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Abstract 

Background 

Single-cell RNA sequencing is an essential tool to investigate cellular heterogeneity, and to highlight 

cell sub-population specific signatures. Single-cell sequencing applications are now spreading from 

the most conventional RNAseq to epigenomics, e.g. ATAC-seq. ATAC-seq. Single-cell sequencing 

led to the development of a large variety of algorithms and tools. However, to the best of our 

knowledge, there are few computational workflows providing analysis flexibility and achieving at 

the same time functional (i.e. information about data and the utilized tools are saved in terms of meta-

data) and computational reproducibility (i.e. real image of the computation environment used to 

generate the data is stored) through a user-friendly environment. 

Findings 

rCASC is a modular workflow providing integrated analysis environment (from counts generation to 

cell subpopulation identification) exploiting docker containerization to achieve both functional and 

computational reproducibility in data analysis. Hence, rCASC provides preprocessing tools to remove 

low quality cells and/or specific bias, e.g. cell cycle. Subpopulations discovery can be instead 

achieved using unsupervised and supervised clustering techniques. Quality of clusters is then 

estimated through a new metric namely Cell Stability Score (CSS), which describes the stability of a 

cell in a cluster as consequence of a perturbation induced by removing a random set of cells from the 

overall cells population. CSS provides better cluster-robustness information than silhouette metric. 

Moreover, rCASC provides also tools for the identification of clusters-specific gene-signature.  

Conclusions  

rCASC is a modular workflow with valuable new features that could help researchers in defining 

cells subpopulations and in detecting subpopulation specific markers. It exploits docker framework 

to make easier its installation and to achieve a computation reproducible analysis. Moreover, a Java 

Graphical User Interface (GUI), is also provided in rCASC to make friendly the use of the tool even 

for users without computational skills in R.  

Keywords 

Single-cell data preprocessing, workflow, GUI, supervised clustering, unsupervised clustering, 

cluster stability metrics, cluster-specific gene signature. 
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Findings 

rCASC: a single cell analysis workflow designed to provide data reproducibility. 

Since the end of the 90’s omics high-throughput technologies have generated an enormous amount 

of data, reaching today an exponential growth phase. The analysis of omics big data is a revolutionary 

means of understanding the molecular basis of disease regulation and susceptibility, and this resource 

is made accessible to the biological/medical community via bioinformatics frameworks. However, 

due to the increasing complexity and fast evolution of computation tools and omics methods, the 

reproducibility crisis [1] is becoming a very important issue [2] and there is a mandatory need to 

guarantee robust and reliable results to the research community [3].  

Single cell analysis is instrumental to understand the functional differences existing among cells 

within a tissue. Individual cells of the same phenotype are commonly viewed as identical functional 

units of a tissue or organ. However, single cells sequencing results [4] suggest the presence of a 

complex organization of heterogeneous cell states producing together system-level functionalities. A 

mandatory element of single cell RNAseq is the availability of dedicated bioinformatics workflows. 

In this context rCASC provides a modular workflow to address at the same time the problem of 

functional and computational reproducibility. rCASC provides single cell analysis functionalities 

within the reproducible rules described by Sandve [5]. rCASC is part of the Reproducible 

Bioinformatics Project [6], which is a project designed to provide to the biological community a 

reproducible and user-friendly bioinformatics ecosystem [7]. All computational tools in rCASC are 

embedded in dockers images stored in a public repository on docker hub. Parameters are delivered to 

docker containers via a set of R functions, part of rCASC R github package [8]. To simplify the use 

of rCASC package to users without scripting experience, R functions can be controlled by a dedicated 

GUI integrated of the 4SeqGUI tool previously published by us [7], which is also available as github 

package [9]. rCASC is specifically designed to provide an integrated analysis environment for cell-

subpopulation discovery. The workflow allows the direct analysis of fastq files, generated with 10X 

Genomics and inDrop platforms, or count matrices. Therefore, rCASC provides raw data 

preprocessing, subpopulation discovery via supervised/unsupervised clustering and cluster-specific 

genes-signatures detection. The key elements of rCASC workflow are shown in Figure 1, and the 

main functionalities are summarized in Methods section. A detailed description of the rCASC 

functions is also available in the vignettes section of rCASC github [8].  

