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Supplementary Information Text 
 
Materials and Methods 
 
Data Processing and Manipulation 
 The R Statistical Programing Language [1] along with the Rstudio 
integrated development environment [2] was used for all data processing and 
manipulation unless otherwise specified.  
 
Figure Plotting 
 All figure were generated using R software. All details can be found in the 
supplemental source code file (Supplemental_Dataset_S18 source code: Lines 
172:976) 
 
Quantitation of Whole Genome Bisulfite Sequencing Data  
(Supplemental Dataset S04 & Supplemental Dataset S05) 
 Raw sequencing reads for Whole Genome Bisulfite Sequencing (WGBS) 
of maize B73 14-day old seedlings were downloaded from the NCBI Sequence 
Read Archive (SRA) (SRA# SRR850328; [3]). Files were converted to fastq 
format using fastq-dump from the SRA toolkit. The Trim Galore program [4] was 
used with the “--paired” argument to remove paired-end adapter sequences. The 
Bismark program [5] was used to identify methylated cytosines against the maize 
B73 RefGen_v2 genome, allowing for 1 miss-match “-N 1”.  Individual methylated 
cytosines were summarized separately for the 3 methylation contexts (CG, CHG 
and CHH) using “bismark_methylation_extractor” with arguments “--paired-end” 
and “--no-overlap” which prevents duplicated methyl-C counts from read pairs. 
Gene model chromosomal coordinates were obtained from the B73 RefGen_v2 
working gene set (known as 5a_WGS). These loci were extended 250 bp 
upstream in order to include sequences around the transcription start site (TTS). 
All three methylation contexts were then mapped to these loci using the R 
statistical computing language. Several genomic regions were identified for each 
gene model using the 5a WGS annotations. These regions included 4 promoter 
regions (bins 1-4), covering 2Kb upstream of the TTS in 500 bp increments. 500 
base pairs around the TTS (250 bp up and down stream), the 5’UTR, All Exons, 
All Introns, the 3’ UTR and the whole gene model (from TSS to transcription stop 
sight). Methylation of each of these regions was quantified separately. For each 
context, the fraction of methylated cytosines relative to the total detected 
cytosines was used as a measure of methylation level (Supplemental Dataset 
S04), known as the weighted methylation level [6].    
 
Gene-wise Binning of DNA Methylation Levels 
(Supplemental Dataset S05) 
 All gene models were divided into 5 equal sized, consecutive sections 
called bins (Fig 01_A). Quantitation of DNA methylation levels was carried out 
separately for each bin.  
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Handling of Missing DNA Methylation Data 
 Of the 110028 gene models in the maize B73 5a Working Gene Set, 
11732 did not have coverage in the WGBS data. These genes were discarded 
from further analysis. For genes with coverage along the gene model, not all 
genomic features have WGBS coverage. In this case, missing data was simply 
substituted with a place-holder value of 0.5 which represents an un-informative 
number as this feature is neither hypo or hyper-methylated. 
 
Observed Protein List and Protein Abundance Data 
(Supplemental Dataset S06  & Supplemental Dataset S07) 
 All protein data is from [7]. Protein abundance (Supplemental Dataset 
S06) was taken as the average across 23 potential tissues in which the protein 
had detectable levels [7]. For each protein, any tissue where no protein was 
detected, this tissue was not included in the average. Only proteins with at least 
one uniquely mapped peptide were used in this study (Supplemental Dataset 
S07). 
 
mRNA Abundance Data 
(Supplemental Dataset S08) 
 mRNA abundance data used for the Express-able mRNA Classified 
(ERC), Express-able protein classifier (EPC) and the Protein-specific Feature 
Illuminator (PFI) were taken from [7] by averaging across 23 potential tissues in 
which the transcript was detected. For each transcript, any tissue where no 
transcript was detected, this tissue was not included in the average. 
 
Filtered Gene Set Annotation 
(Supplemental Dataset S09) 
 The list of 45,348 gene models (parent genes) was taken from the Maize 
GDB [8] annotation file “ZmB73_5b.60_FGS.translations.fasta” found on the 
Maize GDB ftp site (http://ftp.maizegdb.org/). This list is constructed and 
maintained by the Maize GDB project. its construction is described on the site as: 
 “The Filtered Gene Set (FGS) is a subset of the Working Gene Set intended to 
exclude transposons, pseudogenes, contaminants, and other low-confidence 
annotations. Maizesequence.org used essentially the same method as described 
in [9] but with modifications. First, the inclusion criterion of synteny (relative rice, 
sorghum, and Brachypodium distachyon) was given higher precedence than the 
exclusion criteria of pseudogene and transposon. This measure was taken to 
avoid exclusion of possibly legitimate genes that may have been miss-assembled 
or miss-annotated. Second, selection of the FGS was additionally informed by 
evidence of expression, taking advantage of RNA-seq data displayed on this site 
[10]. In addition, a total of 786 genes in the 4a filtered set [9] were rejected this 
time around primarily because they physically overlap with other genes in the 
FGS and have inferior evidence/confidence.” 

