

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Sarcopenia of Spine (SarcoSpine): A Prospective Cohort Study Protocol

2019-032443 2019 Chan; Seoul National University Hospital -Uk; Seoul National University Seoul Metropolitan Government
2019 Chan; Seoul National University Hospital -Uk; Seoul National University Seoul Metropolitan Government
Chan; Seoul National University Hospital -Uk; Seoul National University Seoul Metropolitan Government
-Uk; Seoul National University Seoul Metropolitan Government
e Medical Center, Department of Rehabilitation Medicine e Hee; Seoul National University Seoul Metropolitan Government e Medical Center, Department of Rehabilitation Medicine e-Young; Seoul National University Bundang Hospital ng Hyun; Seoul National University Seoul Metropolitan nent Boramae Medical Center, Department of Radiology ng Yoon; Seoul National University Seoul Metropolitan nent Boramae Medical Center, Department of Rehabilitation e
nia, Spine < ORTHOPAEDIC & TRAUMA SURGERY, Paraspinal , Lumbosacral Region
1

BMJ Open

1	Sarcopenia of Spine (SarcoSpine): A Prospective Cohort Study
2	Protocol
3	Ju Chan Kim ¹ , Shi-Uk Lee ² , Se Hee Jung ² , Jae-Young Lim ³ , Dong Hyun Kim ⁴ , Sang
4	Yoon Lee ²
5	1 Department of Rehabilitation Medicine, Seoul National University College of
6	Medicine, Seoul National University Hospital, Seoul, Republic of Korea
7	2 Department of Rehabilitation Medicine, Seoul National University College of
8	Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
9	3 Department of Rehabilitation Medicine, Seoul National University College of
10	Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do,
11	Republic of Korea
12	4 Department of Radiology, Seoul National University College of Medicine, SMG-
13	SNU Boramae Medical Center, Seoul, Republic of Korea
14	
15	Address correspondence to Sang Yoon Lee, MD, PhD
16	Department of Rehabilitation Medicine, Seoul National University College of
17	Medicine, SMG-SNU Boramae Medical Center, 20 Boramae-ro 5-gil, Dongjak-gu,
18	Seoul, 07061, Republic of Korea
19	Tel: +82 2 870 2673; Fax: +82 2 831 0714
20	Email address: rehabilee@gmail.com

21 Word count: 3306

for occr texter on on

ABSTRACT

Introduction: Sarcopenia in the lumbar paraspinal muscles is receiving renewed attention as a cause of spinal degeneration. However, there are few studies on the precise concept and diagnostic criteria for spinal sarcopenia. Here, we develop the concept of spinal sarcopenia in community-dwelling healthy, elderly people. In addition, we aim to observe the natural aging process of paraspinal and back muscle strength and investigate the association between conventional sarcopenic indices and spinal sarcopenia.

Methods and analysis: This is a prospective observational cohort study with 120 healthy community-dwelling, elderly people over 4 years. All subjects will be recruited in no sarcopenia, possible sarcopenia, or sarcopenia groups. The primary outcomes of this study are isokinetic back muscle strength and lumbar paraspinal muscle quantity and quality evaluated using lumbar spine magnetic resonance imaging. Conventional sarcopenic indices and spine specific outcomes such as spinal sagittal balance, back performance scale, and Sorenson test will also be assessed. The data will be analysed using the intention-to-treat principle.

Ethics and dissemination: Before screening, all participants will be provided with
oral and written information. Ethical approval has already been obtained from all
participating hospitals. The study results will be disseminated in peer-reviewed
publications and conference presentations.

43 Trial registration number: NCT03962530

44 STRENGTHS AND LIMITATIONS OF THIS STUDY

- This study is a prospective cohort study in healthy community-dwelling elderly people, to develop the concept of spinal sarcopenia, by observing the natural aging process of paraspinal muscle and back muscle strength and investigating the association between conventional sarcopenic indices and spinal sarcopenia.
- Standardised data evaluation for sarcopenia and the function of spinal extensor muscles will be used for the analysis with an application of relevant statistical methods.
- Sample size was evaluated based on calculation of feasibility study due to the absence of previous literature concerning isokinetic back muscle strength or lumbar paraspinal muscle quantity.

INTRODUCTION

Sarcopenia is the age-related loss of skeletal muscle mass and function. It is a problem of not only muscle mass, but also muscle strength and performance.^{1,2} It can also be defined as a syndrome characterized by progressive and generalized loss of skeletal muscle mass and strength with a risk of adverse outcomes such as physical disability, poor quality of life, and death.³ The loss of muscle mass plays an important role in the frailty process of elderly people, being a key player of its latent phase and explaining many aspects of the frailty status itself.⁴

Does Sarcopenia affect the spine? It is not difficult to answer the question if we think about the anatomy of the spine. While skeletal bone is the frame, and there are neural tissues inside the spinal canal, almost all surrounding tissues are skeletal muscles. There are huge extensor muscles at the posterior part of the spine and iliopsoas muscles also exist bilaterally around the spine. Thus, it is inevitable for sarcopenia to impact the spine. Receiving renewed attention is sarcopenia of the lumbar paraspinal muscles as a cause of spinal degeneration. Both the atrophy and fatty change of paraspinal muscles originating from sarcopenia on lumbar paraspinal, are also known to be associated with functional disorders and chronic back pain.⁵ We want to suggest classifying this phenomenon as "spinal sarcopenia". However, there are few studies on the precise concept and diagnostic criteria for spinal sarcopenia and no clinical trials to determine whether it can be treated or

prevented by strengthening exercise or nutritional support.

Classical sarcopenia indices proposed by several sarcopenia working groups^{6,7} to date cannot be used to diagnose spinal sarcopenia. While feasible, inexpensive, and less radiation-exposed tools such as dual energy X-ray absorptiometry have been used to measure appendicular skeletal muscle mass, paraspinal muscle assessment still requires the use of spinal computed tomography (CT) or magnetic resonance imaging (MRI). In addition, spinal extensor strength measurement is necessary to confirm the function of the lumbar paraspinal muscle, but isokinetic strength measuring equipment for accurate measurement is not as feasible as a dynamometer of hand-grip strength to evaluate sarcopenia. Furthermore, many elderly people may experience pain during the measurement of spinal extension strength.

Therefore, it is necessary to develop a simple, accessible, and clinically meaningful measurement index to confirm the function of spinal extensor muscles. In this prospective cohort study, we will investigate the basic data of sarcopenia and physical function as well as spine imaging (MRI and X-ray), back performance, spinal sagittal balance, and back extensor strength in 120 healthy elderly people. Based on this, we will analyse the correlation between baseline sarcopenia, spinal functional index, spinal sagittal balance index, and physical function. Furthermore, we will observe the natural aging process of these indicators through long-term

1 2						
3 4 5 6	101	follow-up over 4 years.				
7 8 9	102					
10 11 12	103	Objectives				
13 14 15	104	1. To develop the concept of spinal sarcopenia in community-dwelling healthy				
16 17 18	105	elderly people.				
19 20	106	2. In addition, we aim to observe the natural aging process of paraspinal muscle				
21 22	107	and back extensor strength and investigate the association between				
23 24 25	108	conventional sarcopenic indices and spinal sarcopenia.				
26 27 28	109					
29 30 31 32	110					
33 34 35	111	11 METHOD AND ANALYSIS				
36 37 38	112					
39 40 41	113	Study design				
42 43 44	114	This is a prospective observational cohort study with 120 healthy community-				
45 46	⁵ 115 dwelling elderly people in a single center (SMG-SNU Boramae Medical Center					
47 48 49	Individual follow-up will last 4 years.					
50 51 52	117					
53 54 55 56	118	Participants and eligibility criteria				
57 58 59 60	119	Elderly people (\ge 65 years old) who are community-dwellers and able to walk with or 7				

 Page 8 of 28

without assistive devices will be included. Participants who have experienced the following will be excluded: 1) low back pain with moderate severity (numeric rating scale 5 and over); 2) history of any types of lumbar spine surgery; 3) history of hip fracture surgery and arthroplasty of hip or knee; 4) contraindications for MRI (such as cardiac pacemaker, implanted metallic objects, and claustrophobia); 5) disorders in central nervous system (such as stroke, parkinsonism, spinal cord injury); 6) cognitive dysfunction (Mini Mental State Examination score < 24); 7) communication disorder (such as severe hearing loss); 8) severe cardiopulmonary disease (such as heart failure with New York Heart Association Class III or IV); 9) uncontrolled chronic disease (such as hypertension with systolic blood pressure >165 and diastolic blood pressure >95); 10) musculoskeletal condition affecting physical function (such as amputation of limb); 11) long-term use of corticosteroids due to inflammatory disease; 12) malignancy requiring treatment within 5 years; and 13) other medical conditions which need active treatment; patients who refuse to participate in a study will also be excluded. Sarcopenia can be divided by two stages: 1) possible sarcopenia (PS) defined by low handgrip strength and/or low gait speed and 2) sarcopenia (SA) confirmed by low handgrip strength and/or low gait speed and low muscle mass defined by the consensus report of the Asian working group for sarcopenia.⁶ A no sarcopenia (NS) group is added to this classification, and the study participants are classified into three groups (NS, PS, and SA) after the screening tests (Figure 1).