The overall characteristics of rCASC were compared with other four workflows for single-cells 

analysis (Figure 2): i) simpleSingleCell, Bioconductor workflow package [10]; ii) Granatum, web-
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based scRNA-Seq analysis suite [11]; iii) SCell, graphical workflow for single-cell analysis [12]; iv) 

R toolkit Seurat [13]. The comparison was based on the following elements: a) supported single-cell 

platforms, b) types of tools provided by the workflow, c) type of reproducibility granted by the 

workflow, d) usage flexibility.  

rCASC is the only workflow providing support at fastq level because all the others packages require 

as input the processed counts table. Cell quality control and outliers’ identification is available in all 

workflow but Granatum. Association of ENSEMBL gene IDs to gene symbols is only provided by 

rCASC. All workflows provide genes filtering tools but simpleSingleCell. All packages provide 

normalization procedures to be applied to raw counts data. However, rCASC is the only tool 

providing both Seurat specific normalization [13] and count-depth specific normalization [14]. The 

workflows implement different data reduction and clustering methods. rCASC implements Seurat 

[13] as unsupervised clustering tool and SIMLR [15] as supervised clustering tools. Notably, Freytag 

[16] recently published a comparison of single-cell clustering methods, in which SIMLR and Seurat 

were included. Freytag showed that the two methods performed better than other clustering methods 

and they behaved in similar way on Freytag’s golden standard dataset. rCASC is the only workflow 

performing clustering in presence of data perturbation, i.e. removal of a subset of cells, and measuring 

cluster quality using Cell Stability Score (CSS is a cluster quality metrics developed by us, which 

measures the persistence of each cell in a cluster upon data perturbation, see Supplementary file 

section 5.1) and Silhouette score (SS is a cluster quality metrics measuring the consistency within 

clusters of data). In our experiments CSS provides a better estimation of the cluster stability with 

respect to what can be depicted using SS (Figure 2). Gene feature selection approaches are 

implemented in different way in the five workflows. Granatum is the only one providing biological 

inference. Granatum and Seurat implements various statistical methods to detect cluster specific 

genes signatures (Figure 3). rCASC embeds an ANOVA-like statistics derived from EdgeR 

Bioconductor package [17] and Seurat/SIMLR genes prioritization procedures (see Supplementary 

file section 7). Visualization of genes-signatures by heatmap of by coloring cell on the basis of gene 

expression is only provided by rCASC (see Supplementary file Figure 51). Considering 

reproducibility, only rCASC provides both computational and functional reproducibility. Finally, 

rCASC is the only one providing both command line and GUI (Figure 4). 

rCASC was used to re-analyze the single-cell dataset from Pace paper [18]. In this paper, authors 

highlighted that Suv39h1-defective CD8+ T-cells show sustained survival and increased long-term 

memory reprogramming capacity. Our re-analysis extends the information described in Pace paper, 
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suggesting the presence of an enriched Suv39h1-defective memory subset. A complete description of 

the above analysis is available at section 8 of supplementary file.  

Methods 

Counts table generation 

inDrop single-cell sequencing approach was originally published by Klein [19]. Then, the authors 

published the detailed protocol in Nature Methods in 2017 [20]. In rCASC, the generation of the 

count table starting from fastq files refers to the version 2 of the inDrop chemistry described in [20], 

which is commercially distributed by 1CellBio. The procedure described in the inDrop github [21] in 

embedded in a docker image. rCASC function indropIndex allows the generation of the transcripts 

index required to convert fastq to counts and indropCounts function converts reads in UMI counts.  

10XGenomics Cellranger is packed in a docker image and the function cellrangerCount converts 

fastq to UMI matrix using any of the genome indexes available at 10XGenomics data repository. 

Detailed description about the counts table generation is available in Supplementary file section 2. 