(Supplemental Dataset S02) 
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 The list of 131,496 gene models in the RefGen_V4 was taken from the 
annotation file: “Zea_mays.AGPv4.cdna.all.fa” found on the Gramene FTP site 
(ftp://ftp.gramene.org/pub/gramene/). This list was reduced to 39,498 gene 
models by only retaining the locus name (i.e. ignoring various isoforms from the 
same gene model). These V4 genes were converted to V3 names using a cross 
reference table downloaded from Maize GDB “V3_V4_xref.txt”. Only 30601 gene 
models could be successfully cross-referenced back to V4, limiting the 
comparisons that can be made (Supplemental Dataset S09).  

Gene Biotype Annotation 
(Supplemental Dataset S10) 
 Gene Biotypes were extracted for the RefGen_V2 working gene set (5a) 
gff annotation file  “ZmB73_5a_WGS.gff” that was downloaded from the Maize 
GDB ftp site (http://ftp.maizegdb.org/). Biotype information is listed under the 
information field for “gene” features. 
 
Annotation of the Number of Introns 
(Supplemental Dataset S11) 
 For each gene model in the RefGen_V2 working gene set, the number of 
introns was determined by counting all unique introns listed in the gff annotation 
file “ZmB73_5a_WGS.gff” that was downloaded from the Maize GDB ftp site 
(http://ftp.maizegdb.org/). 
 
Identifying Genes with Transposable Elements 
(Supplemental Dataset S12) 
 The RefGen_V2 working gene set annotation (5a) provides a gene 
biotype. Anything with biotype “transposable element” was taken as a TE. Also, 
7,612 additional gene models were found to contain one or more regions with a 
significant blast hit (E-value = 0) to one or more reference TE sequences from 
the Maize TE database [11]. 
 
Whole Genome Bisulfite Sequencing of Multiple Inbred Lines and Multiple 
B73 Tissues 
(Supplemental Figshare Data & Supplemental Dataset S13) 
 Whole Genome Bisulfite (WGBS) of leaf tissue from several maize 
genotypes (Supplemental Figshare Data) [12] as well as multiple tissues from 
B73 (Supplemental Dataset S13) [13] have been used.  Briefly, 3rd leaf tissue of 
five genotypes (B73, Mo17, Oh43, CML322, and Tx303) and 3 additional tissues 
from B73 (anther, developing ear and shoot apical meristem) were used for DNA 
isolation and bisulfite sequencing.  Sodium bisulfite converted sequencing 
libraries were generated as described in [14].  100-bp paired end reads were 
obtained and assessed for quality by FASTQC [15].  Read tails lower than quality 
20 were removed.  All reads were then mapped to B73 reference genome 
(version 2: ZmB73_5a) with BSMAP and methratio.py for calling methylation 
levels at a single cytosine.  Methylation levels were summarized across 100-bp 
sliding windows for all three sequence contexts (CG, CHG, and CHH). 
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RNA-sequencing of Multiple Inbred Lines and Multiple B73 Tissues 
(Supplemental Dataset S14 & Supplemental Dataset S15) 
 RNA sequencing reads were generated from the 3rd leaf of 5 genotypes 
(B73, Mo17, Oh43, CML322, and Tx303) [14] (Supplemental Dataset S14) and 3 
additional tissues from B73 (anther, developing ear and shoot apical meristem) 
[13] (Supplemental Dataset S15). All samples consist of 3 biological replicates. 
The quality of the paired-end reads was assessed using FastQC [15]. Any reads 
containing adapters or runs with irregular base content at 5’ or 3’ ends were 
trimmed using cutadapt [16]. Reads were mapped to the Maize B73 RefGen_V2 
(5a) genome using HISAT [17] with the following argument: 
-k 2 --maxins 12000 --no-mixed --no-discordant --quiet --met-stderr --no-unal --
threads 7 
Reads mapping to exons were counted using htseq-count [18] with the following 
arguments: 
-s no -r name -t exon -i gene_id -m union --nonunique none 
Fragments per million (FPM) were calculated as ( counts / (total reads per 
sample / 1000000)). 
 
B73 Histone Modification Data 
 (Supplemental Dataset S16) 
 Abundance data for 3 different histone modifications (H3K36me3, 
H3K9Ac, and H3K4me3) was taken from [19]. Peak data for each modification 
was mapped to the B73 RefGen_V2 genome. The summed peak intensity for 
both shoot and root samples was calculated for each gene bin separately. A 
peak was assigned to a bin if any part of the peak overlapped the bin. The 
average of shoot and root intensities was used for the final values.  
 