BMJ Open

3	
4	
5	
6 7	
, 8	
8 9	
9	
10 11	
11	
12	
11 12 13 14 15 16 17	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
25	
26	
26 27	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
20	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40 47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
<u> </u>	

60

142 Outcomes measures

143 Primary outcome measures

144 1. Isokinetic back muscle strength

The investigators will use the isokinetic dynamometer (Biodex multi-joint 145 system, Biodex Corporation, Shirley, NY, USA) to measure the torque of the 146 back extensors. Briefly, the examination will be performed by seating the 147 patient comfortably in the device, fixing both the thighs and the back to the 148 chair using a strap, and asking the patient to hold the handle placed near the 149 front, at the chest, to measure upper limb and hip joint motions. The 150 dynamometer axis will be located on the anterior superior iliac spine of the 151 patient's pelvis. All patients will be instructed to flex and extend the back five 152 times at an angular velocity of 60°/sec as a warm-up before the examination. 153 During the examination, patients will be instructed to execute flexion and 154 extension of the back, with a maximum effort, 10 times at an angular velocity 155 of 60°/sec. The device will measure the peak torque (PT) (Nm) and the peak 156 torque per body weight (PT/Bwt) (Nm/kg).⁸ 157 2. Lumbar paraspinal muscle quantity and quality 158

14159Lumbar spine MRI will be performed using a 1.5-T scanner (Achieva 1.5 T;160Philips Healthcare, Netherlands). Subjects will be placed in the supine161position with the lumbar spine in a neutral position and a pillow under their162head and knees. The imaging protocol will include sagittal T2-weighted fast163spin echo imaging (repetition time, 3,200 ms/echo; echo time, 100 ms; echo-164train length, 20; section thickness, 4 mm; and field of view, 300 × 300 mm)

3		
4 5	165	and axial T2-weighted fast spin echo imaging (repetition time, 3,500 ms/echo;
6 7	166	echo time, 100 ms; echo-train length, 20; section thickness, 4 mm; and field
8 9 10	167	of view, 200 × 200 mm). Axial images will be obtained for each lumbar
10 11 12	168	intervertebral level (T12/L1-L5/S1) parallel to the vertebral endplates with five
13 14	169	slices at each intervertebral level.
15 16	170	The measurement of the cross sectional area (CSA) and fatty infiltration ratio
17 18 19	171	(FI %) of the paraspinal muscles (erector spinae [ES], multifidus [MF], and
20 21	172	psoas major [PM]) will be performed with axial T2-weighted images using a
22 23	173	radiological workstation (MEDIP; Medical IP, Seoul, South Korea) specially
24 25 26	174	designed for such purposes. The measurement of ES and MF will be
26 27 28	175	performed from the level of L1/L2 to L5/S1 and that of PM will be performed
29 30	176	at the level of L4/5. The CSA will be measured by manually constructing free-
31 32	177	draw points around the outer margins of the individual muscles using touch
33 34 35	178	screen LCD monitor (XPS 15 9570, Dell, Round Rock, TX, USA) and digital
36 37	179	touch screen pen (PN556W Dell Active Pen, Dell, Round Rock, TX, USA).
38 39	180	The FI % is defined as the percentage of fatty infiltration area, which is
40 41 42	181	obtained by dividing the fatty infiltration area by the total area. The CSA and
43 44	182	FI % of paraspinal muscles will be separately measured on the bilateral sides,
45 46	183	and mean values will be calculated.9
47 48 40	184	
49 50 51	185	Secondary outcome measures
52 53	186	1. Conventional sarcopenic indices
54 55	187	A. Appendicular skeletal muscle mass (ASM): Both dual-energy X-ray
56 57 58		
59 60		10

BMJ Open

2 3		
4 5	188	absorptiometry (Lunar iDXA for Bone Health; GE Healthcare,
6 7	189	Schenectady, NY, USA) and bio-impedance analysis (InBody 720;
8 9 10	190	Biospace, Seoul, South Korea) will be used to analyse body composition
10 11 12	191	including lean body and fat masses. ASM will be calculated by obtaining
13 14	192	the sum of the lean mass in bilateral upper and lower extremities ¹⁰ and
15 16	193	standardized by being divided by the squared height value (ASM/Ht ² ,
17 18 19	194	kg/m²).
20 21	195	B. Handgrip strength: It will be measured using a hand-grip dynamometer
22 23	196	(T.K.K.5401; Takei Scientific Instruments, Tokyo, Japan) ¹¹ , as described
24 25 26	197	previously ¹² . Briefly, while sitting in a straight-backed chair with their feet
26 27 28	198	flat on the floor, patients will be asked to adduct and neutrally rotate the
29 30	199	shoulder, flex the elbow to 90°, and place the forearm in a neutral
31 32	200	position, with the wrist between 0° and 30° extension and between 0° and
33 34 35	201	15° ulnar deviation. Subjects will be instructed to squeeze the handle as
36 37	202	hard as possible for 3 seconds, and the maximum contraction force (Kg)
38 39	203	will be recorded.
40 41	204	C. Short physical performance battery (SPPB): Functional examination
42 43 44	205	using SPPB derived from three objective physical function tests (i.e., the
45 46	206	time taken to cover 4 m at a comfortable walking speed, time taken to
47 48	207	stand from sitting in a chair 5 times without stopping, and ability to
49 50 51	208	maintain balance for 10 s in three different foot positions at progressively
52 53	209	more challenging levels). ¹³ A score from 0 to 4 will be assigned to
54 55	210	performance on each task, with higher scores indicating better lower
56 57		
58 59 60		11
00		

body function.

212 2. Spine specific outcomes

A. Isometric back muscle strength: Similarly, with the isokinetic back muscle strength test, we will perform the isometric back muscle strength test using a handheld dynamometer (PowerTrack II; JTECH Medical, Salt Lake City, UT, USA). This will involve the participant standing in full extension with their back to a wall, midway between two vertically oriented anchor rails, and feet flat on the floor with heels touching the wall. An inelastic belt will be looped through the anchor rails, and secured firmly around the participant, 1 cm below the anterior superior iliac spines, in order to restrain movement and maintain participant contact with the wall during the test. To standardise posture, arms will be crossed over the chest, with fingertips level with the contralateral shoulders. The participant will be instructed to flex forward approximately 15° at the hips so the handheld dynamometer can be positioned posterior to the spinous process of the seventh thoracic vertebrae. In this way, counter pressure will be provided by the fixed wall behind the participants' back so that variations in resistance by an examiner will be avoided.¹⁴ B. Spinal sagittal balance (SSB): For each participant, one lateral

 radiograph of the whole spine will be made and digitized. All

measurements will be performed by means of imaging software

(INFINITT PACS M6; INFINITT Healthcare, Seoul, South Korea), as

previously described.^{15,16} Briefly, the following spinopelvic radiographic

BMJ Open

2 3 4		
4 5	234	parameters will be analysed: sacral slope (SS), pelvic incidence (PI),
6 7	235	pelvic tilt (PT), lumbar lordosis (LL), thoracic kyphosis (TK), the ratio of LL
8 9	236	to PI (LL/PI), PI-LL mismatch (PI-LL; the difference between the pelvic
10 11 12	237	incidence and lumbar lordosis), and sagittal vertical axis (SVA). PI-LL will
13 14	238	be used as the primary outcomes of SSB.17
15 16	239	C. Back performance scale (BPS): BPS consists of five tests: Sock Test, the
17 18	240	Pick-up Test, the Roll-up Test, the Fingertip-to-Floor Test, and the Lift
19 20 21	241	Test. The 5 tests comprising the BPS demonstrate associations with
22 23	242	each other, and each test contributes to high internal consistency,
24 25	243	implying that the tests share a common characteristic in measuring
26 27 28	244	physical performance. ¹⁸ The BPS sum score (0-15) is calculated by
28 29 30	245	adding the individual scores of the 5 tests.
31 32	246	D. Sorensen test: It is the most widely used test in published studies
33 34	247	evaluating the isometric endurance of the trunk extensor muscles. The
35 36 37	248	test consists of measuring the amount of time a person can hold the
38 39	249	unsupported upper body in a horizontal prone position with the lower
40 41	250	body fixed to the examining table. ¹⁹
42 43	251	3. Other functional outcomes
44 45 46	252	A. Berg balance scale (BBS): Balance and fall risk will be assessed using
40 47 48	253	BBS (range: 0–56; a lower score indicates a worse outcome). ²⁰
49 50	254	B. Quality of life (QOL): It will be evaluated using the Euro Quality of Life
51 52	255	Questionnaire five-dimensional classification (EQ-5D; range: 0–1; a lower
53 54		
55 56 57	256	score indicates a worse outcome). ²¹
58 59		13
60		

3 ⊿		
4 5	257	C. Activities of daily living (ADLs): ADLs will be determined using the Korean
6 7 8	258	version of the modified Barthel index ²² (K-MBI; range: 0–100; a lower
8 9 10	259	score indicates a worse outcome) and the Korean version of the
11 12	260	Instrumental ADL (K-IADL; range: 0–3; a higher score indicates a worse
13 14	261	outcome). ²³
15 16 17	262	D. Frailty: It will be assessed based on fatigue, resistance, ambulation,
17 18 19	263	illnesses, and loss of weight (FRAIL) using the Korean version of the
20 21	264	FRAIL scale (K-FRAIL; range: 0–5; a lower score indicates a worse
22 23	265	outcome). ²⁴
24 25 26	266	4. Serum examination
27 28	267	A. Serum chemistry, complete blood counts (CBC), blood urea nitrogen and
29 30	268	creatinine will be obtained.
31 32 33	269	B. Interleukin-6 (IL-6) level will be quantified by Green-Cross laboratory (GC
34 35	270	lab, Seoul, Korea) using standard procedures.
36 37	271	
38 39 40	272	All outcome variables will be collected at baseline, 2 and 4 years. However, L-S
41 42	273	spine MRI for lumbar paraspinal muscle quantity and quality will be performed only
43 44	274	at baseline (Table 1).
45 46 47	275	
48 49 50	276	
51 52 53	277	
54 55 56	278	
57 58 59		14
60		