Counts table exploration and manipulation  

rCASC provides various data inspection and preprocessing tools.  

genesUmi function generates a plot where the number of detected genes are plotted for each cell with 

respect to the number of UMI/reads quantified for each cell (Figure 5A,C).  

mitoRiboUmi calculates the percentage of mitochondrial/ribosomal genes with respect to the total 

number of detected genes in each cell and plots percentage of mitochondrial genes with respect to 

percentage of ribosomal genes. Furthermore, cells are colored on the basis of the number of detected 

genes (Figure 5B,D). mitoRiboUmi allows to identify cells with low information content, i.e. those 

cells with a little number of detectable genes, e.g. < 100 genes/cell, little ribosomal content and high 

content of mitochondrial genes, which indicate cell stress [22]. 

The function scannobyGtf uses ENSEMBL gtf and the R package refGenome to associate gene 

symbol with the ENSEMBL gene ID. Furthermore, scannobyGtf allows the removal of 

mitochondrial/ribosomal genes (Figure 5A,C) and the removal of “stressed” cells detectable with 

mitoRiboUmi function (Figure 5B,D). 

The function lorenzFilter embeds the Lorenz statistics developed by Diaz [12], a cell quality statistics 

correlated with cell live-dead staining (see Supplementary file sections 3.3). 

As counts table preprocessing steps, we implemented the functions checkCountDepth/scnorm to 

detect the presence of sample specific count–depth relationship [14] (i.e. the relationship existing 

between transcript-specific expression and sequencing depth) and adjust the counts table for it. 

Furthermore, we have added two other functions recatPrediction and ccRemove, which are based 
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respectively on the paper of Liu [23] and Barron [24]. The function recatPrediction organizes the 

single cell data to reconstruct cell cycle pseudo time-series and it is used to understand if a cell cycle 

effect is present. Then, ccRemove function is used to mitigate the cell cycle effect of the inter-samples 

transcriptome when it is detected by recatPrediction function (see Supplementary file sections 3.6 ad 

3.8). 

Clustering 

For the identification of cell subpopulations we implemented two clustering approaches: Seurat [13] 

and SIMLR [15]. Seurat is a hierarchical method and in rCASC is controlled by the functions 

seuratPCAEval and seuratBootstrap. The function seuratPCAEval is used to identify the subset of 

PCA components to be used for clustering and seuratBootstrap implements the clustering. Differently 

SIMLR implements a k-mean clustering, where the number of clusters (i.e. k) is taken as input. The 

function simlrBootstrap controls the clustering procedure and the function nClusterEvaluationSIMLR, 

a wrapper for the R package griph (Graph Inference of Population Heterogeneity) [25], is exploited 

to estimate the (sub)optimal number “k” of clusters. We developed, for both Seurat and SIMLR, a 

procedure to measure the cluster quality on the basis of data structure. The rationale of our approach 

is that cells belonging to a specific cluster should be little affected by changes in the numerosity of 

the dataset, e.g. removal of 10% of the total number of cells used for clustering. Thus, we developed 

a metrics called CSS (Cell Stability Score), which describes the persistence of a cell in a specific 

cluster upon jackknifing and therefore offers a peculiar way of describing cluster stability. Detailed 

description of CSS metrics is available in Supplementary file at section 5.1. CSS is embedded in 

seuratBootstrap and simlrBootstrap, and it is also used in nClusterEvaluationSIMLR to identify 

which number of clusters gives the best CSS behavior. 

Feature selection 

To select the most important features of each cluster we implemented in the anovaLike function the 

edgeR ANOVA-like method for single cells [17] and in the functions seuratPrior and 

genesPrioritization/genesSelection respectively the Seurat and SIMLR genes prioritization methods. 

hfc function allows the visualization of the genes prioritized with the above methods as heatmap and 

provides plots of prioritized genes in each single cell (Figure 6). 

Availability and requirements 

Project name: rCASC: reproducible Classification Analysis of Single Cell sequencing data 

Project home page: https://github.com/kendomaniac/rCASC; https://github.com/mbeccuti/4SeqGUI  

Operating system: Linux 

Programming language: R and JAVA 
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Other Requirements: None 

License: The GNU Lesser General Public License, version 3.0 (LGPL-3.0) 

Any restrictions to use by non-academics: None 

Authors’ contributions 
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Figure legend 
 

Figure 1: rCASC workflow. Blue boxes indicate preprocessing tools. Yellow boxes define clustering 

tools. Green box indicates genes-signatures tools. 