Construction of Classification Models (ERC and EPC) 
(Supplemental_Dataset_S18 source code: Lines 64 – 119) 
All models used for classification were constructed in the same way, with 
differences only in the class labels on which they were trained. Random Forest 
classification models were used [20] as implemented in the R statistical 
programing language [21]. For training sets, a matrix of methylation data 
described above was used as features (independent variables) for every model 
and a unique set of class labels (dependent variables) was used to train the 
Express-able Protein Classified (EPC) and the Express-able mRNA Classifier 
(ERC) separately. These class labels were defined using transcript abundance 
data (ERC) or a combination of transcript and protein abundance data (EPC). 
Therefore, two classifiers were built. For the ERC class label training vector, the 
“Non Expressable” class was defined as genes with no detectable mRNA 
abundance (No RNA: 37588 genes) and the “Express-able” Class was defined 
as high abundance mRNA genes with FPKM >1 (High RNA: 33696 genes). For 
the EPC, this class labels were further refined by also requiring no detectable 
Protein in the “Non Expressable” class (No RNA / No Protein: 37487 genes) and 
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detected protein in the “Express-able” class (High RNA / Observed Protein: 
15421 genes). The random forest models were built with the class label vector as 
a factor type using 1000 trees and importance = T which returns the “Mean 
Decrease in Accuracy” measure of feature importance.   
(Supplemental_Dataset_S18 source code: Lines 658-707). 
A different DNA-methylation data set was used when looking across different 
genotypes and different B73 tissues (Fig 03, see above for details).  These data 
were summarized independently and 100bp tiling was done for quantitation (see 
above). Therefore, a new EPC model was re-trained on this tiled data. The same 
training class label vector for the EPC was used. Prediction scores for all models 
were taken as the proportion of Votes for the positive class (using the out-of-bag 
cross validated prediction for training set genes). These scores are reported for 
the EPC, ERC and PFI in supplemental Dataset S01 and for all ERC-2 
predictions of various maize inbred lines and B73 tissues in supplemental 
Dataset S03. 

 
Classification of Test Data 
(Supplemental_Dataset_S18 source code: Lines 151 – 158) 
 The Random forest classifiers (ERC and EPC) were used to classify the 
remaining genes that were not represented in the training set. The Random 
Forest “predict()” function was used along with the DNA methylation data for the 
test genes. This same procedure was used to classify genes based on 
methylation data from the different maize inbred lines 
(Supplemental_Dataset_S18 source code: Line 710) and different B73 tissues 
(Supplemental_Dataset_S18 source code: Lines 762). The classifications for 
genes in the training set were obtained from the Out-of-Bag cross-validated 
predictions of each model (“$predicted” slot from the Random Forest object). 

 
Construction of Regression Model (PFI) 
(Supplemental_Dataset_S18 source code: Lines 64 - 119) 
 The PFI regression model was built in the same manner as the 
classification model described above. The only difference is the class labels used 
for training. For the PFI, the first class was defined as genes with mRNA 
expression > 1 FPKM and non-observed protein (High RNA / No Protein: 18275 
genes). The other class is composed of genes with mRNA expression >1 and 
observed protein (High RNA / Observed Protein: 15421 genes).  

  
Construction of Quantitative Expression Predictors 
(Supplemental_Dataset_S18 source code:  Lines 102 - 126) 
 Two predictive models were constructed in an attempt to predict 
quantitative mRNA and Protein expression levels using DNA methylation data. 
The mRNA Expression-level Predictor (REP) and Protein Expression-level 
Predictor (PEP) were built using random forest models in much the same way as 
the ERC and EPC (described above), with one difference. The dependent 
variable training vector was a continuous numeric variable representing either 
observed mRNA or observed Protein log2(abundance). Non-observed values are 
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represented as the integer less than the lowest observed value for the data set 
(since log2(0) = -infinity). This is -12 for the mRNA data and -1 for the protein 
data. The Out-Of-Bag cross-validated results were extracted from the 
“$predicted” slot in the Random Forest objects. These values were used for 
further analysis and plotting. 
  
Feature Importance (Regression) Measure 
(Supplemental_Dataset_S18 source code: Line 130) 
 The feature importance was determined by the random forest algorithm, 
using the mean decrease in accuracy upon random permutation of each 
individual variable [20]. This requires the parameter “importance = TRUE” in the 
call to the “randomForest()” function. 
 
Determination of the Mathematical Sign (Direction) of Relationships 
Between Methylation Features and Classification 
(Supplemental_Dataset_S18 source code: Lines 134 - 147) 

The sign of the relationship between DNA-methylation features and 
classifications was determined as follows. Genes in the training set were split 
between the two training classes (Non Expressable and Express-able) to yield 
two populations (S05). For each feature, the corresponding feature values were 
assigned to each of the class populations and a student’s t-test was carried out 
between the populations. The sign of the resulting t-statistic was assigned to 
each feature while the magnitude of each was taken from the RF variable 
importance (Fig02_D-F).   
 