279	Table 1. Overview of the outcome measures and time points of assessment

Table 1. Overview of the outcome measures and time points of assessment					
	Screening	Baseline	2 years	4 ye	
Eligibility	Х				
Eligibility confirmation		Х			
Informed consent		Х			
Demographic information		Х			
Medical History		Х	Х	>	
Body composition (image study)					
Wholebody DEXA and BIA	BIA	DEXA	х	>	
Whole spine X-ray (lateral)		Х	х	>	
L-S spine MRI		х			
Function and performance					
Handgrip strength	х	х	х	>	
Gait function	x	Х	х	>	
SPPB		Х	х	>	
Physical activity		х	х	>	
Balance function		Х	х	>	
Spine performance					
Isokinetic back muscle strength		x	х	>	
Isometric back muscle strength		X	х	>	
Sorenson test		х	х	>	
Back performance scale		х	х	Х	
Others					
Fear for fall		Х	х	Х	
Nutritional status		Х	х	>	
Frailty		Х	х	>	
QoL questionnaire		х	х	>	
Activity daily living		Х	х	>	
Laboratory test with biomarker		х	х	>	

2 3		
4 5	280	DEXA, Dual-energy X-ray absorptiometry; BIA, Bio-impedance analysis; MRI,
6 7	281	Magnetic resonance imaging; SPPB, Short Physical Performance Battery, QoL,
8 9 10	282	Quality of life.
10 11 12	283	
13 14	203	
15 16		
17 18		
19 20		
21 22		
23 24		
25 26		
27 28		
29 30 31		
32 33		
34 35		
36 37		
38 39		
40 41		
42 43		
44 45		
46 47		
48 49 50		
50 51 52		
53 54		
55 56		
57 58		
59 60		16

Data analysis

1

BMJ Open

2	
3 4	
5 6	
7 8	
9	
10 11	
12 13	
14 15	
12 13 14 15 16 17 18	
17 18	
19 20	
21 22	
23	
24 25	
26 27	
28 29	
30 31	
32	
33 34	
35 36	
37 38	
39 40	
41	
42 43	
44 45	
46 47	
48 49	
50	
51 52	
53 54	
55 56	
57 58	
59	
60	

285	Data will be collected using a standardised data entry form and entered into the data
286	management system. The intention-to-treat principle will be used for data analysis.
287	Participant characteristics will be described using means and standard deviations for
288	continuous data and frequencies and percentages for categorical data. The three
289	groups will be compared using an analysis of variance (ANOVA) or the non-
290	parametric equivalence, a Kruskal–Wallis test, if required. To compare paired data
291	(intra-group) between two different points, we will use repeated-measures ANOVA
292	and Friedman tests for continuous and non-parametric data, respectively. Statistical
293	significance will be defined as a P value < 0.05. All statistical analyses will be
294	performed using SPSS version 19.0 for Windows (IBM Corp., Chicago, IL, USA).
295	
296	Sample size
297	We intended to perform the sample size calculation based on the difference in mean
298	of isokinetic back muscle strength or lumbar paraspinal muscle quantity among

of isokinetic back muscle strength or lumbar paraspinal muscle quantity among
groups. However, there was no literature available concerning isokinetic back
muscle strength or lumbar paraspinal muscle quantity in general practices or
hospitals, let alone effect sizes. Therefore, we based our sample size calculation on
feasibility. A total of 120 subjects will be recruited in order to ensure 20 male and 20
female participants per group, in three groups (NS, PS, and SA groups) based on
sarcopenia.

Patient and public involvement While participants were not involved in the development of the research question and the selection of outcome measures, their needs and preferences were considered throughout the process. Feedback to the participants regarding scientific results, will be organised on each study site. ETHICS AND DISSEMINATION This protocol is approved by the institutional review board of Seoul Metropolitan Government Seoul National University (SMG-SNU) Boramae Medical Center (IRB No. 20-2019-19). The study will be performed in accordance with the relevant guidelines of the Declaration of Helsinki, 1964, as amended in Tokyo, 1975; Venice, 1983; Hong Kong, 1989; and Somerset West, 1996.²⁵ Written informed consent for all interventions and examinations will be obtained at patient admission. The Ethics Board will be informed of all serious adverse events and any unanticipated adverse effects that occur during the study. The study protocol has been registered at Clinicaltrials.gov and will be updated. The study methods are in accordance with the SPIRIT guidelines for reporting randomised trials.²⁶ Direct access to the source data will be provided for monitoring, audits, Research Ethics Committee (REC)/Institutional Review Board (IRB) review, and regulatory authority inspections during and after the study. All patient information will be coded anonymously, with only the study team having access to the original data. The study results will be disseminated in peer-reviewed publications and conference presentations.

1 2		
3 4	328	
5 6 7	520	
8 9	329	
10 11 12	330	DISCUSSION
13 14 15 16	331	
17 18	332	Skeletal muscle mass measurement to define sarcopenia has mainly been based on
19 20	333	the sum of muscle mass in the limbs (appendicular limb muscle mass). However the
21 22 23	334	question remains whether this sum of limb muscle mass is associated with muscle
24 25	335	function throughout the whole body. Lee et al. reported that degenerative arthritis of
26 27	336	the knee joint was associated with only lower limb muscle mass, but not with upper
28 29 30	337	limb muscle mass. ²⁷ Recently, Jeon et al. also suggested that the sum of limb
30 31 32	338	muscle mass was not correlated with the radiological degenerative changes of the
33 34	339	lumbar spine and hip joint. ²⁸ Therefore, site-specific muscle mass investigation is
35 36 37 38 39 40 41 42	340	necessary to evaluate the effect of skeletal muscle on specific regions.
	341	Currently, SSB is an important indicator of outcomes of lumbar spine surgery, ²⁹ and
	342	even non-operative treatment of spinal stenosis. ³⁰ While SSB can be affected by
43 44	343	sex ³¹ and ethnicity, ³² aging is the most important cause of spinal sagittal
45 46	344	imbalance. ³³ Decreased lumbar lordosis is an important cause of spinal sagittal
47 48 49	345	imbalance, and it is known to originate from the wedging or decreased height of the
50 51	346	intervertebral discs in the absence of vertebral compression fractures. ^{34,35} However,
52 53	347	spinal sagittal imbalance is difficult to explain only by the height of the intervertebral
54 55	348	discs or vertebral bodies. Therefore, we can hypothesize that spinal sarcopenia is
56 57 58 59 60		19

3					
4 5	349	one of the causes of spinal sagittal imbalance which the current cohort study will			
6 7 8	350	prove.			
9 10 11	351	Several specific assessments such as cross-sectional area of paraspinal muscles,			
12 13	352	back muscle strength, and back performance test are required to evaluate spinal			
14 15	353	sarcopenia. However, unlike limb skeletal muscles, the functional evaluation of the			
16 17 18	354	spine corresponding to the center of the body is not practical. Thus, this cohort study			
19 20	355	will investigate the value of SSB as a substitute for back muscle strength and			
21 22	356	performance measurement. In other words, if back muscle strength and functional			
23 24	357	impairment are directly related to the spinal sagittal imbalance, a simple measurable			
25 26 27	358	SSB may be a useful index to represent spinal muscle function.			
28 29 30	359				
31 32 33 34	360	Authors' contributions			
35 36	361	SYL conceived the study and is the principal investigator. JCK, SUL, SHJ, JYL, and			
37 38 39	362	DHL contributed to the development of the study. All authors approved the version to			
40 41 42	363	be published and are responsible for its accuracy.			
43 44 45	364				
46 47 48 49	365	Funding			
50 51	366	This work was supported by the National Research Foundation of Korea (NRF) grant			
52 53 54	367	funded by the Korea government (MSIT) (No. 2019R1C1C100632).			
55 56 57	368				
57 58 59 60		20			

1 2		
3 4 5 6	369	Competing interests
7 8 9 10 11 23 14 56 7 8 9 0 12 23 24 5 56 7 8 9 0 12 23 24 5 56 7 8 9 0 12 23 24 5 56 7 8 9 0 12 23 24 5 56 7 8 9 0 12 23 24 5 56 7 8 9 0 12 23 24 5 56 7 8 9 0 12 23 24 5 56 7 8 9 0 12 23 24 5 56 7 8 9 0 12 23 24 5 56 7 8 9 0 12 23 24 5 56 7 5 56 7 56 7 5 56 7 5 56 7 5 5 5 5	370	<page-header></page-header>

REFERENCES

 Doherty TJ. Invited review: Aging and sarcopenia. J Appl Physiol (1985)
 2003;95:1717-27.

375 2. Morley JE. Sarcopenia: diagnosis and treatment. J Nutr Health Aging
376 2008;12:452-6.

377 3. Delmonico MJ, Harris TB, Lee JS, et al. Alternative definitions of sarcopenia,
 378 lower extremity performance, and functional impairment with aging in older men and
 379 women. J Am Geriatr Soc 2007;55:769-74.

Pedone C, Costanzo L, Cesari M, Bandinelli S, Ferrucci L, Antonelli Incalzi R.
 Are Performance Measures Necessary to Predict Loss of Independence in Elderly
 Received and the second second

30
 31 383 5. Masaki M, Ikezoe T, Fukumoto Y, et al. Association of sagittal spinal
 32 384 alignment with thickness and echo intensity of lumbar back muscles in middle-aged
 385 and elderly women. Archives of gerontology and geriatrics 2015;61:197-201.

37
 38 386 6. Chen LK, Liu LK, Woo J, et al. Sarcopenia in Asia: consensus report of the
 39

387 Asian Working Group for Sarcopenia. J Am Med Dir Assoc 2014;15:95-101.

388 7. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European
 389 consensus on definition and diagnosis: Report of the European Working Group on
 46

47 390 Sarcopenia in Older People. Age Ageing 2010;39:412-23.
 48

⁴⁹ 391
 ⁵⁰ 391
 ⁵¹ 392
 ⁵² Area and Strength of Back Muscles in Patients with Chronic Low Back Pain. Annals
 ⁵³ 393
 ⁵⁴ 393
 ⁵⁵ of rehabilitation medicine 2012;36:173-81.

