28 | 3     | 2        | H, W         | 1019 | 15  | 19        | 323    |
|             | Wichita State Ninnescah  |        |         |       |          |              |      |     |           |        |
| HerbDiv     | Reserve:                 | 37.53  | -97.67  | 6     | 8        | H, N         | 752  | 13  | 49        | 721    |
| HerbWood    | Langi Ghiran State Park: | -37.30 | 143.08  | 3     | 3        | N, W         | 666  | 12  | 51        | 15     |
|             | Clermont Climate Change  |        |         |       |          |              |      |     |           |        |
| Imagine     | Experiment:              | 45.71  | -3.02   | 4     | 3        | C, T, W      | 780  | 9   | 12        | 489    |
|             | Rio Mayo Experimental    |        |         |       |          |              |      |     |           |        |
| Interaction | Station:                 | -45.68 | -70.27  | 4     | 5        | N, W         | 183  | 9   | 9         | 57     |
| IRG         | Konza LTER:lowland       | 39.08  | -96.58  | 19    | 1        | W            | 866  | 12  | 37        | 498    |
| IRG         | Konza LTER:upland        | 39.08  | -96.58  | 19    | 1        | W            | 866  | 12  | 39        | 491    |
| KGFert      | Kluane Lake:             | 61.07  | -138.38 | 7     | 3        | Ν            | 369  | -4  | 7         | 139    |
|             | Lindenhof Environmental  |        |         |       |          |              |      |     |           |        |
| LIND        | Station:                 | 49.92  | 11.58   | 3     | 9        | P, W         | 674  | 8   | 30        | 648    |
| Lovegrass   | Trattin:                 | -27.74 | 151.14  | 3     | 11       | H, M, N, P   | 678  | 18  | 29        | 750    |
| Lucero      | San Claudio:             | -35.88 | -61.08  | 6     | 1        | Ν            | 978  | 15  | 49        | 904    |
| MAT2        | Arctic LTER:             | 68.63  | -149.60 | 14    | 1        | Ν            | 229  | -12 | 20        | 185    |
| -           | Center for Ecology &     |        |         |       |          |              |      |     |           |        |
| MEGARICH    | Hydrology, Bangor:       | 53.28  | -4.57   | 4     | 3        | C, M, N, T   | 873  | 9   | 20        | 780    |
| MNT         | Arctic LTER:             | 68.63  | -149.60 | 11    | 1        | Ν            | 229  | -12 | 52        | 150    |
| -           | Inner Mongolia Grassland |        |         |       |          |              |      |     |           |        |
| NDE         | Research Station:        | 43.43  | 116.07  | 6     | 17       | M, N         | 331  | 0   | 18        | 214    |
| NFert       | Sevilleta LTER:          | 34.40  | -106.67 | 18    | 1        | Ν            | 231  | 12  | 48        | 70     |
|             | Yunwu Mountain National  |        |         |       |          |              |      |     |           |        |
| NitAdd      | Natural Reserve:         | 36.25  | 106.41  | 3     | 5        | Ν            | 447  | 6   | 27        | 242    |

