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Abstract: Background
Single-cell RNA sequencing is an essential tool to investigate cellular heterogeneity,
and to highlight
cell sub-population specific signatures. Single-cell sequencing applications are now
spreading from
the most conventional RNAseq to epigenomics, e.g. ATAC-seq. Single-cell sequencing
led to the
development of a large variety of algorithms and tools. However, to the best of our
knowledge, there
are few computational workflows providing analysis flexibility and achieving at the
same time
functional (i.e. information about data and the utilized tools are saved in terms of meta-
data) and
computational reproducibility (i.e. real image of the computation environment used to
generate the
data is stored) through a user-friendly environment.
Findings
rCASC is a modular workflow providing integrated analysis environment (from counts
generation to
cell subpopulation identification) exploiting docker containerization to achieve both
functional and
computational reproducibility in data analysis. Hence, rCASC provides preprocessing
tools to remove
low quality cells and/or specific bias, e.g. cell cycle. Subpopulations discovery can be
instead
achieved using different clustering techniques based on different distance metrics.
Quality of clusters
is then estimated through a new metric namely Cell Stability Score (CSS), which
describes the
stability of a cell in a cluster as consequence of a perturbation induced by removing a
random set of
cells from the overall cells’ population. CSS provides better cluster-robustness
information than
silhouette metric. Moreover, rCASC provides also tools for the identification of clusters-
specific
gene-signature.
Conclusions
rCASC is a modular workflow with valuable new features that could help researchers in
defining
cells subpopulations and in detecting subpopulation specific markers. It exploits docker
framework
to make easier its installation and to achieve a computation reproducible analysis.
Moreover, a Java
Graphical User Interface (GUI), is also provided in rCASC to make friendly the use of
the tool even
for users without computational skills in R.
Keywords
Single-cell data preprocessing, workflow, GUI, clustering, cluster stability metrics,
cluster-specific
gene signature.
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Response to Reviewers: GIGA-D-18-00522
Dear Editor,
First of all, we wish to thank the reviewers for their valuable comments and useful
suggestions which
helped us to improve the paper and the tool.
Editor request: Please register any new software application in the SciCrunch.org
database to
receive a RRID (Research Resource Identification Initiative ID) number, and include
this in your
manuscript. This will facilitate tracking, reproducibility and re-use of your tool.
Answer: we registered rCASC to SciCrunch and it is now associated with the Research
Resource
Identification Initiative ID : SCR_017005
Reviewer #1:
Comments to the Author:
This paper presents a pipeline to infer single-cell clusters using scRNA-Seq data
(rCASC), infer
significant features linked to each cluster, and can analyse various metrics during the
processing.
Notably, the results of the pipeline can be divided into 3 major outputs, A) cells-
features matrix
generation, B) Clustering, and C) inference of significant features per clusters. Also,
the pipeline is
able to perform various additional substeps such as Matrix preprocessing
(normalization), outliers
removal, features removal, cell cycle specific features removal. The pipeline is
implemented in R
using Docker containers and has a GUI interface coded in Java. Finally; the authors
claimed have
invented a metric: the CSS, to evaluate cluster stability in their single-cell analyses.
First, It is a
pleasant surprise to be able to install everything needed to perform scRNA-Seq
analysis with few
simple commands (with exception of Docker which can be tricky for non IT people).
Also, developing
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scRNA-Seq analytical toolbox easy to use and efficient are an innovative direction due
to the
importance and the multidisciplinary aspect of the field. However, I have major
concerns which I
think should be addressed before publication.
Major Comments:
Comment 1: First, the abstract and the text contain different confusing aspects that
must be
rewritten. The authors describe a "supervised approach": SIMLR which is seen as the
alternative of
the "Seurat clustering". From my knowledge, SIMLR is a clustering workflow and thus
is also an
unsupervised approach, by contrast with any other supervised approaches using
training datasets
as input (classification/regression...). I don't know what is a "supervised clustering" if
not a
classification procedure. Clustering are always unsupervised with the exception of
"semi-
supervised" clustering (use of seed samples).