Receiver Operating Characteristic (ROC) Curves and Precision Vs. Recall 
Curves 
(Supplemental_Dataset_S19 source code: PlotROCPR(): Lines 96 - 231) 
 The “ROCR” R package [22] was used to generate all ROC curves. See 
[23] For a description of ROC and PR curves. For each gene, the proportion of 
positive votes from the random forest model was used as a quantitative 
classification score and this was evaluated against the known class labels. For 
the ERC and EPC, the votes were taken from the out-of-bag cross-validated 
predictions (Supplemental_Dataset_S18 source code: Line 310). These 
predictions have been shown to give accurate error rates compared to an 
independent test set [24]. When evaluating model accuracies of independent test 
samples (different B73 tissues and different maize inbreds) the ERC-2 random 
forest model trained on B73 leaf data was used to classify these independent test 
sets. Again, the number of votes were used as a quantitative classification score 
(Supplemental_Dataset_S18 source code: Lines 710 & 762). These scores were 
evaluated against a response vector that was generated from separate RNA-seq 
data sets corresponding to each test sample. In these response vectors, 
“positive” genes were ones with mRNA abundance > 1 FPKM and “negative” 
genes were ones with undetected mRNA abundance.  
(Supplemental_Dataset_S18 source code: Lines 306-315). 
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 For the ROC and PR curves representing the predictive ability of the V2 
and V4 filtered gene sets (Supplemental Figure 07), The same class labels were 
used as above. For the prediction “score”, vectors were generated using the 
BuildYvec() function with MakeQuant=T. (Supplemental_Dataset_S19 source 
code: Lines 60-81). This function randomly generates a set of numbers around 
zero [-0.1,0.1] to represent all genes not in the FGS (the negative set) and 
randomly generates a set of numbers around 1 [0.9,1.1] to represent all genes in 
the FGS (the positive set). 
 For all curves, the “prediction()” function from the ROCR package was 
used to evaluate the model. For the ROC curves, the “performance()” function 
was used with arguments “tpr” and “fpr” to generate curves and the argument 
“auc” was used to calculate the area under the curves. For PR curves, the 
“performance()” function was used with arguments “prec” and “rec” to generate 
curves. The area was calculated by estimating a function for the curve with 
“approxfun()” and integrating across its entire length 
(Supplemental_Dataset_S19 source code: Lines 247-248) 
  
CG Gene Body Methylation Genes 
(Supplemental_Dataset_S19 source code: RetrurnGBMGenes(): Lines 383 - 
395) 
 All genes with DNA-methylation data were tested for CG Gene body 
methylation (gbM). A gene was said to have gbM if the average methylation of 
the end bins (1 and 5) was less than 0.5 and the average methylation of the 
center bins (2-4) was greater than 0.5.  
  
Model Testing and Validation on Multiple Maize Genotypes and Multiple 
B73 Tissues 
(Supplemental_Dataset_S18 source code: Lines 658:961) 
 A new ERC-2 model was constructed by using the same class labels from 
the ERC but with a different 100bp tiled methylation data feature set from B73 3rd 
leaf (see above). A random forest classifier was trained. Next, the WGBS data for 
the additional 4 genotypes (Mo17, CML322, Oh43 and Tx303) as well as from 3 
additional B73 tissues (anther, developing ear, SAM) were used as test datasets 
and classified using the B73-trained model. These classifications were then 
validated using corresponding RNA-seq data for these same genotypes. To 
further assess genes with differential classifications between genotypes. The 4 
test genotypes were compared in a pairwise fashion (6 pairs). The same was 
done for pairwise comparisons between the 3 different tissues (3 pairs). For each 
of these pairwise comparisons, a number of genes have difference in prediction 
score between the two samples of 0.6 or greater. These were defined as 
differential predictions (blue dots in Fig03_C&D). Next the relative mRNA 
abundance was examined for the differential predicted genes among the 
corresponding sample pairs (Fig03 E&F).  
 