⁵⁶ 394 9. Sasaki T, Yoshimura N, Hashizume H, et al. MRI-defined paraspinal muscle

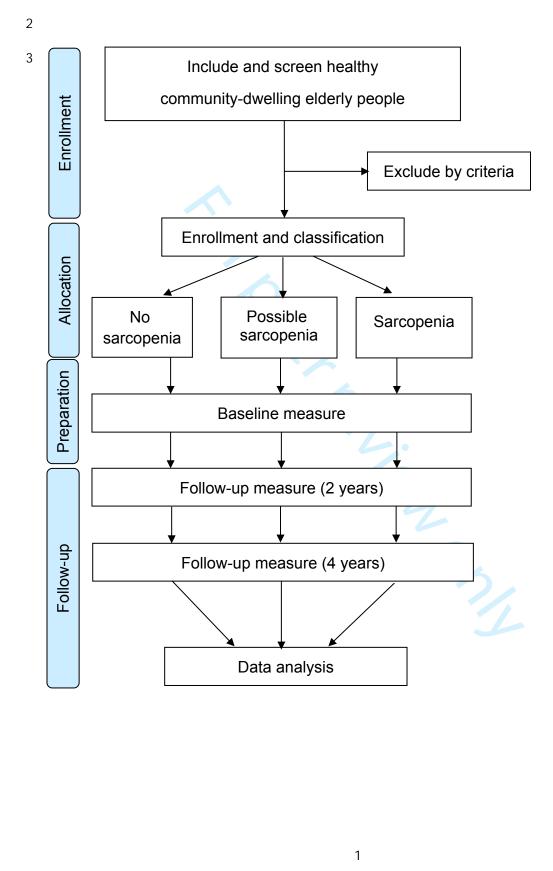
Page 23 of 28

1 2 BMJ Open

2 3		
4 5	395	morphology in Japanese population: The Wakayama Spine Study. PLoS One
6 7	396	2017;12:e0187765.
8 9 10	397	10. Baumgartner RN, Koehler KM, Gallagher D, et al. Epidemiology of
10 11 12	398	sarcopenia among the elderly in New Mexico. American journal of epidemiology
13 14	399	1998;147:755-63.
15 16	400	11. Pedrero-Chamizo R, Albers U, Tobaruela JL, Melendez A, Castillo MJ,
17 18 19	401	Gonzalez-Gross M. Physical strength is associated with Mini-Mental State
20 21	402	Examination scores in Spanish institutionalized elderly. Geriatrics & gerontology
22 23	403	international 2013;13:1026-34.
24 25 26	404	12. Ro HJ, Kim DK, Lee SY, Seo KM, Kang SH, Suh HC. Relationship Between
20 27 28	405	Respiratory Muscle Strength and Conventional Sarcopenic Indices in Young Adults:
29 30	406	A Preliminary Study. Annals of rehabilitation medicine 2015;39:880-7.
31 32 33 34 35	407	13. Guralnik JM, Ferrucci L, Simonsick EM, Salive ME, Wallace RB. Lower-
	408	extremity function in persons over the age of 70 years as a predictor of subsequent
36 37	409	disability. N Engl J Med 1995;332:556-61.
38 39	410	14. Harding AT, Weeks BK, Horan SA, Little A, Watson SL, Beck BR. Validity
40 41 42	411	and test-retest reliability of a novel simple back extensor muscle strength test. SAGE
43 44	412	Open Med 2017;5:2050312116688842.
45 46	413	15. Vialle R, Levassor N, Rillardon L, Templier A, Skalli W, Guigui P.
47 48	414	Radiographic analysis of the sagittal alignment and balance of the spine in
49 50 51	415	asymptomatic subjects. The Journal of bone and joint surgery American volume
52 53	416	2005;87:260-7.
54 55	417	16. Buckland AJ, Ramchandran S, Day L, et al. Radiological lumbar stenosis
56 57		
58 59 60		23

1 2 2		
3 4 5	418	severity predicts worsening sagittal malalignment on full-body standing
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 9 40 41 42	419	stereoradiographs. The spine journal : official journal of the North American Spine
	420	Society 2017.
	421	17. Koller H, Pfanz C, Meier O, et al. Factors influencing radiographic and clinical
	422	outcomes in adult scoliosis surgery: a study of 448 European patients. European
	423	spine journal : official publication of the European Spine Society, the European
	424	Spinal Deformity Society, and the European Section of the Cervical Spine Research
	425	Society 2016;25:532-48.
	426	18. Strand LI, Moe-Nilssen R, Ljunggren AE. Back Performance Scale for the
	427	assessment of mobility-related activities in people with back pain. Phys Ther
	428	2002;82:1213-23.
	429	19. Demoulin C, Vanderthommen M, Duysens C, Crielaard JM. Spinal muscle
	430	evaluation using the Sorensen test: a critical appraisal of the literature. Joint Bone
	431	Spine 2006;73:43-50.
	432	20. Berg K, Wood-Dauphinee S, Williams JI. The Balance Scale: reliability
	433	assessment with elderly residents and patients with an acute stroke. Scand J
	434	Rehabil Med 1995;27:27-36.
43 44	435	21. Group TE. EuroQol-a new facility for the measurement of health-related
45 46	436	quality of life. Health policy 1990;16:199-208.
47 48 49	437	22. Jung HY, Park BK, Shin HS, et al. Development of the Korean version of
50 51	438	Modified Barthel Index (K-MBI): multi-center study for subjects with stroke. Journal of
52 53	439	Korean Academy of Rehabilitation Medicine 2007;31:283-97.
54 55 56	440	23. Won CW, Yang KY, Rho YG, et al. The development of Korean activities of
57 58 59 60		24

BMJ Open


3 4 5	441	daily living (K-ADL) and Korean instrumental activities of daily living (K-IADL) scale.	
6 7 8 9 10 11 12	442	Journal of the Korean Geriatrics Society 2002;6:107-20.	
	443	24. Jung HW, Yoo HJ, Park SY, et al. The Korean version of the FRAIL scale:	
	444	clinical feasibility and validity of assessing the frailty status of Korean elderly. Korean	
12 13 14	445	J Intern Med 2016;31:594-600.	
15 16 17 18 19 20 21 22 23 24 25 26 27 28 30 31 32 33 34 35 36 37 38 39 40 41 42	446	25. Dale O, Salo M. The Helsinki Declaration, research guidelines and	
	447	regulations: present and future editorial aspects. Acta anaesthesiologica	
	448	Scandinavica 1996;40:771-2.	
	449	26. Moher D, Hopewell S, Schulz KF, et al. CONSORT 2010 explanation and	
	450	elaboration: updated guidelines for reporting parallel group randomised trials.	
	451	International journal of surgery 2012;10:28-55.	
	452	27. Lee SY, Ro HJ, Chung SG, Kang SH, Seo KM, Kim DK. Low Skeletal Muscle	
	453	Mass in the Lower Limbs Is Independently Associated to Knee Osteoarthritis. PLoS	
	454	One 2016;11:e0166385.	
	455	28. Jeon H, Lee SU, Lim JY, Chung SG, Lee SJ, Lee SY. Low skeletal muscle	
	456	mass and radiographic osteoarthritis in knee, hip, and lumbar spine: a cross-	
	457	sectional study. Aging Clin Exp Res 2019.	
43 44	458	29. Hikata T, Watanabe K, Fujita N, et al. Impact of sagittal spinopelvic alignment	
45 46 47	459	on clinical outcomes after decompression surgery for lumbar spinal canal stenosis	
48 49	460	without coronal imbalance. Journal of neurosurgery Spine 2015;23:451-8.	
50 51	461	30. Beyer F, Geier F, Bredow J, Oppermann J, Eysel P, Sobottke R. Influence of	
52 53 54	462	spinopelvic parameters on non-operative treatment of lumbar spinal stenosis.	
55 56	463	Technology and health care : official journal of the European Society for Engineering	
57 58 59 60		25	

2 3		
4 5	464	and Medicine 2015;23:871-9.
6 7 8 9	465	31. Sinaki M, Itoi E, Rogers JW, Bergstralh EJ, Wahner HW. Correlation of back
	466	extensor strength with thoracic kyphosis and lumbar lordosis in estrogen-deficient
10 11 12	467	women. American journal of physical medicine & rehabilitation 1996;75:370-4.
13 14	468	32. Zhu Z, Xu L, Zhu F, et al. Sagittal alignment of spine and pelvis in
15 16	469	asymptomatic adults: norms in Chinese populations. Spine 2014;39:E1-6.
17 18 19	470	33. Gelb DE, Lenke LG, Bridwell KH, Blanke K, McEnery KW. An analysis of
19 20 21	471	sagittal spinal alignment in 100 asymptomatic middle and older aged volunteers.
22 23	472	Spine 1995;20:1351-8.
24 25 26	473	34. Takeda N, Kobayashi T, Atsuta Y, Matsuno T, Shirado O, Minami A.
20 27 28	474	Changes in the sagittal spinal alignment of the elderly without vertebral fractures: a
29 30	475	minimum 10-year longitudinal study. Journal of orthopaedic science : official journal
31 32	476	of the Japanese Orthopaedic Association 2009;14:748-53.
33 34 35	477	35. Frobin W, Brinckmann P, Kramer M, Hartwig E. Height of lumbar discs
36 37	478	measured from radiographs compared with degeneration and height classified from
38 39 40 41 42 43 44	479	MR images. European radiology 2001;11:263-9.
	480	
45 46		
47 48 49		
50 51		
52 53		
54 55		
56 57 58		
59 60		26

1 2

1 2 3	
4 491	FIGURE LEGEND
1	<section-header></section-header>
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	

Figure 1.