Answer 1: As pointed out by the reviewer both Seurat and SIMLR use an unsupervised
approach,
and they mainly differ in the metrics driving the clustering analysis. SIMLR is capable of
learning an
appropriate cell-to-cell similarity metric from the input single-cell data and to exploit it
for the
clustering task. In details, the learning phase identifies a distance metric that best fits
the structure
of the data by combining multiple Gaussian kernels. This allows the tool to deal with
the large noise
and drop-out effect of single-cell data that could not be easily fitted with specific
statistical
assumptions made by standard dimension reduction algorithms. Differently, Seurat
clustering
algorithm is based on the Euclidean distance in PCA space, and refines the edge
weights between
any two cells based on the shared overlap in their local neighbourhoods (Jaccard
similarity). Since
these two clustering approaches have their specific criticality and strengths we decided
to integrate
both of them in our framework. Finally, according to the reviewer’ comments we
modified the
following sentences:
In Abstract-Findings: “Subpopulations discovery can be instead achieved using
unsupervised and
supervised clustering technique”
was modified in
“Subpopulations discovery can be instead achieved using different clustering
techniques based on
different distance metrics”.
In keywords: “supervised clustering, unsupervised clustering”
was modified in
“clustering”
In Findings: “Therefore, rCASC provides raw data preprocessing, subpopulation
discovery via
supervised/unsupervised clustering and cluster-specific genes-signatures detection”
was modified in
“Therefore, rCASC provides raw data preprocessing, subpopulation discovery via
different
clustering approaches and cluster-specific genes-signatures detection”
“rCASC implements as unsupervised clustering tool and as supervised clustering
tools”.
was modified in
“rCASC integrates two clustering tools, namely Seurat [13] and SIMLR [15], which
mainly differ in
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the metrics driving the clustering analysis”.
Comment 2: Also, I don't understand why this package is superior in term of
"Computational and
Functional" reproducibility compared with any other packages for which a similar
reasoning can be
also applied.
Answer 2: We would like to thank the reviewer to give us the possibility to explain
better this aspect.
rCASC is one of the tools developed under the umbrella of the Reproducible
Bioinformatics project
(http://www.reproducible-bioinformatics.org/), an open-source community aimed to
provide to
biologists and medical scientists, without scripting skills, a easy to use framework,
which also
guarantees the ability to reproduce results independently by the underlying hardware,
using docker
containerization (computational reproducibility), and providing tools that fulfil the best
practice
rules for reproducible computational research, proposed in 2013 by Sandve [PLoS
computational
biology 2013, 9(10)] (functional reproducibility). The reproducible bioinformatics project
was
founded and it is maintained by the research team of Elixir node at University of Turin.
The
reproducible bioinformatics project was published on BMC Bioinformatics (Kulkarni et
al. 2018). An
example of stand-alone hardware/software infrastructure for bulk RNAseq, developed
within the
Reproducible Bioinformatics project, was described in Beccuti et al. (Bioinformatics
2017). Thus, to
the best of our knowledge, rCASC is the only computational framework, which provides
a complete
computational reproducibility for integrated analysis of single cell data (from counts
generation to
cell subpopulation identification). Last but not least rCASC is listed within the tools
developed by
the Italian Elixir node (https://bio.tools/rCASC).
Finally, the following phrase in the Findings section: “In this context rCASC provides a
modular
workflow to address at the same time the problem of functional and computational
reproducibility.
rCASC provides single cell analysis functionalities within the reproducible rules
described by Sandve
[5]. rCASC is part of the Reproducible Bioinformatics Project [6], which is a project
designed to
provide to the biological community a reproducible and user-friendly bioinformatics
ecosystem [8].”
was modified in:
“rCASC is one of the tools developed under the umbrella of the Reproducible
Bioinformatics project
(http://www.reproducible-bioinformatics.org/), an open-source community aimed to
provide to
biologists and medical scientists, without advance scripting skills, an easy to use
framework, which
also guarantees the ability to reproduce results independently by the underlying
hardware, using
docker containerization (computational reproducibility). Indeed, it was developed
following the
best practice rules for reproducible computational research, proposed in 2013 by
Sandve [PLoS
computational biology 2013, 9(10)] (functional reproducibility). The reproducible
bioinformatics
project was founded and it is maintained by the research team of Elixir node at
University of Turin.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



The reproducible bioinformatics project was published on BMC Bioinformatics (Kulkarni
et al. 2018).