Categorical Enrichment 
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 Enrichment analysis was carried out on four sets of genes defined using 
ERC2 predictions. The four sets are: (i) genes predicted to be expressable in all 
inbreds examines and have syntenic orthologs with sorghum 
(All_Inbreds_Syntenic), (ii) or no synteny (All_Inbreds_NonSyntenic), (iii) genes 
that are predicted to be expressable in a subset of the 5 inbreds (Any_Inbred) 
and (iv) genes that are predicted to be silenced in all inbreds (No_Inbreds). A 
custom R script was written to carry out the analysis separately on each gene set 
using the MapMan categories. MapMan categories were annotated for every 
gene in the RefGen_v2 working set with the Mercator annotation pipeline [25]. 
For the stable and variable gene lists, every MapMan bin that was represented 
was examined for enrichment. A hypergeometric test was performed using the R 
function phyper() from the stats package. The total set of genes (Number of black 
and white balls) used was the intersection of genes with MapMan annotations 
and genes with methylation data. The number of white balls was the total number 
of genes annotated with the MapMan category. The number of draws was the 
number of genes in the test set and the number of white balls drawn was the 
number of genes in the test set with the MapMan annotation – 1 (1 must be 
subtracted for right-tail calculations due to the implementation of this function). 
Within each module, p-values were corrected for multiple testing using the 
p.adjust() function with (method=”fdr”) which performs the Benjamini & Hochberg 
correction. Results are shown in supplemental Dataset S03, under the 
“All_Inbreds_Syntenic”, “All_Inbreds_NonSyntenic”, “Any_Inbred” and 
“No_Inbreds” tabs. 
 
Protein Sequence Similarity Network With ERC2 Genes 
 A standalone version of BLAST was used to run an all vs. all blastp 
analysis on the protein sequence of 67,262 non-TE genes used in the ERC2 
analysis of the 5 maize inbreds. A cutoff E-value of 0.01 was used to establish 
“edges” between genes. Next the BLAST bitscore was used as a weight for each 
edge and the MCL clustering algorithm [26] was used to derive clusters with 
default clustering parameters. Clusters are defined in Supplemental Dataset S17 
and used in Fig S10_K&L. 
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Fig. S01. Summarized measures of feature importance summed over various 
methylation features.  
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Fig. S02. Binned DNA methylation levels in the CG context. Boxes show 
distributions of the proportion of (methylated cytosines / all cytosines) for all 5 
bins for various gene sets determined based on mRNA abundance and the 
presence of observed or non-observed proteins. (A-D) Summarized over the 
whole gene models. (E-H) Summarized over exons only. (I-L) Summarized over 
introns only. 
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Fig. S03. Binned DNA methylation levels in the CHG context. Boxes show 
distributions of the proportion of (methylated cytosines / all cytosines) for all 5 
bins for various gene sets determined based on mRNA abundance and the 
presence of observed or non-observed proteins. (A-D) Summarized over the 
whole gene models. (E-H) Summarized over exons only. (I-L) Summarized over 
introns only. 
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Fig. S04. Results for random forest models. (A) Precision vs. Recall (PR) curves 
showing classification accuracy of the EPC, ERC, and PFI models to predict 
expressable gene sets. (B) Prediction accuracy for quantitative mRNA 
abundance model measured as Log2(FPKM), looking at all genes with 
methylation data. (C) Prediction accuracy for quantitative protein abundance 
model measured as Log2(Normalized Spectral Counts), looking at all genes with 
methylation data. (D) The non-signed feature importance for each genomic 
region.  
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Fig. S05. Boxplots showing distributions of methylation level for all feature for the 
two different training classes of each random forest model. (A) Results for the 
EPC model. (b) Results for the EPC model and (C), results for the PFI model. 
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Fig. S06. Results from EPC and ERC classification. (A) Venn diagram showing 
the EPC results for genes classified as expressable proteins (EPC), all genes 
with observed proteins in the training set (Training Set), and the filtered gene 
sets from RefGen_V2 and RefGen_V4. (B) Venn diagram showing the ERC 
results for genes classified as expressable mRNA (ERC), all genes with high 
mRNA in the training set (Training Set) and the filtered gene sets from 
RefGen_V2 and RefGen_V4 
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Fig. S07. Classifier results and FGSs. (A) Expressable gene set annotations. 
Overlap between the EPC expressable class genes, the ERC expressable class 
genes and the pre-defined maize filtered gene sets from RefGen_V2 and 
RefGen_V4. mRNA abundance distributions of the various classified groups and 
filtered sets. (B) Results from the EPC of all genes with methylation data. (C) 
Results from the ERC of all genes with methylation data. (D) Results from the 
RefGen_v4 filtered Gene Set of all genes with methylation data. (E) Results from 
the RefGen_v2 filtered Gene Set of all genes with methylation data. (F) ROC 
curves showing the accuracy of EPC and ERC expressable gene sets as well as 
the v2 and v4 filtered gene sets. Plots are evaluating accuracy based on an atlas 
of maize expression data [7]. “HR” means High-RNA and is comparable to the 
ERC (blue lines). These are being evaluated based on the observed expressable 
mRNA. “HR_OP” means High-RNA & Observed Protein and is comparable to the 
EPC (yellow lines). These are being evaluated based on observed expressable 
mRNA and protein. (G) PR curves for the same analysis as in (F). 
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Fig. S08. Classification results from the EPC classifier. Stacked bar plot showing 
multiple pre-defined gene sets and the relative proportions that are classified as 
expressable or silenced by the EPC model. “All Genes” are defined by 
RefGen_V2 WGS. “Protein Coding” genes are the subset of the V2 WGS that 
remain after “Transposable Element” and “Pseudogene” biotypes are filtered out. 
“Filtered Set” is further refined using additional evidence (See Materials and 
Methods).   
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Fig. S09. Classifiers built with no transposable elements. 36,694 genes from 
RefGen_V2 WGS were identified as likely transposable elements (TEs). Out of 
the 98,296 genes with methylation data, 32,400 were likely TEs. After filtering out 
these TEs, classifiers were re-built. (A) Receiver Operating Characteristic (ROC) 
curve and (B) Precision vs. Recall (PR) curve showing predictive accuracy of the 
EPC, ERC and PFI. (C-E) Signed feature importance measures for 3 different 
models. The values reflect the random forest “mean decrease in accuracy” 
measure of feature importance. The sign is based on the relationship of the 
feature values to the training class assignments. Positive values indicate a 
positive correlation between the feature and either protein observation (EPC and 
PFI) or high mRNA (ERC). 
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Fig. S10. Examination of various features associated with four sets of genes 
defined using ERC2 predictions. The four sets are: (i) genes predicted to be 
expressable in all inbreds examined and have syntenic orthologs with sorghum 
(All_Inbreds_Syntenic), (ii) or no synteny (All_Inbreds_NonSyntenic), (iii) genes 
that are predicted to be expressable in a subset of the 5 inbreds (Any_Inbred) 
and (iv) genes that are predicted to be silenced in all inbreds (No_Inbreds). (A) 
The cumulative number of expressable genes predicted as inbreds are added to 
the analysis, representing the pan-expressable gene set in maize. Distributions 
are derived based on the order in which inbreds are added. (B) Proportions of 
Each set that is likely TEs. (C-F) Distributions of various genomic features for 
each set. (G) All non-TE genes with ERC2 predictions were grouped into a 
network of clusters based on sequence similarity (all vs. all BLAST comparison). 
The data points making up these distributions are, for a given gene, the number 
of genes in the same cluster (sequence paralogs). (H) The proportions of each 
set that have observed mRNA, mRNA & Protein or no observations from [7]. (I) 
mRNA abundance distributions for observed mRNA from each set. (J) Protein 
abundance distributions for observed protein from each set. (K & J) The largest 
15 clusters from the sequence similarity network (above) are represented (K). 
The total number of genes in each set is represented using various colors. Most 
are clustering around a known, common protein domain (x-axis labels). However, 
several are comprised mostly of “No_Inbred” genes and are clustering around 
uncharacterized protein sequences (Unknown 1-4). (L) The genes from all 4 sets 
are examined one at a time. The proportion of connections (each pair of genes in 
the same cluster is said to be connected) to the same set and the 3 other sets is 
displayed. For instance, we see that 61.4% of the connections of 
“All_Inbreds_Syntenic” genes are connected to other “All_Inbreds_Syntenic” 
genes.  
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Fig. S11. CG gene body methylation. (A) Pie chart displaying the observed 
distribution of 9071 genes with CG gene body methylation patterns into various 
expression populations along with the fold enrichment ratio (Observed / 
Expected) for each set. (B) Pie chart displaying the distribution of Express-able 
Protein Classifier and Express-able RNA Classifier results for the 9071 genes 
with CG gene body methylation patterns. Note that no “EPC only” is shown 
because only 1 gene exists in this category and it is not gbM. 
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Observed Protein
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High mRNA / No Protein
(Fold Enrich.:1.4)
Low mRNA / No Protein
(Fold Enrich.:0.4)
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(Fold Enrich.:0.1)