BMJ Open

Natural Aging Course of Paraspinal Muscle and Back Extensor Strength in Community-dwelling Older Adults (Sarcopenia of Spine, SarcoSpine): A Prospective Cohort Study Protocol

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-032443.R1
Article Type:	Protocol
Date Submitted by the Author:	23-Jul-2019
Complete List of Authors:	Kim, Ju Chan; Seoul National University Hospital Lee, Shi-Uk; Seoul National University Seoul Metropolitan Government Boramae Medical Center, Department of Rehabilitation Medicine Jung, Se Hee; Seoul National University Seoul Metropolitan Government Boramae Medical Center, Department of Rehabilitation Medicine Lim, Jae-Young; Seoul National University Bundang Hospital Kim, Dong Hyun; Seoul National University Seoul Metropolitan Government Boramae Medical Center, Department of Radiology Lee, Sang Yoon; Seoul National University Seoul Metropolitan Government Boramae Medical Center, Department of Rehabilitation Medicine
Primary Subject Heading :	Geriatric medicine
Secondary Subject Heading:	Geriatric medicine, Rehabilitation medicine
Keywords:	Sarcopenia, Spine < ORTHOPAEDIC & TRAUMA SURGERY, Paraspinal Muscles, Lumbosacral Region

SCHOLARONE[™] Manuscripts

1	
ว	
2	
2	
4	
5	
6	
7	
8	
9	
10	
11	
10	
12	
13	
14	
15	
16	
17	
18	
19	
20	
$\begin{array}{c} 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 7\end{array}$	
22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
37	
22	
22	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55 54	
55	
56	
57	
58	
59	
60	

1	Natural Aging Course of Paraspinal Muscle and Back Extensor
2	Strength in Community-dwelling Older Adults (Sarcopenia of Spine,
3	SarcoSpine): A Prospective Cohort Study Protocol
4	Ju Chan Kim ¹ , Shi-Uk Lee ² , Se Hee Jung ² , Jae-Young Lim ³ , Dong Hyun Kim ⁴ , Sang
5	Yoon Lee ²
6	1 Department of Rehabilitation Medicine, Seoul National University College of
7	Medicine, Seoul National University Hospital, Seoul, Republic of Korea
8	2 Department of Rehabilitation Medicine, Seoul National University College of
9	Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
10	3 Department of Rehabilitation Medicine, Seoul National University College of
11	Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do,
12	Republic of Korea
13	4 Department of Radiology, Seoul National University College of Medicine, SMG-
14	SNU Boramae Medical Center, Seoul, Republic of Korea
15	
16	Address correspondence to Sang Yoon Lee, MD, PhD
17	Department of Rehabilitation Medicine, Seoul National University College of
18	Medicine, SMG-SNU Boramae Medical Center, 20 Boramae-ro 5-gil, Dongjak-gu,
19	Seoul, 07061, Republic of Korea
20	Tel: +82 2 870 2673; Fax: +82 2 831 0714 1

to peer terier on the

י ר	
2 3	
3 4	
5	
6	
/	
8	
9	
10	
11	
12 13 14 15 16 17	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
28	
28 29	
30	
31 32	
33	
33 34	
25	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

1

21

22

23

Email address: rehabilee@gmail.com

Word count: 3421

59 60

2
3
4
5
6
7
8
9
10
11
12
13
14 15
16 17
17
18
19
20
21
22
23
24
25
26
20
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
51 52
52
53
54
55
56
57
58
59

24 **ABSTRACT**

Introduction: Sarcopenia in the lumbar paraspinal muscles is receiving renewed attention as a cause of spinal degeneration. However, there are few studies on the precise concept and diagnostic criteria for spinal sarcopenia. Here, we develop the concept of spinal sarcopenia in community-dwelling older adults. In addition, we aim to observe the natural aging process of paraspinal and back muscle strength and investigate the association between conventional sarcopenic indices and spinal sarcopenia.

Methods and analysis: This is a prospective observational cohort study with 120 healthy community-dwelling older adults over 4 years. All subjects will be recruited in no sarcopenia, possible sarcopenia, or sarcopenia groups. The primary outcomes of this study are isokinetic back muscle strength and lumbar paraspinal muscle quantity and quality evaluated using lumbar spine magnetic resonance imaging. Conventional sarcopenic indices and spine specific outcomes such as spinal sagittal balance, back performance scale, and Sorenson test will also be assessed.

Ethics and dissemination: Before screening, all participants will be provided with
oral and written information. Ethical approval has already been obtained from all
participating hospitals. The study results will be disseminated in peer-reviewed
publications and conference presentations.

Trial registration number: NCT03962530

43

60

44 STRENGTHS AND LIMITATIONS OF THIS STUDY

- This study is a prospective cohort study in healthy community-dwelling older adults, to develop the concept of spinal sarcopenia, by observing the natural aging process of paraspinal muscle and back muscle strength and investigating the association between conventional sarcopenic indices and spinal sarcopenia.
- Standardised data evaluation for sarcopenia and the function of spinal extensor muscles will be used for the analysis with an application of relevant statistical methods.
- Sample size was evaluated based on calculation of feasibility study due to the absence of previous literature concerning isokinetic back muscle strength or lumbar paraspinal muscle quantity.

INTRODUCTION

Sarcopenia is the age-related loss of skeletal muscle mass and function. It is a problem of not only muscle mass, but also muscle strength and performance.^{1,2} It can also be defined as a syndrome characterized by progressive and generalized loss of skeletal muscle mass and strength with a risk of adverse outcomes such as physical disability, poor quality of life, and death.³ The loss of muscle mass plays an important role in the frailty process of older adults, being a key player of its latent phase and explaining many aspects of the frailty status itself.⁴

Does Sarcopenia affect the spine? It is not difficult to answer the question if we think about the anatomy of the spine. While skeletal bone is the frame, and there are neural tissues inside the spinal canal, almost all surrounding tissues are skeletal muscles. There are huge extensor muscles at the posterior part of the spine and iliopsoas muscles also exist bilaterally around the spine. Thus, it is inevitable for sarcopenia to impact the spine. Receiving renewed attention is sarcopenia of the lumbar paraspinal muscles as a cause of spinal degeneration. Both the atrophy and fatty change of paraspinal muscles originating from sarcopenia are also known to be associated with functional disorders and chronic back pain.⁵ We want to suggest classifying this phenomenon as "spinal sarcopenia". However, there are few studies on the precise concept and diagnostic criteria for spinal sarcopenia and no clinical trials to determine whether it can be treated or prevented by strengthening exercise

79 or nutritional support.

Classical sarcopenia indices proposed by several sarcopenia working groups^{6,7} to date cannot be used to diagnose spinal sarcopenia. While feasible, inexpensive, and less radiation-exposed tools such as dual energy X-ray absorptiometry have been used to measure appendicular skeletal muscle mass, paraspinal muscle assessment still requires the use of spinal computed tomography (CT) or magnetic resonance imaging (MRI). In addition, spinal extensor strength measurement is necessary to confirm the function of the lumbar paraspinal muscle, but isokinetic strength measuring equipment for accurate measurement is not as feasible as a hand-grip strength dynamometer to evaluate sarcopenia. Furthermore, many older adults may experience pain during the measurement of spinal extension strength.

BMJ Open

Therefore, it is necessary to develop a simple, accessible, and clinically meaningful measurement index to confirm the function of spinal extensor muscles. In this prospective cohort study, we will investigate the basic data of sarcopenia and physical function as well as spine imaging (MRI and X-ray), back performance, spinal sagittal balance, and back extensor strength in 120 healthy older adults. Based on this, we will analyse the correlation between baseline sarcopenia, spinal functional index, spinal sagittal balance index, and physical function. Furthermore, we will observe the natural aging process of these indicators through long-term follow-up over 4 years.

1 2		
3 4 5 6	101	
7 8	102	Objectives
9 10 11	103	1. To develop the concept of spinal sarcopenia in community-dwelling older
12 13 14	104	adults.
15 16 17	105	2. In addition, we aim to observe the natural aging process of paraspinal muscle
18 19	106	and back extensor strength and investigate the association between
20 21 22	107	conventional sarcopenic indices and spinal sarcopenia.
22 23 24 25	108	
26 27 28	109	
29 30 31 32	110	METHOD AND ANALYSIS
33 34	111	
35 36 37 38	112	Study design
39 40 41	113	This is a prospective observational cohort study with 120 healthy community-
42 43	114	dwelling older adults in a single center (SMG-SNU Boramae Medical Center).
44 45 46	115	Individual follow-up will last 4 years.
47 48 49	116	
50 51 52	117	Participants and eligibility criteria
53 54	118	Older adults (≥ 65 years old) who are community-dwellers and able to walk with or
55 56 57 58 59 60	119	without assistive devices will be included. Participants who have experienced the 7

following will be excluded: 1) low back pain with moderate severity (numeric rating scale⁸ 5 and over); 2) history of any types of lumbar spine surgery; 3) history of hip fracture surgery and arthroplasty of hip or knee; 4) contraindications for MRI (such as cardiac pacemaker, implanted metallic objects, and claustrophobia); 5) disorders in central nervous system (such as stroke, parkinsonism, spinal cord injury); 6) cognitive dysfunction (Mini Mental State Examination score < 24); 7) communication disorder (such as severe hearing loss); 8) musculoskeletal condition affecting physical function (such as amputation of limb); 9) long-term use of corticosteroids due to inflammatory disease; 10) malignancy requiring treatment within 5 years; and 11) other medical conditions which need active treatment; patients who refuse to participate in a study will also be excluded. Sarcopenia can be divided by two stages: 1) possible sarcopenia (PS) defined by low handgrip strength and/or low gait speed and 2) sarcopenia (SA) confirmed by low handgrip strength and/or low gait speed and low muscle mass defined by the consensus report of the Asian working group for sarcopenia.⁶ A no sarcopenia (NS) group is added to this classification, and the study participants are classified into three groups (NS, PS, and SA) after the screening tests (Figure 1). Outcomes measures Primary outcome measures 1. Isokinetic back muscle strength The investigators will use the isokinetic dynamometer (Biodex multi-joint