An example of stand-alone hardware/software infrastructure for bulk RNAseq,
developed within
the Reproducible Bioinformatics project, was described in Beccuti et al. (Bioinformatics
2017). Thus,
to the best of our knowledge, rCASC is the only computational framework, which
provides both
computational and functional reproducibility for an integrated analysis of single cell
data, from
counts generation to cell subpopulation identification. rCASC is also listed within the
tools
developed by the Italian Elixir node (https://bio.tools/rCASC).”
Comment 3: Then, the authors claimed to have invented a new metric: the "Cell-
stability Score",
which is based on the computation of a stability score by clustering multiple bootstrap
sampling and
computing the jaccard index. Clustering stability measurement is not new and previous
works
already described more formally the use of bootstrapping together with clustering and
Jaccard index
to estimate cluster stability
(http://www.homepages.ucl.ac.uk/~ucakche/papers/clusta.pdf (2006),
https://arxiv.org/abs/1503.0205). These example algorithms are not based on single-
cell datasets
(other stability approaches exist for single-cells), but since the approach described in
the first paper
is very similar, a more comprehensive bibliography of clustering stability should be
present in the
manuscript as well a rewriting of the CSS description/notion, highlighting the similarity
with
previous works.
Answer 3: As mentioned by the reviewer the cell stability score method implemented
by us uses
Jaccard
 index,
 which
 is
 also
 used
 in
 Hennig
 paper
(http://www.homepages.ucl.ac.uk/~ucakche/papers/clusta.pdf 2006). However,
between our
approach and the one of Hennig’s paper there is a substantial difference: in Hennig’s
paper the
Jaccard index is used to evaluate the similarity between clusters and the calculated
score provides
an overall quality score for each of the clusters in toto. In our implementation the
stability score is
not related to the clusters, but it is specific for each cell. We believe that cell stability
score allows
us to have a more precise view of which are the cells affected by perturbations of the
dataset
structure.
To better explain this issue, we modify the paper section “rCASC: a single cell analysis
workflow
designed to provide data reproducibility.”, adding the following phrases before the
sentence: “To
the best of our knowledge, rCASC is the only workflow performing clustering in
presence of data
perturbation ...”:
“Cluster stability is an important topic in Clustering (for a review see von Luxburg
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2010). Stability
measurement, taking advantage of bootstrapping, was also addressed by Hennig
(2007). Specifically,
Hennig uses Jaccard index to evaluate the overall stability of each cluster. In rCASC,
we have
implemented a cell stability score (CSS), which uses the Jaccard index to estimate the
stability of
each cell in each cluster. CSS provides an enhanced description of each cluster, since
it allows the
identification of subset of cells, in any cluster, which are particularly sensitive to
perturbation of the
overall dataset structure, i.e. cell bootstrapping. Moreover, the cluster stability
measurement
proposed by Henning was included in rCASC. Specifically, we have implemented the
“clusterboot
“function from the fpc R package (https://cran.r-
project.org/web/packages/fpc/index.html), which
allows the evaluation of the cluster stability using a personalized clustering function).
So far in our
knowledge, rCASC is the only single-cell analysis workflow performing clustering in
presence of data
perturbation ...”. We added the Section 5.3 in Supplementary file to describe this
functionality.
Comment 4: In term of additional experiments, I think it would be interesting to have an
idea of the
ratio: number of CPUs/ RAM/ computational time according to: the number of cells /
number of
features (i.e.: matrix dimension), and read depth (linked to fastq size). More
specifically, what are
the limiting steps in term of computation? What are the steps the less expensive ? A
new figure
might be necessary to represent the contribution of each step in term of computation.
Answer 4: We thanks the reviewer for this comment. We added a new figure describing
the effect
of cells and number of genes on the computation efficacy of SIMLR, Seurat, tSne and
griph (Figure
7). In the Methods section we also added the paragraph “Scalability”, in which we
discussed the
computational performance of the used methods.
See also A9 major comments reviewer 2 and A6a to your Comment 6.