Express−able Classifications EPC & ERC
(Fold Enrich.:2.6)
ERC Only
(Fold Enrich.:0.8)
Non Express−able
(Fold Enrich.:0.1)
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Fig. S12. Analysis of genes with one or more introns. (A) The relative proportions 
of intron-containing and non-intron genes in various pre-defined gene sets. “N” 
specifies the total number in that set. “Pval” specifies the p-values calculated for 
the significance of enrichment of intron-containing genes for each category 
relative to the filtered set, using a hypergeometric test and the upper tail. It 
should be noted that this calculation, by default, only includes genes present in 
the filtered set. Therefore, the ratios used in the p-value calculation will differ 
from those shown in the plot, which shows the proportions of the entire 
corresponding sets (i.e. relative to all genes, not subset on the filtered genes). 
(B) The distribution of CG methylation levels across all 5 bins for genes with high 
RNA and no introns. (C) The distribution of CG methylation levels across all 5 
bins for genes with high RNA and one or more introns. 
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Fig. S13. Classification models built using data from 3 different histone 
modifications in maize B73 (H3K4me3, H3K36me3 and H3K9ac). (A-B) Boxplots 
showing the modification abundance in 5 bins across the whole gene body for 
genes that were classified as expressable or silenced in the EPC (A) and ERC 
(B). (C-D) Receiver Operating Characteristic (ROC) (C) and Precision vs. Recall 
(PR) (D) curves showing the accuracy of the histone modification-based 
classification models. (E-F) Scatter plots showing the accuracy of quantitative 
protein level predictions measured as Log2(Normalized Spectral Count) (E) or 
mRNA level predictions measured as Log2(FPKM) (F). (G-H) Signed feature 
importance measures for each predictive feature in the histone based EPR (G) 
and ERC (H).   
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Additional data (separate files) 
 