|            |                              |       |         |       | #   |              |      |     | gamma     |      |
|------------|------------------------------|-------|---------|-------|-----|--------------|------|-----|-----------|------|
| Experiment | Site:Community Type          | Lat.  | Long.   | years | trt | manipulation | MAP  | MAT | diversity | ANPP |
| NitPhos    | Azi Branch Research Station: | 33.67 | 101.85  | 4     | 6   | Ν            | 681  | 1   | 55        | 420  |
| Nitrogen   | Sedgwick Reserve:annual      | 34.70 | -120.04 | 5     | 3   | Ν            | 537  | 14  | 22        | 285  |
| Nitrogen   | Sedgwick Reserve:perennial   | 34.70 | -120.04 | 5     | 3   | Ν            | 537  | 14  | 20        | 193  |
|            | Restoration Ecological       |       |         |       |     |              |      |     |           |      |
| NSFC       | Research Station:            | 42.03 | 116.28  | 8     | 3   | N, W         | 386  | 1   | 32        | 165  |
| PME        | Lefthand Canyon:             | 40.12 | -105.30 | 4     | 4   | W            | 409  | 9   | 24        | 200  |
| PPlots     | Konza LTER:                  | 39.08 | -96.58  | 12    | 7   | Ν            | 866  | 12  | 41        | 472  |
|            | Buxton Health and Safety     |       |         |       |     |              |      |     |           |      |
| PQ         | Laboratory:                  | 53.23 | -1.92   | 16    | 5   | T, W         | 1146 | 8   | 37        | 380  |
| RaMPs      | Konza LTER:                  | 39.08 | -96.58  | 16    | 3   | T, W         | 866  | 12  | 48        | 773  |
| RHPs       | Konza LTER:                  | 39.08 | -96.58  | 9     | 3   | Ν            | 866  | 12  | 36        | 640  |
|            | Teberda Biosphere            |       |         |       |     |              |      |     |           |      |
| RMAPC      | Reserve: alpine lichen heath | 43.45 | 41.68   | 9     | 5   | N, W         | 934  | 2   | 34        | 149  |
|            | Teberda Biosphere            |       |         |       |     |              |      |     |           |      |
| RMAPC      | Reserve:Festuca grassland    | 43.45 | 41.68   | 9     | 5   | N, W         | 934  | 2   | 29        | 240  |
|            | Teberda Biosphere            |       |         |       |     |              |      |     |           |      |
| RMAPC      | Reserve:Geranium meadow      | 43.45 | 41.68   | 9     | 5   | N, W         | 934  | 2   | 24        | 301  |
|            | Teberda Biosphere            |       |         |       |     |              |      |     |           |      |
| RMAPC      | Reserve:snowbed              | 43.45 | 41.68   | 9     | 5   | N, W         | 934  | 2   | 21        | 121  |
|            | Carpenteria Salt Marsh       |       |         |       |     |              |      |     |           |      |
| Salt Marsh | Reserve:high marsh zone MA   | 34.40 | -119.53 | 7     | 1   | N            | 574  | 14  | 5         | 1415 |
|            | Carpenteria Salt Marsh       |       |         |       |     |              |      |     |           |      |
| Salt Marsh | Reserve:high marsh zone S    | 34.40 | -119.53 | 7     | 1   | N            | 574  | 14  | 5         | 1415 |
|            | Carpenteria Salt Marsh       |       |         |       |     |              |      |     |           |      |
| Salt Marsh | Reserve: low marsh zone DS   | 34.40 | -119.53 | 7     | 1   | N            | 574  | 14  | 5         | 1415 |
|            | Carpenteria Salt Marsh       |       |         |       |     |              |      |     |           |      |
| Salt Marsh | Reserve:low marsh zone JS    | 34.40 | -119.53 | 7     | 1   | N            | 574  | 14  | 3         | 1415 |
| ~          | Carpenteria Salt Marsh       |       |         | _     |     |              |      |     | _         |      |
| Salt Marsh | Reserve:low marsh zone S     | 34.40 | -119.53 | 7     | 1   | N            | 574  | 14  | 5         | 1415 |
|            | Carpenteria Salt Marsh       |       |         |       |     |              |      |     |           |      |
| ~          | Reserve:mid-high marsh zone  |       | 110 55  | _     |     |              | /    |     |           |      |
| Salt Marsh | AS                           | 34.40 | -119.53 | 7     | 1   | Ν            | 574  | 14  | 4         | 1415 |