Comment 5: Ideally, a comparison with the other cited pipeline would be also
interesting, but this
amount of work might be out of scope of this study.
Answer 5: We agree with reviewer that this point is out of the scope of our manuscript.
Comment 6:
Q6a) I have some concerns with the choice of clustering algorithms used. Despite
Seurat is well
established in the community and SIMLR is also a well recognized algorithm, I am not
sure if these
algorithms can handle very large sparse datasets (i.e. more than 10K cells), that are
becoming the
new standard in the field. Notably, are these algorithms able to handle sparse data?
SIMLR needs a
specified K, thus inferring the best K requires to screen amongst an array of Ks and
thus might be
very time consuming. Would it exist better and simpler alternatives to handle very large
and sparse
datasets that might be included in rCASC?
A6a) To answer to the above comment we run a performance experiment increasing
the cell size
and varying the number of genes used in clustering experiment. Please see Answer A9
major
comments reviewer 2. A new paragraph, scalability, was added in method section in
the main
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manuscript. In Figure 7A of paragraph scalability, it is shown the computing time (Intel
i7 3.5 GHx, 4
cores, 32 GB RAM, 500GB SSD) required to execute 160 permutations on a dataset
varying from 200
to 5000 cells using SIMLR, tSne, griph and Seurat. Specifically, Seurat analysis with
5000 cells can be
completed in 50 hours. Computing times can be significantly reduced if a high-end
multi-cores
server is used. We observe that when the number of considered cells overcomes 5000
units then all
the clustering tool integrated in rCASC requires more than 32GB RAM.
SIMLR, tSne, griph and Seurat were all designed to work with sparse data.
We agree with reviewer that SIMLR is more computational demanding with respect to
the other
implemented tools, but it provides very good clustering performance as reported in
SIMLR paper
(Wang et al. 2017). SIMLR was also released in a version to handle large scale
dataset, but we did
not integrate it because, when we tested it, we observed that the sensitivity and
specificity of the
method were not better of those of tSne (not shown in this manuscript). Of course, we
are
constantly looking for new clustering methods, proposed in the literature, able to
overcame the
limitations of the current tools. The latest comparison between clustering methods (Duò
et al. 2018
on F1000: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6134335/) indicates that the
clustering
algorithm implemented in Seurat toolkit is the most computationally time efficient.
Q6b) Using a clustering stability metric is I think a very good idea. Is it possible to get
an average
stability score per cluster to have an idea if a cluster is noisy or robust?
A6b) We thank the reviewer with this useful comment. We answer to this point at the
above
comment 3.
Q6c) Also, even a stable cluster according to a bootstrap experiment is not a
guarantee of a
"biologically" stable cluster, and can reflect a biased in the method used (for example,
a dummy
algorithm clustering cells according to their name will produce very stable but useless
clusters).
A6c) According to one of the requests of reviewer 2, see A2b major comments
reviewer 2, we
collected extra data, which are indicating that cell stability score (CSS) inversely
correlate with the
cells’ heterogeneity of clusters, see Section 5 Figure 41 of the supplementary
information. Since, we
observed that the clusters characterized by high CSS are mainly constituted of cells of
the same type,
this suggests a correlation with the biological characteristics of the cells.
Q6d) What is the use of griph (Graph Inference of Population Heterogeneity). Why not
using the
stability measure to estimate the best K?
A6d) Indeed, we use the clusters stability measure to estimate with K is the best
choice. However,
to provide a suggestion on the range of numbers of clusters to be investigated, we
decided to use
griph tool, first because it is based on Louvain modularity optimization algorithm, as the
Seurat
clustering method we have integrated in rCASC. Then, because its execution time is
the best
between the clustering tools we have implemented in rCASC, see Figure 7 in the main
manuscript.
We did not implement griph as complete clustering tool in rCASC, because it is not
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published, yet.
Q6e) The package requires a very large amount of memory to be able to install all the
docker
dependencies and I was not able to install it on my own computer (out of memory). Is
there any way
to propose "lighter" versions in order to be able to use it on a standard computer?
Overall, I am not
sure if all these different steps are always mandatory to obtain biologically meaningful
single-cell
clusters (Of course, they might be required in some specific cases), compared to more
straightforward approaches (matrix creation -> embedding -> clustering).