Supplemental_Dataset_S01.csv Classification results from the 3 main 
classifiers (EPC, ERC and PFI). Each row is a gene and each column represents 
1 model. The values are the proportion of votes for the positive class from the 
random forest classifier. For the corresponding training set genes, the cross-
validated prediction is given. In general, a cutoff of 0.5 is used. Therefore, a 
score <= 0.5 represents a “silenced” prediction and a score >0.5 represents an 
“expressable” prediction. The last column lists the cross-referenced RefGen_V4 
annotation when available. 
 
 Supplemental_Dataset_S02.csv A single column listing accessions for genes 
that are in the RefGen_V4 maize Filtered Gene Set (FGS). 
 
Supplemental_Dataset_S03.xlsx (Tab: ERC-2_Scores) Classification results 
for predictions on various maize inbred lines and various B73 tissues using the 
ERC-2 classifier that was trained on a single B73 3rd leaf tissue data set. Each 
row is a gene and each column represents a different inbred line (3rd leaf) or a 
different B73 tissue. The values are the proportion of votes for the positive class 
from the random forest classifier. For the training set genes, the cross-validated 
prediction is given. In general, a cutoff of 0.5 is used. Therefore, a score <= 0.5 
represents a “silenced” prediction and a score >0.5 represents an “expressable” 
prediction. (Tabs: All_Inbreds_Syntenic, All_Inbreds_NonSyntenic, Any_Inbred 
and No_Inbreds) The results of categorical enrichment carried out using the 
MapMan annotation on the four gene sets defined using ERC2 predictions. The 
four sets are: (i) genes predicted to be expressable in all inbreds examined and 
have syntenic orthologs with sorghum (All_Inbreds_Syntenic), (ii) or no synteny 
(All_Inbreds_NonSyntenic), (iii) genes that are predicted to be expressable in a 
subset of the 5 inbreds (Any_Inbred) and (iv) genes that are predicted to be 
silenced in all inbreds (No_Inbreds). Columns for enrichment results are: 1) Bin 
code and name of the functional class, 2) P-value of enrichment, 3) FDR 
adjusted P-value, 4) Fold enrichment over expected, 5) Enrichment direction 
(either over or under-enriched), 6) Total number of genes in the background 
(reference) set used for the analysis (here all genes with predictions in the 
ERC2s were used), 7) Total number of genes with the specified annotation in the 
background set, 8) Total number of genes used for the analysis in the test set 
(may vary from actual test number because some genes do not have MapMan 
annotations), 9) Number of genes with specified annotation in the test set. 10) A 
list of genes represented in column 9.  
 
Supplemental_Dataset_S04.csv DNA methylation data for 14-day old B73 
seedling quantified on the full set of genomic features including whole gene, 5’ 
UTR, Transcription Start Site (TSS), Exon, Intron, and 3’ UTR as well as all 3 
methylation contexts (CG, CHG, CHH). Each row is a gene and each column is 
labeled as “Methylation Context _ Genomic Feature”. 
 



 
 

27 
 

Supplemental_Dataset_S05.csv DNA methylation data for 14-day old B73 
seedling quantified separately for each of the 5 bins as well as whole-gene, exon 
and intron features and both CG and CHG methylation contexts. Each row is a 
gene and each column is labeled as “Methylation Context _ Genomic Feature _ 
Bin Number”.  
 
Supplemental_Dataset_S06.csv A list of Log2-transformed values of protein 
abundance for all detected proteins. Column 1 lists gene accessions and column 
2 is the abundance value. 
 
Supplemental_Dataset_S07.csv A single column listing accessions for genes 
that have at least one uniquely identified peptide. 
 
Supplemental_Dataset_S08.csv A list of Log2-transformed values for mRNA 
abundance of all detected mRNAs. Column 1 lists gene accessions and column 
2 is the abundance value. 
  
 
Supplemental_Dataset_S09.csv A single column listing accessions for genes 
that are in the RefGen_V2 maize Filtered Gene Set (FGS). 
 
Supplemental_Dataset_S10.csv A list of all maize genes and their biotypes. 
Column 1 shows gene accessions and column 2 lists one of 3 biotypes: 
(“protein_coding”,”transposable_element”,”pseudogene”). 
 