| Exponimont | Site: Community Type        | Lat    | Long    | NOONG    | #<br>tnt | moninulation | МАр  | мат | gamma     | A NIDD |
|------------|-----------------------------|--------|---------|----------|----------|--------------|------|-----|-----------|--------|
|            | Site:Community Type         |        | Long.   | years    |          |              |      | MAI | uiversity | ANPP   |
| Snow       | Niwot Ridge LTER:           | 40.05  | -105.58 | 6        | 1        | N, T, W      | 705  | -1  | 26        | 240    |
| Study 119  | shrubland                   | 32 53  | -106 72 | 5        | 1        | Ν            | 256  | 14  | 50        | 104    |
| Study 119  | Jornada I TER basin slopes  | 32.53  | -106.72 | 5        | 1        | N            | 256  | 1/  | 64        | 113    |
| Study 110  | Jornada L TER. Joshi slopes | 22.55  | 106.72  | 5        | 1        | N            | 250  | 14  | 66        |        |
| Study 119  | Joinada LTER.piednom        | 22.55  | -100.72 | 5        | 1        | N            | 250  | 14  | 22        | 100    |
| Study 119  | Jornada LTER:playa          | 32.53  | -106.72 | <u> </u> | 1        | N            | 256  | 14  |           | 199    |
| Study 278  | Jornada LTER:               | 32.53  | -106.72 | 3        | 9        | N, W         | 256  | 14  | 15        | 173    |
| T7         | Kellogg Biological Station: | 42.40  | -85.37  | 24       | 3        | N, L         | 912  | 8   | 54        | 438    |
| TER        | San Claudio:                | -35.88 | -61.08  | 4        | 3        | M, N         | 978  | 15  | 70        | 676    |
| TIDE       | Plum Island Estuary LTER:   | 42.75  | -70.87  | 8        | 1        | Ν            | 1151 | 9   | 8         | 1002   |
|            | Smithsonian Environmental   |        |         |          |          |              |      |     |           |        |
| TMECE      | Research Center:mixed       | 38.87  | -76.55  | 27       | 1        | С            | 1072 | 13  | 4         | 611    |
|            | Smithsonian Environmental   |        |         |          |          |              |      |     |           |        |
| TMECE      | Research Center:Spartina    | 38.87  | -76.55  | 27       | 1        | С            | 1072 | 13  | 5         | 629    |
|            | Smithsonian Environmental   |        |         |          |          |              |      |     | _         |        |
| TMECE      | Research Center:Scirpus     | 38.87  | -76.55  | 27       | 1        | С            | 1072 | 13  | 5         | 758    |
| UK         | Spindletop Research Farm:   | 38.17  | -84.82  | 5        | 3        | Τ, W         | 1156 | 12  | 24        | 253    |
|            | Kessler Atmospheric and     |        |         |          |          |              |      |     |           |        |
| WAPAClip   | Ecological Field Station:   | 34.98  | -97.52  | 3        | 11       | M, T, W      | 899  | 16  | 33        | 403    |
| WarmNut    | Finse:                      | 60.00  | 7.00    | 8        | 3        | N, T         | 1030 | 0   | 79        | 95     |
| Water      | Sedgewick Reserve:annual    | 34.70  | -120.04 | 5        | 7        | H, P, W      | 537  | 14  | 21        | 306    |
| Water      | Sedgewick Reserve:perennial | 34.70  | -120.04 | 5        | 7        | H, P, W      | 537  | 14  | 19        | 254    |
| watering   | Angelo Coast Range Reserve: | 39.74  | -123.63 | 13       | 2        | W            | 1526 | 10  | 32        | 176    |
| watfer     | McLaughlin Natural Reserve: | 38.85  | -123.83 | 5        | 3        | N, W         | 1049 | 11  | 32        | 25     |
| WENNDEx    | Sevilleta LTER:             | 34.40  | -106.67 | 7        | 7        | N, W         | 231  | 12  | 32        | 89     |
|            | Nanticoke River             |        |         |          |          |              |      |     |           |        |
| Wet        | Watershed:BRC marsh         | 38.55  | -75.73  | 4        | 3        | Ν            | 1110 | 13  | 16        | 166    |
|            | Nanticoke River             |        |         |          |          |              |      |     |           |        |
| Wet        | Watershed:BRC swamp         | 38.55  | -75.73  | 4        | 3        | N            | 1110 | 13  | 13        | 23     |
|            | Nanticoke River             |        |         |          |          |              |      |     |           |        |
| Wet        | Watershed:BSA marsh         | 38.55  | -75.73  | 4        | 3        | Ν            | 1110 | 13  | 20        | 283    |

|            |                          |       |        |       | #   |              |      |     | gamma     |      |
|------------|--------------------------|-------|--------|-------|-----|--------------|------|-----|-----------|------|
| Experiment | Site:Community Type      | Lat.  | Long.  | years | trt | manipulation | MAP  | MAT | diversity | ANPP |
|            | Nanticoke River          |       |        |       |     |              |      |     |           |      |
| Wet        | Watershed:BSA swamp      | 38.55 | -75.73 | 4     | 3   | Ν            | 1110 | 13  | 40        | 37   |
|            | Nanticoke River          |       |        |       |     |              |      |     |           |      |
| Wet        | Watershed:TNC marsh      | 38.55 | -75.73 | 3     | 3   | Ν            | 1110 | 13  | 30        | 256  |
|            | Nanticoke River          |       |        |       |     |              |      |     |           |      |
| Wet        | Watershed:TNC swamp      | 38.55 | -75.73 | 4     | 3   | Ν            | 1110 | 13  | 46        | 83   |
|            | Inner Mongolia Grassland |       |        |       |     |              |      |     |           |      |
| Yu         | Research Station:        | 43.43 | 116.07 | 8     | 6   | Ν            | 331  | 0   | 17        | 147  |



Appendix 3. Map of the 52 sites with experiments included in these analyses, with points colored by gamma diversity (averaged across all experiments at the site if more than one experiment is present).