 

Figure 2: Cell Stability Score versus Silhouette Score calculated on Pace’s dataset (see 

Supplementary file section 8) using SIMLAR over a set of number of clusters ranging between 5 and 

8. A) Cell Stability Score violin plot. Looking at the mean value and data dispersion the best number 

of clusters is 5, indicating the with 5 clusters cells remain in the same cluster more about 80% of the 

times a random removal of 10% of the cell is applied to the full dataset. B) Silhouette Score violin 

plot Looking at the mean value of the SS distribution there are no clear evidences that one 

clusterization is better that another. Furthermore, the dispersion of the SS value is getting narrow as 

the number of the clusters increases. 

 

Figure 3: Comparison between the analysis features available in rCASC and in other single-cell 

analysis workflows. 

 

Figure 4: rCASC graphical interface within 4seqGUI. A) Counts table generation menu: this set of 

function is devoted to the conversion of fastq to a counts table. B) Counts table manipulation menu: 

this set of functions allows inspection, filtering and normalization of the counts table. C) Clustering 

menu: these functions allow the use of SIMLR, tSne and Seurat to group cells in subpopulations. D) 

Feature selection menu: this set of functions allow the identification of cluster-specific subsets of 

genes and their visualization using heatmaps. 

 

Figure 5: genesUmi plots the number of detectable genes in each cell (a cell is called present if 

supported by a user defined N number of UMI/reads, suggested values N=3 for UMI or N=5 for 

smart-seq sequencing [26]) with respect to the number of sequences UMI/reads. mitoRiboUmi 

calculates the percentage of mitochondrial/ribosomal genes with respect to the total number of 

detected genes in each cell and plots % of mitochondrial genes with respect to % of ribosomal genes. 

Furthermore, cells are colored on the basis of the number of detected genes: A) genesUmi plot for 

resting CD8+ T-cells [18], sequencing average 83,000 reads/cell. B) mitoRiboUmi plot for resting 

CD8+ T-cells [18]. It is notable that cells aggregated in two groups: the majority of the cells with less 

than 100 detected genes groups together and they are characterized by high relative percentage of 

mitochondrial genes and low relative percentage of ribosomal genes. Remaining cells are 
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characterized by few detectable genes, 100250 genes/cell, with a percentage of ribosomal genes 

greater than 30%. C) genesUmi plot for Listeria activated CD8+ T-cells [18], sequencing average 

83,000 reads/cell, it is notable the activated cells show a wider range of detectable genes. D) 

mitoRiboUmi plot for Listeria activated CD8+ T-cells [18]. The majority of the cells are characterized 

by more the 100 genes called present and they show low percentage of mitochondrial genes and 

percentage of ribosomal genes between 15 to 35%. The remaining cells, with less than 100 detected 

genes groups together and are characterized by high relative percentage of mitochondrial genes and 

low relative percentage of ribosomal genes. 

 

Figure 6: Heat map and cell expression plot for prioritized genes. A) Heat map for the set of 577 

genes selected for Pace datasets (see Supplementary file section 8) by SIMLR prioritization. B) Nkg7 

CPM expression in the cell clusters. Nkg7 is expressed in activated T-cells (clusters 1, 2, 4, 5) [27] 

but not in resting T-cells (cluster 3). 
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Figure 1: rCASC workflow. Blue boxes indicate preprocessing tools. Yellow boxes define clustering 
tools. Green box indicates genes-signatures tools.
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Figure 2: Cell Stability Score versus Silhouette Score calculated on Pace’s dataset (see Supplementary 
file section 8) using SIMLAR over a set of number of clusters ranging between 5 and 8. A) Cell 
Stability Score violin plot. Looking at the mean value and data dispersion the best number of clusters is
5, indicating the with 5 clusters cells remain in the same cluster more about 80% of the times a random
removal of 10% of the cell is applied to the full dataset. B) Silhouette Score violin plot Looking at the 
mean value of the SS distribution there are no clear evidences that one clusterization is better that 
another. Furthermore, the dispersion of the SS value is getting narrow as the number of the clusters 
increases.