A6e) Concerning the docker images storage in local computer, it is not necessary to
execute the
command downloadContainers(), which download all rCASC docker images. In this
case, only the
required images will be downloaded on the basis of the rCASC function in use. This
option will
require extra time to execute each new function, since the corresponding docker image
needs to be
downloaded. We have also added the option “mini” for downloadContainers(), which
downloads
only 17 dockers out 26 docker images and provides all basic functionalities to handle a
single-cell
counts table.
Concerning RAM requirements, we can execute all rCASC functions with 16 GB RAM
on datasets up
1000 cells. The main limitation is given by the possibility of performing no more than
one
permutation at a time.
Minor Comments:
Q1) The supplementary files document very rigorously the software which is really
pleasant.
Some figures are not very informative and might be combined together (For example
figures 1, 3
and 4 And figures 2 and 6?).
A1) We thank reviewer for the suggestion, but we prefer to leave these figures
separated to keep
clear the analysis workflow structure.
Q2) Can you describe briefly what is the Seurat specific normalization?
A2) Seurat normalization step is the one suggested from the Seurat workflow. This
information was
added in supplementary file: “Before clustering data are normalized as suggested from
the Seurat
workflow using Seurat NormalizeData function, with LogNormalize as
normalization.method and
10000 as scale.factor parameters.”
Reviewer #2: The authors present rCASC, an integrated analysis framework for single-
cell RNA
sequencing data that combines a range of existing and novel computational tools.
While some
workflows for reproducible scRNA-Seq data analysis exist, the authors provide an
analysis strategy
using docker containers and a graphical user interface for reproducibility. rCASC is
implemented as
an R package and as graphical user interface, which allows bioinformaticians as well
as biologists
with little experience to perform statistical data analysis. However, there are some
concerns about
the chosen analysis tools and the presentation of results that need to be addressed:
Major comments
Q1) The description of the algorithms used is often not clear. In the main text (p.4 l.16-
21), the
authors mention normalization and clustering strategies taken from other tools. When
other tools
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are used, it would be good to briefly describe the underlying algorithms (either in the
main text or
the methods section). For example, Seurat is a toolbox for data analysis and not a
clustering tool
and it has to be specified which clustering strategy is used. The authors should also
make sure to
properly cite the original publication of functions implemented in the rCASC toolbox (for
example
the reCAT function and the griph package).
A1) We added for each function described in section Methods a brief description of the
implemented algorithm. We apologize for the error in citing reCAT, we fixed it.
Concerning griph,
we only provided the github repository, because developers told us that it will be
published as part
of a larger paper entitled “Self-organization and symmetry breaking in intestinal
organoid
development” accepted for publication in Nature. However, at the time of this rebuttal
the paper is
not out, yet. We will update its reference as soon as it will be available.
Q2a) The authors developed the Cell Stability Score based on iteratively clustering a
sub-sampled
dataset. This is a good approach and informative for cluster stability. It would however
be good to
visualize the stability scores for datasets subsampled to 20%, 30%, and even 50%.
A2a) We extended the analysis described in Figure 38 of the vignette removing 20%,
30% and 50%
of the cells. The results were added as Figure 40 and commented in vignette text: “The
effect of the
perturbations induced in the clustering upon the removal of 10%, 20%, 30% and 50%
of the data set
was also investigated in SetA (annotated_bmsnkn_5x100cells.txt), Figure 40. We can
observe that
the overall cell stability score of each cell in each cluster is reduced increasing of the
fraction of cells
removed in each permutation. However, the reduction in CSS is not identical for all
clusters. In Figure
40, it is clear that cluster 2, completely composed of NK cells, is the most stable cluster
to the
perturbations induced by increasing the number of removed cells. On the other side,
cluster 4,
mainly made by stem cells (92 cells), together with few B-cells (2 cells) and Monocytes
(7 cells) is
the least stable. Sorting by increasing CSS the cells in cluster 4, Figure 40D, all B-cells
and Monocytes
are found within the first 15 most unstable cells.”
Q2b) Furthermore, it is crucial to link the CSS to the clustering ground truth with the
underlying
assumption that the true discovery rate for "stable" cells is larger than the one for cells
with lower
CSS.