Appendix 4: Standardized parameter estimates for the effects of global change manipulations on temporal trends of community differences (lnRR richness, composition difference), and the effects of site-level (gamma) diversity and aboveground net primary productivity (ANPP). Linear slopes are indicative of the linear component of the temporal trends, and quadratic slopes are indicative of the quadratic component of the temporal trends. Shown are median posterior estimates and standard deviations (std dev). Parameters with 95% confidence intervals not encompassing zero are considered significant and are indicated by bold text.

| <b>Response Variable</b> | <b>Explanatory Variable</b> | Parameter       | Estimate | Std Dev |
|--------------------------|-----------------------------|-----------------|----------|---------|
| InRR Richness            | Gamma Diversity             | linear slope    | 0.0086   | 0.0228  |
| InRR Richness            | Gamma Diversity             | quadratic slope | 0.0366   | 0.0247  |
| InRR Richness            | ANPP                        | linear slope    | 0.0481   | 0.0228  |
| InRR Richness            | ANPP                        | quadratic slope | 0.0001   | 0.0238  |
| Composition Difference   | Gamma Diversity             | linear slope    | -0.0067  | 0.0169  |
| Composition Difference   | Gamma Diversity             | quadratic slope | -0.0038  | 0.0184  |
| Composition Difference   | ANPP                        | linear slope    | -0.0119  | 0.0207  |
| Composition Difference   | ANPP                        | quadratic slope | 0.0032   | 0.0213  |

Appendix 5: For treatments that exhibited parabolic treatment responses (10.5% of richness and 10.1% of composition responses), changes in (a) lnRR richness and (b) composition in control and treatment plots through time were higher than differences between the control and treatment plots in the first year of an experiment, indicating that control and treatment plots are converging in composition because control plots are diverging from their initial state to become more similar to the treatment plots through time. Initial diff: difference between treatment and control communities in the first year of the experiment; ctl change: comparison of community change in controls plots between first and last year of the experiment; trt change: comparison of community change in treatment plots between first and last year of the experiment. Shown are means±SE of the magnitude of response, with significant differences among means indicated by different letters.



|                              | Mean Effect | Lower CI | Upper CI |
|------------------------------|-------------|----------|----------|
|                              |             |          |          |
| (a) Nitrogen – richness      | 0 144       | 0.202    | 0.004    |
| Intercept                    | -0.144      | -0.382   | 0.094    |
|                              | -0.479      | -0.803   | -0.154   |
|                              | -0.146      | -0.384   | 0.091    |
| N*MAP                        | 0.378       | 0.115    | 0.640    |
| (b) Nitrogen – composition   |             |          |          |
| Intercept                    | 0.073       | -0.167   | 0.312    |
| Ν                            | 0.313       | -0.010   | 0.636    |
| MAP                          | 0.270       | 0.029    | 0.511    |
| N*MAP                        | -0.190      | -0.453   | 0.074    |
| (c) Drought – richness       |             |          |          |
| Intercept                    | 0.017       | -0.371   | 0.404    |
| Drought                      | -0.234      | -0.657   | 0.189    |
| MAP                          | -0.390      | -0791    | 0.011    |
| Drought*MAP                  | -0.069      | -0.449   | 0.310    |
| (d) Drought – composition    |             |          |          |
| Intercept                    | -0.021      | -0.467   | 0.426    |
| Drought                      | -0.170      | -0.660   | 0.321    |
| MAP                          | -0.073      | -0.531   | 0.384    |
| Drought*MAP                  | 0.092       | -0.344   | 0.528    |
| (e) Irrigation – richness    |             |          |          |
| Intercept                    | 0.023       | -0.362   | 0.409    |
| Irrigation                   | -0.069      | -0.453   | 0.315    |
| MĂP                          | -0.431      | -0.833   | -0.029   |
| Irrigation*MAP               | 0.069       | -0.405   | 0.543    |
| (f) Irrigation – composition |             |          |          |
| Intercept                    | -0.030      | -0.445   | 0.385    |
| Irrigation                   | -0.145      | -0.562   | 0.273    |
| MAP                          | 0.136       | -0.293   | 0.565    |
| Irrigation*MAP               | -0.093      | -0.602   | 0.416    |

Appendix 6: Table of regression coefficients to examine the effects of nitrogen, drought, and irrigation treatment magnitudes on richness and compositional responses. Bold text indicates significant effects (*i.e.*, confidence interval for the effect size does not overlap 0).