Page 9 of 27

1 2

BMJ Open

3	
4	
5 6	
5 6 7	
8	
9 10	
11	
12	
13	
14	
16	
17	
18 19	
20	
21	
22 23	
24	
25	
26 27	
28	
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	
30 31	
31 32 33	
33	
34 35 35	
36 37	
37	
38 39	
40	
41	
42 43	
44	
45	
46 47	
48	
49	
50 51	
52	
53	
54 55	
56	
57	
58 59	
60	

system, Biodex Corporation, Shirley, NY, USA) to measure the torque of the 142 back extensors. Briefly, the examination will be performed by seating the 143 patient comfortably in the device, fixing both the thighs and the back to the 144 chair using a strap, and asking the patient to hold the handle placed near the 145 146 front, at the chest, to measure upper limb and hip joint motions. The dynamometer axis will be located on the anterior superior iliac spine of the 147 patient's pelvis. All patients will be instructed to flex and extend the back five 148 times at an angular velocity of 60°/sec as a warm-up before the examination. 149 During the examination, patients will be instructed to execute flexion and 150 extension of the back, with a maximum effort, 10 times at an angular velocity 151 of 60°/sec. The back range of movement was 22 limited at 50°, with 30° 152 (-30°) of trunk flexion and 20° (+20°) of trunk extension, relative to the 153 anatomical reference position (0°).⁹ The device will measure the peak torque 154 (PT) (Nm) and the peak torgue per body weight (PT/Bwt) (Nm/kg).¹⁰ 155 2. Lumbar paraspinal muscle quantity and quality 156 Lumbar spine MRI will be performed using a 1.5-T scanner (Achieva 1.5 T; 157 Philips Healthcare, Netherlands). Subjects will be placed in the supine 158 position with the lumbar spine in a neutral position and a pillow under their 159 head and knees. The imaging protocol will include sagittal T2-weighted fast 160 spin echo imaging (repetition time, 3,200 ms/echo; echo time, 100 ms; echo-161 train length, 20; section thickness, 4 mm; and field of view, 300 × 300 mm) 162 and axial T2-weighted fast spin echo imaging (repetition time, 3,500 ms/echo; 163 echo time, 100 ms; echo-train length, 20; section thickness, 4 mm; and field 164

1

Page 10 of 27

2 3		
4 5	165	of view, 200 × 200 mm). Axial images will be obtained for each lumbar
6 7	166	intervertebral level (T12/L1-L5/S1) parallel to the vertebral endplates with five
8 9 10	167	slices at each intervertebral level.
10 11 12 13 14	168	The measurement of the cross sectional area (CSA) and fatty infiltration ratio
	169	(FI %) of the paraspinal muscles (erector spinae [ES], multifidus [MF], and
15 16 17	170	psoas major [PM]) will be performed with axial T2-weighted images using a
17 18 19	171	radiological workstation (MEDIP; Medical IP, Seoul, South Korea) specially
20 21	172	designed for such purposes. The measurement of ES and MF will be
22 23	173	performed from the level of L1/L2 to L5/S1 and that of PM will be performed
24 25 26	174	at the level of L4/5. The CSA will be measured by manually constructing free-
27 28	175	draw points around the outer margins of the individual muscles using touch
29 30 31 32 33	176	screen LCD monitor (XPS 15 9570, Dell, Round Rock, TX, USA) and digital
	177	touch screen pen (PN556W Dell Active Pen, Dell, Round Rock, TX, USA).
34 35	178	The FI % is defined as the percentage of fatty infiltration area, which is
36 37	179	obtained by dividing the fatty infiltration area by the total area. The CSA and
38 39 40	180	FI % of paraspinal muscles will be separately measured on the bilateral sides,
40 41 42	181	and mean values will be calculated. ¹¹
43 44	182	
45 46 47	183	Secondary outcome measures
47 48 49	184	1. Conventional sarcopenic indices
50 51 52 53	185	A. Appendicular skeletal muscle mass (ASM): Both dual-energy X-ray
	186	absorptiometry (Lunar iDXA for Bone Health; GE Healthcare,
54 55 56	187	Schenectady, NY, USA) and bio-impedance analysis (InBody 720;
57 58 59 60		10

1 2 3				
4 5	188			Biospace, Seoul, South Korea) will be used to analyse body composition
6 7	189			including lean body and fat masses. ASM will be calculated by obtaining
8 9 10	190			the sum of the lean mass in bilateral upper and lower extremities ¹² and
10 11 12	191			standardized by being divided by the squared height value (ASM/Ht ² ,
13 14	192			kg/m²).
15 16 17	193		В.	Handgrip strength: It will be measured using a hand-grip dynamometer
17 18 19	194			(T.K.K.5401; Takei Scientific Instruments, Tokyo, Japan) ¹³ , as described
20 21	195			previously ¹⁴ . Briefly, while sitting in a straight-backed chair with their feet
22 23	196			flat on the floor, patients will be asked to adduct and neutrally rotate the
24 25 26	197			shoulder, flex the elbow to 90° , and place the forearm in a neutral
27 28	198			position, with the wrist between 0° and 30° extension and between 0° and
29 30	199			15° ulnar deviation. Subjects will be instructed to squeeze the handle as
31 32 33	200			hard as possible for 3 seconds, and the maximum contraction force (Kg)
34 35	201			will be recorded.
36 37	202		C.	Short physical performance battery (SPPB): Functional examination
38 39 40	203			using SPPB derived from three objective physical function tests (i.e., the
40 41 42	204			time taken to cover 4 m at a comfortable walking speed, time taken to
43 44	205			stand from sitting in a chair 5 times without stopping, and ability to
45 46	206			maintain balance for 10 s in three different foot positions at progressively
47 48 49	207			more challenging levels). ¹⁵ A score from 0 to 4 will be assigned to
50 51	208			performance on each task, with higher scores indicating better lower
52 53	209			body function.
54 55 56	210	2.	Sp	ine specific outcomes
56 57 58 59 60				11

1 2 3

60

Page 12 of 27

3 4 5	211	A.	Isometric back muscle strength: In addition to the isokinetic back muscle
5 6	212		strength test, we will perform the isometric back muscle strength test
7 8	212		
9 10	213		using a handheld dynamometer (PowerTrack II; JTECH Medical, Salt
11 12	214		Lake City, UT, USA). This will involve the participant standing in full
13 14	215		extension with their back to a wall, midway between two vertically
15 16 17	216		oriented anchor rails, and feet flat on the floor with heels touching the
18 19	217		wall. An inelastic belt will be looped through the anchor rails, and secured
20 21	218		firmly around the participant, 1 cm below the anterior superior iliac
22 23	219		spines, in order to restrain movement and maintain participant contact
24 25 26	220		with the wall during the test. To standardise posture, arms will be crossed
27 28	221		over the chest, with fingertips level with the contralateral shoulders. The
29 30	222		participant will be instructed to flex forward approximately 15° at the hips
31 32 33	223		so the handheld dynamometer can be positioned posterior to the spinous
34 35	224		process of the seventh thoracic vertebrae. In this way, counter pressure
36 37	225		will be provided by the fixed wall behind the participants' back so that
38 39 40	226		variations in resistance by an examiner will be avoided. ¹⁶
40 41 42	227	В.	Spinal sagittal balance (SSB): For each participant, one lateral
43 44	228		radiograph of the whole spine will be made and digitized. All
45 46 47	229		measurements will be performed by means of imaging software
47 48 49	230		(INFINITT PACS M6; INFINITT Healthcare, Seoul, South Korea), as
50 51	231		previously described. ^{17,18} Briefly, the following spinopelvic radiographic
52 53	232		parameters will be analysed: sacral slope (SS), pelvic incidence (PI),
54 55 56	233		pelvic tilt (PT), lumbar lordosis (LL), thoracic kyphosis (TK), the ratio of LL
57 58			
50 59			12

1 2		
3 4 5	234	to PI (LL/PI), PI-LL mismatch (PI-LL; the difference between the pelvic
6 7	235	incidence and lumbar lordosis), and sagittal vertical axis (SVA). PI-LL will
8 9	236	be used as the primary outcomes of SSB. ¹⁹
10 11 12	237	C. Back performance scale (BPS): BPS consists of five tests: Sock Test, the
13 14	238	Pick-up Test, the Roll-up Test, the Fingertip-to-Floor Test, and the Lift
15 16	239	Test. The 5 tests comprising the BPS demonstrate associations with
17 18 19	240	each other, and each test contributes to high internal consistency,
20 21	241	implying that the tests share a common characteristic in measuring
22 23	242	physical performance. ²⁰ The BPS sum score (0-15) is calculated by
24 25 26	243	adding the individual scores of the 5 tests.
20 27 28	244	D. Sorensen test: It is the most widely used test in published studies
29 30	245	evaluating the isometric endurance of the trunk extensor muscles. The
31 32	246	test consists of measuring the amount of time a person can hold the
33 34 35	247	unsupported upper body in a horizontal prone position with the lower
36 37	248	body fixed to the examining table. ²¹
38 39	249	3. Other functional outcomes
40 41 42	250	A. Berg balance scale (BBS): Balance and fall risk will be assessed using
43 44	251	BBS (range: 0–56; a lower score indicates a worse outcome). ²²
45 46	252	B. Quality of life (QOL): It will be evaluated using the Euro Quality of Life
47 48 49	253	Questionnaire five-dimensional classification (EQ-5D; range: 0–1; a lower
50 51	254	score indicates a worse outcome).23
52 53	255	C. Activities of daily living (ADLs): ADLs will be determined using the Korean
54 55	256	version of the modified Barthel index ²⁴ (K-MBI; range: 0–100; a lower
56 57 58		
59 60		13