A2b) We have investigated the clusters composition of two sets of cells described in
section 4.2:
SetA and SetC. SetA is composed by cells with different biological characteristics, i.e.
(B) B-cells, (M)
Monocytes, (S) Stem cells, (NK) Natural Killer cells, (N) Naive T-cells. SetC contains
Monocytes,
Natural Killer cells and with T-cells subpopulations, i.e. (C) Cytotoxic T-cells, (H) T-
helper cells and
Naive T-cell. The results are summarized in Figure 41 and commented in the vignette
text: “We
investigated clusters composition of two sets of cells described in section 4.2: SetA and
SetC.
SetA composed by cells with different biological characteristics, i.e. (B) B-cells, (M)
Monocytes, (S)
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Stem cells, (NK) Natural Killer cells, (N) Naive T-cells.
SetC contains Monocytes, Natural Killer cells and with T-cells subpopulations, i.e. (C)
Cytotoxic T-
cells, (H) T-helper cells and Naive T-cell, Figure 41. CSS provides indications on
clusters cells
heterogeneity. In Figure 41A and C, clusters characterized by high cell stability score
are mainly
constituted by one cell type. On the other hand, as CSS decrease, Figure 41B and D,
the clusters
become characterized by an increasing heterogeneity in the cell types composition.
E.g. In Figure
41B and D, cluster 5 (violet) has a CSS between 75% to 100% and it is composed only
by monocytes,
cluster 2 (light green), which has a CSS between 50% and 75%, has a 11%
contamination of T-helper
cells. Cluster 3 (green), which has a CSS between 25 to 50%, is contaminated by 12%
Cytotoxic T-
cells and 4% T-helper cells. Finally, clusters 1 and 4, characterized by CSS between
0% to 25%, are
very heterogeneous incorporating 4 out of 5 cell types present in this dataset.”.
Q3) The authors should discuss why they chose to store e.g. normalized data and
analysis results
in .csv or .txt files rather than using slots of a S4 class (in sparse matrix format)
commonly used in R
data analysis.
A3) All tools embedded in rCASC use as input source a tab or a comma delimited file
and only Seurat
imports counts table file in an object of class Seurat. 10XGenomics distributes counts
table file also
in H5 (Hierarchical Data Format 5 File) format, Bioconductor rhdf5 package offers
support for this
type of files, but none of the tools implemented in rCASC is able handle the R data
structure returned
by the rhdf5 package. Since, as far as we know there is not a general agreement on
the format of
single cell count tables we prefer to wait till an agreement on standardized data format
will become
available.
Q4) In the vignette is it often not clear what the scale bars or colour coding means. The
authors
should expand figure legends, plots and axes with the necessary information to
understand what is
displayed.
A4) We carefully revised the figure legend to clarify colours and legend bars.
Q5) When performing dimensionality reduction it is important to i) correctly normalize
the data and
ii) indicate if the counts were log-transformed. These information are missing in some
parts of the
vignette. For example the authors use a wrapper function to perform PCA on page 17.
It is not clear
if the data was normalized and log-transformed which could have an impact on the
interpretability
of the results.
A5) We carefully revised the various part of the vignette and we added information
referring to the
data characteristics.
Q6) The scannobyGtf function performs gene annotation and removes mitochondrial
genes and
genes encoding ribosomal proteins. For some analyses, these genes can be
informative regarding
the metabolic and proliferative state of the cell and should not be removed. The
authors should
therefore consider splitting the scannobyGtf function into two functions; one for
annotation and

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



one for filtering. If users detect unwanted variation in the expression of genes encoding
for
ribosomal proteins, this effect should be removed using regression approaches such
as scLVM rather
than excluding the genes from the dataset.
A6) The scannobyGtf function was updated to make optional the removal of
mitochondrial and
ribosomal protein genes.
Q7) Section 3.5 Top expressed genes: By selecting the set of top expressed genes the
authors might
be biased by the variation detected in highly expressed housekeeping genes. Instead,
and in line
with commonly performed analysis for scRNA-Seq data, the authors should include an
approach to
detect highly variable genes as the set of informative genes. This also facilitates the
inclusion of cell-
type specific genes in the clustering approach (see paragraph on page 39 in the
vignette).