| Experiment    | Site                                     | Funding Source                                               |
|---------------|------------------------------------------|--------------------------------------------------------------|
|               | Arctic LTER                              | U.S. National Science Foundation DEB 0423385 and 1026843     |
|               | Cedar Creek LTER                         | U.S. National Science Foundation 1234162                     |
|               | Konza Prairie LTER                       | U.S. National Science Foundation                             |
|               | Jornada Basin LTER                       | U.S. National Science Foundation DEB-1235828, DEB            |
|               |                                          | 1354732, DEB 1754106                                         |
|               | Niwot Ridge LTER                         | U.S. National Science Foundation DEB-1027341                 |
|               | San Claudio                              | UBACyT 20020100100615BA,                                     |
|               |                                          | 20020120300076BA, G024, and G046                             |
|               | Sevilleta LTER                           | U.S. National Science Foundation                             |
|               | SFREC                                    | U.S. National Science Foundation 20121208, U.S. Department   |
|               |                                          | of Agriculture 2006-01350                                    |
|               | Smithsonian Environmental Research       | U.S. National Science Foundation DEB-0950080, DEB-           |
|               | Center                                   | 1457100, DEB-1557009; U.S. Department of Energy DE-          |
|               |                                          | SC0008339; U.S. Geological Survey G10AC00675;                |
|               |                                          | Smithsonian Institution                                      |
| BFFert/KGFert | Kluane Lake                              | NSERC Discovery Grant                                        |
| BioCON        | Cedar Creek LTER                         | U.S. National Science Foundation DEB-1234162, DEB-           |
|               |                                          | 0716587, DEB-1242531, DEB- 1120064                           |
| Culardoch     | Culardoch Experimental Site              | Rural and Environment Science and Analytical Services        |
|               |                                          | Division of the Scottish Government                          |
|               | Gap Prairie Farm Rehabilitation          | Natural Sciences and Engineering Research Council Discovery  |
|               | Administration, Kinsella Research Ranch, | and Strategic Grant                                          |
| CCD           | Riding Mountain National Park            |                                                              |
|               |                                          | Carl Tryggers stiftelse för vetenskaplig forskning and Qatar |
| CLIP          | Latnjajaure Field Station                | Petroleum                                                    |
| E6            | Kansas University Field Station          | U.S. National Science Foundation DEB 1655500 and DEB 950100  |
|               | Macarthur Agro-Ecological Research       | Archbold Biological Station                                  |
| Fireplots     | Center                                   |                                                              |
| GANE          | Svalbard                                 | UK Natural Environment Research Council Global               |
|               |                                          | Atmospheric Nitrogen Enrichment Program                      |

Appendix 7. Experiment and Site Acknowledgements.

| Imagine  | Clermont Climate Change Experiment     | IFB-GICC IMAGINE; ANR QDIV, VALIDATE                         |
|----------|----------------------------------------|--------------------------------------------------------------|
| FACE     | Oak Ridge National Laboratory          | U.S. Department of Energy DE-AC05-00-OR22725                 |
|          |                                        | Australian Research Council Discovery Projects Scheme        |
| FACE     | Pontville Small Arms Range Complex:    | Grants DP0451686, DP0772319, DP0984779                       |
| NDE      | Inner Mongolia Grassland Research      | International Postdoctoral Exchange Fellowship Program       |
|          | Station                                | 20170070; National Key R&D program of China                  |
|          |                                        | 2016YFC0500700                                               |
| MEGARICH | Center for Ecology & Hydrology, Bangor | UK Natural Environment Research Council; UK Department       |
|          |                                        | for Environment, Food and Rural Affairs Project CC0359;      |
|          |                                        | European Union EV5V-CT-93-5213                               |
| RaMPs    | Konza LTER                             | U.S. National Science Foundation DEB-1257174                 |
| RHPs     | Konza LTER                             | U.S. National Science Foundation DEB-1147439                 |
| RMAPC    | Teberda Biosphere Reserve              | Governmental Contract AAAA-A16-116021660037-7 of MSU         |
| TIDE     | Plum Island Estuary LTER               | U.S. National Science Foundation DEB 0213767, DEB            |
|          |                                        | 0816963, DEB 1354494, DEB 1719621, OCE 0423565, OCE          |
|          |                                        | 1058747, OCE 1238212, OCE 1637630                            |
|          |                                        | U.S. Department of Energy 08-SC-NICCR-1073; USDA-ARS         |
|          |                                        | Forage Animal Production Research Unit 58-6440-7-135;        |
|          |                                        | Kentucky Agricultural Experiment Station; University of      |
| UK       | Spindletop Research Farm               | Kentucky's College of Agriculture, Food, and the Environment |
| WarmNut  | Finse                                  | Norwegian Research Council                                   |
| watfer   | McLaughlin Natural Reserve             | Academy of Finland 253385 and 297191                         |
|          |                                        | Natural Science Foundation of China 41601586, 41671289;      |
|          | Yunwu Mountain National Natural        | State's Key Project of Research and Development Plan         |
| NitAdd   | Reserve                                | 2016YFC0500700                                               |