Supplemental_Dataset_S11.csv A list of all maize genes and the number of 
introns they contain. Column 1 shows gene accessions and column 2 is the 
number of introns. 
 
Supplemental_Dataset_S12.csv A single column listing accessions for genes 
that are likely to be transposable elements. 
 
Supplemental Figshare Data 
https://doi.org/10.6084/m9.figshare.8316701.v1 
DNA methylation data for 3rd leaf from multiple different maize inbred lines. All 
data is quantified via 100 bp, non-overlapping windows. This table includes 
methylation quantification for all 3 contexts as well as feature coverage quantified 
over the 5 gene bins and 3 genomic features (gene, exon and intron). Each row 
is a gene and each column is labeled as “Inbred Line . (Methylation Context / 
Coverage) . Genomic Feature . Bin Number”. 
 
Supplemental_Dataset_S13.csv DNA methylation data from multiple maize 
tissues (B73). All data is quantified via 100 bp, non-overlapping windows. This 
table includes methylation data for all 3 contexts, quantified over the 5 gene bins 
and 3 genomic features (gene, exon and intron). Each row is a gene and each 
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column is labeled as “B73.Tissue . Methylation Context . Genomic Feature . Bin 
Number”. 
 
Supplemental_Dataset_S14.csv mRNA abundance (RNA-seq, Log2(FPM)) for 
the 3rd leaf from the same inbred lines as Supplemental Figshare Data. 109,871 
RefGen_V2 genes are included. Each row is a gene and each column represents 
a different sample of 5 inbred lines and 3 replicates each.  
 
Supplemental_Dataset_S15.csv mRNA abundance (RNA-seq, Log2(FPM)) for 
3 different B73 tissues. 109,871 RefGen_V2 genes are included. Each row is a 
gene and each column represents a different sample of 3 tissues with 3 
replicates each. 
 
Supplemental_Dataset_S16.csv Quantification of 3 histone modifications in 
maize B73 across gene model bins. H3K36me3, H3K9Ac, and H3K4me3 are 
included. Each row represents a gene model and each column is designated by 
(ModificationType_Bin#). 
 
Supplemental_Dataset_S17.csv List of various features associated with every 
gene with ERC2 predictions. (Group column) The gene set that each gene 
belongs to. Four sets of genes were defined using ERC2 predictions. The four 
sets are: (i) genes predicted to be expressable in all inbreds examined and have 
syntenic orthologs with sorghum (All_Inbreds_Syntenic), (ii) or no synteny 
(All_Inbreds_NonSyntenic), (iii) genes that are predicted to be expressable in a 
subset of the 5 inbreds (Any_Inbred) and (iv) genes that are predicted to be 
silenced in all inbreds (No_Inbreds). (Number_Of_AAs) The number of amino 
acids in the coding sequence of the gene model. (Number_Of_Introns) The 
number of introns in the gene model. (Number_of_Protein_Domains (Interprot5)) 
The number of protein domains found in the gene model using Interprot 5. 
(Top_Sorghum_BLAST_BitScore) The protein Blast bit score for the top hit to 
Sorghum proteins. (Syntenic_Ortholog_With_Sorghum) Does this gene have a 
syntenic ortholog with sorghum. (Predicted_Protein_Expression_In_B73) Is this 
gene predicted to express protein using the ERC model in B73. 
(Observed_Protein_Expression_In_B73 [7]) Does this gene have observed 
protein expression from [7]. (Best_Reciprocal_Blast_Maize_Paralog) If the gene 
has a reciprocal best BLAST hit to another maize gene, it is listed here. 
(Blast_Cluster) All non-TE genes were used to create a network based on protein 
sequence similarity (all vs. all BLAST) and then clustered into groups. This 
column lists the cluster membership for each gene. (Gene_Class) This is a 
category containing our final curation for each gene. There are five categories: (i) 
Expressable – The gene is predicted to be expressable in one or more observed 
inbreds. (ii) Likely TE – The gene has high sequence similarity to a transposable 
element. (iii) Silent_Clusters-With-Expressable – The gene is predicted to be 
silenced in all observed inbreds but >= 25% of the genes in its cluster are 
expressable, providing evidence for possible expression in other maize inbreds. 
(iv) Silent_Clusters-With-Silent – The gene is predicted to be silenced in all 



 
 

29 
 

observed inbreds and > 75% of the genes in its cluster are also silent. (v) 
Silent_No_Cluster – The gene is predicted to be silenced in all observed inbreds 
and has very low sequence similarity with any other gene. 
 
Supplemental_Dataset_S18 A source code text file in the format of the R 
programming language. This file contains all the source code that was used to 
run the model construction, analysis and figure plotting for this publication. 
 
Supplemental_Dataset_S19 A source code text file in the format of the R 
programming language. This file contains auxiliary functions that are called by 
Supplemental_Dataset_S18 source code. 
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