A7) We thank reviewer for this useful comment. We have added the option to filter the
dataset on
the basis of gene dispersion in the topx function. Section 3.5: “For clustering purposes
user might
decide to use the top expressed genes. The function topx selects the X top expressed
genes given a
user defined threshold.”
was modified in:
“For clustering purposes user might decide to use the top expressed/variable genes.
The function
topx provides two options:
- the selection of the X top expressed genes given a user defined threshold, parameter
type="expression"
-the selection of the X top variable genes given a user defined threshold, parameter
type="variance"
The function also produces a pdf file gene_expression_distribution.pdf showing the
changes in the
UMIs/gene expression distribution upon topx filtering.”
Q8) When toy datasets are used it is important to state if these are the data from the
original
publication or if the data were pre-processed (see bottom of page 29 in the vignette).
A8) We updated the description of the toy experiments
Q9) The authors implemented different clustering strategies in the rCASC toolbox.
While the cell
stability score is explained in detail, it is not clear what exactly is used for SIMLR and
tSNE clustering.
Both are methods to perform non-linear dimensionality reduction and only SIMLR is
designed to
also perform clustering. tSNE is not a clustering tool and it is well known that it
introduces artefacts
when visualizing complex data. It would therefore be good to explain if the SIMLR
internal clustering
approach is used or if the authors perform k-means clustering on the dimensionality
reduced data-
points. For reasons of scalability and the number of input genes, I wonder whether the
SIMLR
approach is suitable for large dataset (e.g. 50,000 cells).
A9) In vignette section 5 and 6 we described SIMLR and Seurat as the two clustering
tools used in
rCASC. The choice of these two tools is given by the comparisons performed by Wang
and coworkers
in their paper on SIMLR (Nat Methods. 2017) and by the independent observations of
Freytag and
coworkers
 (https://f1000research.com/articles/7-1297/v2)
 and
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 Duo’
 and
 Robinson
(https://f1000research.com/articles/7-1141/v2) indicating that, in their tests, Seurat
delivered the
overall best performance in cells clustering. The above-mentioned references are
indicated in
section 5 and 6.
In section 5 we described that bootstraps are used to estimate the cell stability score
using SIMLR.
To clarify that also in Seurat clustering the bootstraps are implemented we added the
following
phrase in section 6: “The bootstrap approach described in section 5.1 is also applied to
Seurat
clustering to assign cell stability score to the clustered cells.”
In
 rCASC
 tSne
 is
 implemented
 using
 the
 Rtsne
 package
 (https://cran.r-
project.org/web/packages/Rtsne/index.html). The tSne implementation is only used for
comparison with respect to SIMLR and Seurat in section 6.1. Rtsne package provides
an internal k-
mean clustering, which is performed on the dimensionality reduced data-points. To
clarify this point
we added the following phrases in section 6.1: “The bootstrap approach described in
section 5.1 is
also applied on tSne clustering to assign cell stability score to the clustered cells. In
rCASC tSne is
implemented using the Rtsne (https://cran.r-
project.org/web/packages/Rtsne/index.html) package.
Rtsne performs a data reduction on which k-mean clustering is applied.”
Concerning scalability and the number of input genes a similar request was also asked
by reviewer
1. Therefore, we run a scalability test using the GSE106264 dataset described in
Section 8 of the
vignette. The scalability analysis is described in the main manuscript in materials
section subsection
scalability: “To estimate the scalability of rCASC clustering we used the GSE106264
dataset made of
10035 cells and published by Pace and coworkers in 2018 [18]. We randomly sampled
the 10035
cells (27998 ENSEMBL GENE IDs) to obtain the following subsets of cells: 400, 600,
800, 1000, 2000,
5000. Starting from the 800 cells set we randomly sampled the genes: 10000, 8000,
6000, 4000,
2000, 1000, 800. We run SIMLR, tSne, griph and Seurat using 160 permutation within
SeqBox
hardware [26]: Intel i7 3.5GHz (4 cores), 32 GB RAM and 500 GB SSD disk. SIMLR
resulted to be the
slowest and, given the used workstation, it cannot allocate for the analysis more than
2000 cells
(Figure 7A). All the other tools were able to handle up to 5000 cells, within the limit of
32 GB of RAM
available in the hardware setting used in this analysis. Computation time was nearly
linear for all
tools till 1000 cells. Only griph clustering resulted to be nearly insensitive to the
increasing number
of cells (Figure 7A). The computing time as function of increasing number of genes has
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a quite
limited effect on the overall computing time (Figure 7B).”