2 3		
4 5	257	score indicates a worse outcome) and the Korean version of the
6 7	258	Instrumental ADL (K-IADL; range: 0–3; a higher score indicates a worse
8 9 10	259	outcome). ²⁵
10 11 12	260	D. Frailty: It will be assessed based on fatigue, resistance, ambulation,
13 14	261	illnesses, and loss of weight (FRAIL) using the Korean version of the
15 16 17	262	FRAIL scale (K-FRAIL; range: 0–5; a lower score indicates a worse
17 18 19	263	outcome). ²⁶
20 21	264	4. Serum examination
22 23	265	A. Serum chemistry, complete blood counts (CBC), blood urea nitrogen and
24 25 26	266	creatinine will be obtained.
27 28	267	B. Interleukin-6 (IL-6) level will be quantified by Green-Cross laboratory (GC
29 30	268	lab, Seoul, Korea) using standard procedures.
31 32 33	269	
34 35	270	All outcome variables will be collected at baseline, 2 and 4 years. However, L-S
36 37	271	spine MRI for lumbar paraspinal muscle quantity and quality will be performed only
38 39 40	272	at baseline (Table 1).
40 41 42	273	
43 44		
45 46 47		
47 48 49		
50 51		
52 53		
54 55 56		
57 58		14
59 60		14

5 4 5	
6	
7 8	
9 10	
11 12	
13 14	
15	
9 10 11 12 13 14 15 16 17 18	
19	
20 21	
22 23	
24 25	
26 27	
28 29	
30 31	
32	
33 34	
35 36	
37 38	
39 40	
41 42	
43 44	
45 46	
47 48	
40 49 50	
51	
52 53	
54 55	
56 57	
58 59	
60	

Table 1. Overview of the outcome measures and time points of assessment

	Screening	Baseline	2 years	4 year
Eligibility	Х			
Eligibility confirmation		Х		
Informed consent		Х		
Demographic information		Х		
Medical History		Х	х	Х
Body composition (image study)				
Wholebody DEXA and BIA	BIA	DEXA	х	Х
Whole spine X-ray (lateral)		Х	х	Х
L-S spine MRI		Х		
Function and performance				
Handgrip strength	х	х	х	Х
Gait function	х	х	х	х
SPPB		Х	х	Х
Physical activity		Х	х	Х
Balance function		Х	х	Х
Spine performance				
Isokinetic back muscle strength		X	х	Х
Isometric back muscle strength		X	х	Х
Sorenson test		x	x	Х
Back performance scale		х	x	Х
Others				
Frailty		х	х	Х
QoL questionnaire		Х	х	х
Activity daily living		х	х	х
Laboratory test with biomarker		Х	х	Х

276 Magnetic resonance imaging; SPPB, Short Physical Performance Battery, QoL,

277 Quality of life.

tot peet texter only

Data analysis

Corp., Chicago, IL, USA).

Sample size

sarcopenia.

BMJ Open

Data will be collected using a standardised data entry form and entered into the data

management system. Participant characteristics will be described using means and

categorical data. The three groups will be compared using an analysis of variance

(ANOVA) or the non-parametric equivalence, a Kruskal–Wallis test, if required. To

repeated-measures ANOVA and Friedman tests for continuous and non-parametric

data, respectively. Statistical significance will be defined as a P value < 0.05. All

statistical analyses will be performed using SPSS version 19.0 for Windows (IBM

We intended to perform the sample size calculation based on the difference in mean

hospitals, let alone effect sizes. Therefore, we based our sample size calculation on

feasibility. A total of 120 subjects will be recruited in order to ensure 20 male and 20

17

female participants per group, in three groups (NS, PS, and SA groups) based on

of isokinetic back muscle strength or lumbar paraspinal muscle quantity among

groups. However, there was no literature available concerning isokinetic back

muscle strength or lumbar paraspinal muscle quantity in general practices or

standard deviations for continuous data and frequencies and percentages for

compare paired data (intra-group) between two different points, we will use

1	
2 3	
4 5	279
6 7	280
8 9 10	281
10 11 12	282
13 14	283
15 16 17	284
17 18 19	285
20 21	286
22 23	287
24 25 26	288
27 28	289
29 30	290
31 32 33	291
33 34 35	231
36 37	292
38 39	293
40 41 42	294
42 43 44	295
45 46	296
47 48	297
49 50 51	298
52 53	299
54 55	300
56 57	
58	
59 60	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Patient and public involvement While participants were not involved in the development of the research question and the selection of outcome measures, their needs and preferences were considered throughout the process. Feedback to the participants regarding scientific results, will be organised on each study site. ETHICS AND DISSEMINATION This protocol is approved by the institutional review board of Seoul Metropolitan Government Seoul National University (SMG-SNU) Boramae Medical Center (IRB No. 20-2019-19). The study will be performed in accordance with the relevant guidelines of the Declaration of Helsinki, 1964, as amended in Tokyo, 1975; Venice, 1983; Hong Kong, 1989; and Somerset West, 1996.²⁷ Written informed consent for all interventions and examinations will be obtained at patient admission. The Ethics Board will be informed of all serious adverse events and any unanticipated adverse effects that occur during the study. The study protocol has been registered at Clinicaltrials.gov and will be updated. Direct access to the source data will be provided for monitoring, audits, Research Ethics Committee (REC)/Institutional Review Board (IRB) review, and regulatory authority inspections during and after the study. All patient information will be coded anonymously, with only the study team having access to the original data. The study results will be disseminated in peer-reviewed publications and conference presentations.

DISCUSSION

1

2	
3 4 5 6	323
7 8 9	324
10 11 12	325
13 14 15	326
16 17	327
18 19 20	328
21 22	329
23 24	330
25 26	331
27 28	332
29 30 31	333
32 33 34	334
35 36	335
37 38	336
39 40 41	337
42 43	338
44 45	339
46 47 48	340
49 50	341
51 52	342
53 54 55	343
55 56 57	344
57 58 59 60	

26 Skeletal muscle mass measurement to define sarcopenia has mainly been based on the sum of muscle mass in the limbs (appendicular limb muscle mass). However the 27 question remains whether this sum of limb muscle mass is associated with muscle 28 29 function throughout the whole body. Lee et al. reported that degenerative arthritis of 30 the knee joint was associated with only lower limb muscle mass, but not with upper limb muscle mass.²⁸ Recently, Jeon et al. also suggested that the sum of limb 31 muscle mass was not correlated with the radiological degenerative changes of the 32 lumbar spine and hip joint.²⁹ Therefore, site-specific muscle mass investigation is 33 necessary to evaluate the effect of skeletal muscle on specific regions. 34

Currently, SSB is an important indicator of outcomes of lumbar spine surgery,³⁰ and 35 even non-operative treatment of spinal stenosis.³¹ While SSB can be affected by 36 sex³² and ethnicity,³³ aging is the most important cause of spinal sagittal 37 38 imbalance.³⁴ Decreased lumbar lordosis is an important cause of spinal sagittal 39 imbalance, and it is known to originate from the wedging or decreased height of the 40 intervertebral discs in the absence of vertebral compression fractures.^{35,36} However, spinal sagittal imbalance is difficult to explain only by the height of the intervertebral 41 discs or vertebral bodies. Therefore, we can hypothesize that spinal sarcopenia is 42 one of the causes of spinal sagittal imbalance which the current cohort study will 43 44 prove.

3	
4 5	
6	
7 8	
9 10	
11	
12 13	
14	
13 14 15 16	
17 18	
19	
20 21	
22 23	
23 24	
25 26	
27	
28 29	
30 31	
32	
33 34	
35	
36 37	
38 39	
40	
41 42	
43 44	
45	
46 47	
48 49	
50	
51 52	
53 54	
55	
56 57	
58	
59 60	

> Several specific assessments such as cross-sectional area of paraspinal muscles, 345 346 back muscle strength, and back performance test are required to evaluate spinal sarcopenia. However, unlike limb skeletal muscles, the functional evaluation of the 347 spine corresponding to the center of the body is not practical. Thus, this cohort study 348 349 will investigate the value of SSB as a substitute for back muscle strength and performance measurement. In other words, if back muscle strength and functional 350 impairment are directly related to the spinal sagittal imbalance, a simple measurable 351 SSB may be a useful index to represent spinal muscle function. 352 353 Authors' contributions 354 SYL conceived the study and is the principal investigator. JCK, SUL, SHJ, JYL, and 355 DHK contributed to the development of the study. All authors approved the version to 356 be published and are responsible for its accuracy. 357 358 Funding 359 This work was supported by the National Research Foundation of Korea (NRF) grant 360

³⁶¹ funded by the Korea government (MSIT) (No. 2019R1C1C100632).