Figure 3: Comparison between the analysis features available in rCASC and in other single-cell 
analysis workflows.



Figure 4: rCASC graphical interface within 4seqGUI. A) Counts table generation menu: this set of 
function is devoted to the conversion of fastq to a counts table. B) Counts table manipulation menu: 
this set of functions allows inspection, filtering and normalization of the counts table. C) Clustering 
menu: these functions allow the use of SIMLR, tSne and Seurat to group cells in subpopulations. D) 
Feature selection menu: this set of functions allow the identification of cluster-specific subsets of genes
and their visualization using heatmaps.



Figure 5: genesUmi plots the number of detectable genes in each cell (a cell is called present if 
supported by a user defined N number of UMI/reads, suggested values N=3 for UMI or N=5 for smart-
seq sequencing [26]) with respect to the number of sequences UMI/reads. mitoRiboUmi calculates the 
percentage of mitochondrial/ribosomal genes with respect to the total number of detected genes in 
each cell and plots % of mitochondrial genes with respect to % of ribosomal genes. Furthermore, cells 
are colored on the basis of the number of detected genes: A) genesUmi plot for resting CD8+ T-cells 
[18], sequencing average 83,000 reads/cell. B) mitoRiboUmi plot for resting CD8+ T-cells [18]. It is 
notable that cells aggregated in two groups: the majority of the cells with less than 100 detected genes 
groups together and they are characterized by high relative percentage of mitochondrial genes and low
relative percentage of ribosomal genes. Remaining cells are characterized by few detectable genes, 
100250 genes/cell, with a percentage of ribosomal genes greater than 30%. C) genesUmi plot for 
Listeria activated CD8+ T-cells [18], sequencing average 83,000 reads/cell, it is notable the activated 
cells show a wider range of detectable genes. D) mitoRiboUmi plot for Listeria activated CD8+ T-cells
[18]. The majority of the cells are characterized by more the 100 genes called present and they show 
low percentage of mitochondrial genes and percentage of ribosomal genes between 15 to 35%. The 
remaining cells, with less than 100 detected genes groups together and are characterized by high 
relative percentage of mitochondrial genes and low relative percentage of ribosomal genes.



Figure 6: Heat map and cell expression plot for prioritized genes. A) Heat map for the set of 577 genes
selected for Pace datasets (see Supplementary file section 8) by SIMLR prioritization. B) Nkg7 CPM 
expression in the cell clusters. Nkg7 is expressed in activated T-cells (clusters 1, 2, 4, 5) [27] but not in 
resting T-cells (cluster 3).
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Dear Editor, 
We would like to submit as technical note the attached manuscript entitled “rCASC: reproducible 
Classification Analysis of Single Cell sequencing data”. 
Single-cell RNA sequencing i as an essential tool to investigate cellular heterogeneity, and to highlight 
cell sub-population specific signatures. Single-cell sequencing applications are now spreading from 
the most conventional RNAseq to epigenomics, e.g. ATAC-seq. Single-cell sequencing opened new 
areas of software development, producing an enormous amount of new software. However, only a 
very small number of them is able to guarantee functional (i.e. the information about data and the 
utilized tools are saved in terms of meta-data) and/or computational (i.e. the real image of the 
computation environment used to generate the data is stored) reproducibility.  
Being the founders of the bioinformatics community called reproducible-bioinformatics.org 
(http://www.reproducible-bioinformatics.org/, Kulkarni et al. BMC Bioinformatics, 2018, 19 (Suppl 
10):349), whose aim is to provide to the biological community a reproducible bioinformatics 
ecosystem (Beccuti et al. Bioinformatics, 2018 34 (5), 871–872), then we are very committed to the 
development of flexible and robust bioinformatics instruments granting reproducibility. Thus, we 
developed rCASC, which is a modular single-cell RNAseq analysis workflow providing data analysis 
tools from counts generation to cell sub-population signatures identification, and exploiting docker 
containerization to achieve computational reproducibility in the data analysis. 
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Raffaele A. Calogero 
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