363 Competing interests

364 None declared

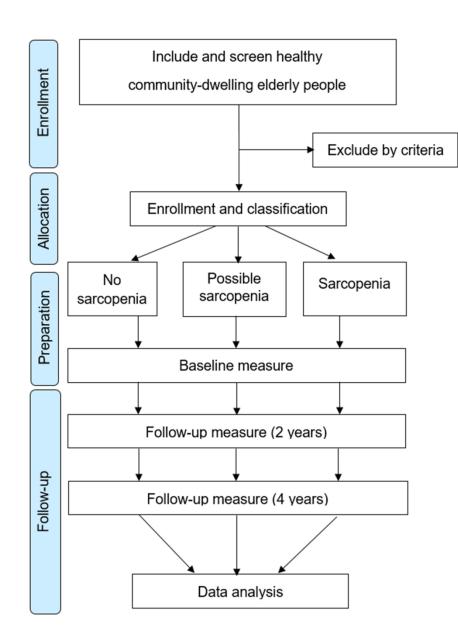
362

2 3					
4 5 6	366	REFERENCES			
7 8	367	1. Doherty TJ. Invited review: Aging and sarcopenia. J Appl Physiol (1985)			
9 10 11	368	2003;95:1717-27.			
12 13	369	2. Morley JE. Sarcopenia: diagnosis and treatment. J Nutr Health Aging			
14 15 16 17 18 19 20	370	2008;12:452-6.			
	371	3. Delmonico MJ, Harris TB, Lee JS, et al. Alternative definitions of sarcopenia,			
	372	lower extremity performance, and functional impairment with aging in older men and			
21 22	373	women. J Am Geriatr Soc 2007;55:769-74.			
23 24 25	374	4. Pedone C, Costanzo L, Cesari M, Bandinelli S, Ferrucci L, Antonelli Incalzi R.			
26 27	375	Are Performance Measures Necessary to Predict Loss of Independence in Elderly			
28 29	376	People? J Gerontol A Biol Sci Med Sci 2016;71:84-9.			
30 31 32	377	5. Masaki M, Ikezoe T, Fukumoto Y, et al. Association of sagittal spinal			
33 34	378	alignment with thickness and echo intensity of lumbar back muscles in middle-aged			
35 36	379	and elderly women. Archives of gerontology and geriatrics 2015;61:197-201.			
37 38	380	6. Chen LK, Liu LK, Woo J, et al. Sarcopenia in Asia: consensus report of the			
39 40 41	381	Asian Working Group for Sarcopenia. J Am Med Dir Assoc 2014;15:95-101.			
42 43	382	7. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European			
44 45	383	consensus on definition and diagnosis: Report of the European Working Group on			
46 47 48	384	Sarcopenia in Older People. Age Ageing 2010;39:412-23.			
49 50	385	8. Childs JD, Piva SR, Fritz JM. Responsiveness of the numeric pain rating			
51 52	386	scale in patients with low back pain. Spine 2005;30:1331-4.			
53 54	387	9. Juan-Recio C, Lopez-Plaza D, Barbado Murillo D, Garcia-Vaquero MP, Vera-			
55 56 57	388	Garcia FJ. Reliability assessment and correlation analysis of 3 protocols to measure			
58 59 60		21			

Page 22 of 27

1 2				
3 4 5	389	trunk muscle strength and endurance. J Sports Sci 2018;36:357-64.		
6 7 8 9 10	390	10. Lee HJ, Lim WH, Park JW, et al. The Relationship between Cross Sectional		
	391	Area and Strength of Back Muscles in Patients with Chronic Low Back Pain. Annals		
10 11 12	392	of rehabilitation medicine 2012;36:173-81.		
13 14	393	11. Sasaki T, Yoshimura N, Hashizume H, et al. MRI-defined paraspinal muscle		
15 16 17 18 19	394	morphology in Japanese population: The Wakayama Spine Study. PLoS One		
	395	2017;12:e0187765.		
20 21	396	12. Baumgartner RN, Koehler KM, Gallagher D, et al. Epidemiology of		
22 23	397	sarcopenia among the elderly in New Mexico. American journal of epidemiology		
24 25	398	1998;147:755-63.		
26 27 28	399	13. Pedrero-Chamizo R, Albers U, Tobaruela JL, Melendez A, Castillo MJ,		
29 30	400	Gonzalez-Gross M. Physical strength is associated with Mini-Mental State		
31 32	401	Examination scores in Spanish institutionalized elderly. Geriatrics & gerontology		
33 34 35	402	international 2013;13:1026-34.		
36 37	403	14. Ro HJ, Kim DK, Lee SY, Seo KM, Kang SH, Suh HC. Relationship Between		
38 39	404	Respiratory Muscle Strength and Conventional Sarcopenic Indices in Young Adults:		
40 41 42	405	A Preliminary Study. Annals of rehabilitation medicine 2015;39:880-7.		
42 43 44	406	15. Guralnik JM, Ferrucci L, Simonsick EM, Salive ME, Wallace RB. Lower-		
45 46	407	extremity function in persons over the age of 70 years as a predictor of subsequent		
47 48	408	disability. N Engl J Med 1995;332:556-61.		
49 50 51	409	16. Harding AT, Weeks BK, Horan SA, Little A, Watson SL, Beck BR. Validity		
52 53	410	and test-retest reliability of a novel simple back extensor muscle strength test. SAGE		
54 55	411	Open Med 2017;5:2050312116688842.		
56 57 58 59 60		22		
00				

2 3 4			
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	412	17.	Vialle R, Levassor N, Rillardon L, Templier A, Skalli W, Guigui P.
	413	Radio	graphic analysis of the sagittal alignment and balance of the spine in
	414	asymp	otomatic subjects. The Journal of bone and joint surgery American volume
	415	2005;8	37:260-7.
	416	18.	Buckland AJ, Ramchandran S, Day L, et al. Radiological lumbar stenosis
	417	severi	ty predicts worsening sagittal malalignment on full-body standing
	418	stereo	radiographs. The spine journal : official journal of the North American Spine
	419	Societ	y 2017.
	420	19.	Koller H, Pfanz C, Meier O, et al. Factors influencing radiographic and clinical
	421	outcor	nes in adult scoliosis surgery: a study of 448 European patients. European
27 28	422	spine	journal : official publication of the European Spine Society, the European
29 30	423	Spinal	Deformity Society, and the European Section of the Cervical Spine Research
31 32 33	424	Societ	y 2016;25:532-48.
34 35	425	20.	Strand LI, Moe-Nilssen R, Ljunggren AE. Back Performance Scale for the
36 37	426	asses	sment of mobility-related activities in people with back pain. Phys Ther
38 39 40	427	2002;8	32:1213-23.
40 41 42	428	21.	Demoulin C, Vanderthommen M, Duysens C, Crielaard JM. Spinal muscle
43 44	429	evalua	ation using the Sorensen test: a critical appraisal of the literature. Joint Bone
45 46	430	Spine	2006;73:43-50.
47 48 49	431	22.	Berg K, Wood-Dauphinee S, Williams JI. The Balance Scale: reliability
50 51	432	asses	sment with elderly residents and patients with an acute stroke. Scand J
52 53 54 55 56 57 58 59 60	433	Rehat	bil Med 1995;27:27-36.
	434	23.	Group TE. EuroQol-a new facility for the measurement of health-related
			23


1 2 2						
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 4 35 36 37	435	quality of life. Health policy 1990;16:199-208.				
	436	24.	Jung HY, Park BK, Shin HS, et al. Development of the Korean version of			
	437	Modifie	ed Barthel Index (K-MBI): multi-center study for subjects with stroke. Journal of			
	438	Korear	n Academy of Rehabilitation Medicine 2007;31:283-97.			
	439	25.	Won CW, Yang KY, Rho YG, et al. The development of Korean activities of			
	440	daily living (K-ADL) and Korean instrumental activities of daily living (K-IADL) scale.				
	441	Journal of the Korean Geriatrics Society 2002;6:107-20.				
	442	26.	Jung HW, Yoo HJ, Park SY, et al. The Korean version of the FRAIL scale:			
	443	clinica	I feasibility and validity of assessing the frailty status of Korean elderly. Korean			
	444	J Intern Med 2016;31:594-600.				
	445	27.	Dale O, Salo M. The Helsinki Declaration, research guidelines and			
	446	regula	tions: present and future editorial aspects. Acta anaesthesiologica			
	447	Scand	inavica 1996;40:771-2.			
	448	28.	Lee SY, Ro HJ, Chung SG, Kang SH, Seo KM, Kim DK. Low Skeletal Muscle			
	449	Mass i	n the Lower Limbs Is Independently Associated to Knee Osteoarthritis. PLoS			
38 39	450	One 2016;11:e0166385.				
40 41 42	451	29.	Jeon H, Lee SU, Lim JY, Chung SG, Lee SJ, Lee SY. Low skeletal muscle			
43 44	452	mass a	and radiographic osteoarthritis in knee, hip, and lumbar spine: a cross-			
45 46	453	sectional study. Aging Clin Exp Res 2019.				
47 48 49	454	30.	Hikata T, Watanabe K, Fujita N, et al. Impact of sagittal spinopelvic alignment			
50 51	455	on clin	ical outcomes after decompression surgery for lumbar spinal canal stenosis			
52 53 54 55 56 57 58 59 60	456	withou	t coronal imbalance. Journal of neurosurgery Spine 2015;23:451-8.			
	457	31.	Beyer F, Geier F, Bredow J, Oppermann J, Eysel P, Sobottke R. Influence of			
			24			


2				
4 5	458	spinopelvic parameters on non-operative treatment of lumbar spinal stenosis.		
6 7	459	Technology and health care : official journal of the European Society for Engineering		
8 9 10	460	and Medicine 2015;23:871-9.		
10 11 12	461	32. Sinaki M, Itoi E, Rogers JW, Bergstralh EJ, Wahner HW. Correlation of back		
13 14	462	extensor strength with thoracic kyphosis and lumbar lordosis in estrogen-deficient		
15 16	463	women. American journal of physical medicine & rehabilitation 1996;75:370-4.		
17 18 19	464	33. Zhu Z, Xu L, Zhu F, et al. Sagittal alignment of spine and pelvis in		
20 21	465	asymptomatic adults: norms in Chinese populations. Spine 2014;39:E1-6.		
22 23	466	34. Gelb DE, Lenke LG, Bridwell KH, Blanke K, McEnery KW. An analysis of		
24 25 26	467	sagittal spinal alignment in 100 asymptomatic middle and older aged volunteers.		
26 27 28	468	Spine 1995;20:1351-8.		
29 30	469	35. Takeda N, Kobayashi T, Atsuta Y, Matsuno T, Shirado O, Minami A.		
31 32 33 34 35 36 37 38 39 40 41	470	Changes in the sagittal spinal alignment of the elderly without vertebral fractures: a		
	471	minimum 10-year longitudinal study. Journal of orthopaedic science : official journal		
	472	of the Japanese Orthopaedic Association 2009;14:748-53.		
	473	36. Frobin W, Brinckmann P, Kramer M, Hartwig E. Height of lumbar discs		
	474	measured from radiographs compared with degeneration and height classified from		
42 43 44	475	MR images. European radiology 2001;11:263-9.		
45 46	47.6			
47 48	476			
49 50				
51 52				
53				
54 55				
56				
57 58				
59		25		
60				

FIGURE LEGEND

Figure 1. Flow diagram of the cohort study

to peet teries only

190x254mm (300 x 300 DPI)