Q10) There are typos and phrasing issues in the figure legends and the vignette. For
example, the
legend of figure 2 needs editing to make it understandable.
A10) We thank reviewer for the careful and precise reading of our manuscript. We
edited the
vignette to eliminate typos and phrasing issues.
Minor comments
Q1) The processing of raw sequencing data in the form of fastq files is computationally
expensive
and usually performed on high performance computing systems. The authors decided
to implement
wrapper functions to process 10X and inDrop data. While these technologies are used
by the
majority of the field, other technologies generate individual fastq files per cell and a
function could
be implemented to process this data. Furthermore, the authors use the pre-build
genomes supplied
by 10X for the cellranger pipeline but on the other hand build the reference for the
inDrop pipeline
from scratch. These approaches are not comparable since the 10X genomes are
filtered to only
include protein-coding genes. The authors should therefore implement a wrapper
function for the
cellranger mkref call to allow a more flexible use of genomic references.
A1) We thank reviewer for the useful comments. Concerning the processing of fastq
data we
implemented inDrop and 10XGenomics fastq processing software because they are
compliant with
the minimal hardware requirements indicated in Section 1.1.
For smart-seq we have added into the vignette the following paragraph: “Section 2.3
Smart-seq full
transcript sequencing.
Smart-seq protocol generates a full transcript library for each cell, i.e. a fastq file for
each cell. To
convert fastq in counts we suggest to use rnaseqCounts or wrapperSalmon counts
from docker4seq
package [Kulkarni et al.]. Both above-mentioned functions are compliant with minimal
hardware
requirements indicated for rCASC and are part, as rCASC, of the Reproducible
Bioinformatics Project.
The function rnaseqCounts is a wrapper executing on each fastq:
• quality evaluation of fastq with FastQC software,
• trimming of adapters with skewer,
• mapping reads on genome using STAR and counting isoforms and genes with
RSEM.
The function wrapperSalmon instead implements FastQC and skewer and calculates
isoforms and
genes counts using Salmon software.”
We have also implemented a new function called cellrangeIndexing, which allows the
generation of
10Xgenomics compliant reference genome. The description of cellrangeIndexing was
added to the
vignette in Section 2.2.
Q2) The framework is developed to run on a linux machine and it would be useful to
provide an
implementation for Mac and Windows.
A2) The rCASC framework was developed to be compliant with SeqBox (Beccuti et al.
Bioinformatics
2017), i7 3.5GHz, 32GB RAM, 500 GB SSD running linux. We have tested rCASC with
the latest version
of Docker Desktop (v 2.0.0.3) on a Mac machine with 16 GB RAM i7 GHz 3.5, 4 cores.
Configuring
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the virtual machine to use 12 GB RAM and 2 cores we can execute all examples
provided in the
rCASC vignette. However, RAM requirements become quite demanding, exceeding 12
GB, when
more than 1000 cells are used for clustering. We decided to not extend the rCASC
framework to
window platform. Instead, within the Elixir framework, we are in the early phase of
porting rCASC
(https://github.com/pmandreoli/rCASC_wrappers) in LANIAKEA galaxy (https://elixir-
italy-science-
gateway.cloud.ba.infn.it/) in collaboration with LANIAKEA’s developers.
Q3) On page 16 in the vignette, the authors discuss the relationship between the
number of reads
per cell and the number of genes detected. While this dependency is known, the
authors should
acknowledge that different cell-types show differences in their transcriptional rate and
that a
technical assessment of the reads per cell vs. genes detected is difficult to perform
when comparing
different cell-types.
A3) We thank reviewer for this important indication. To incorporate reviewer’s
suggestion, we
added in the page 16 the following phrase: “However, it has to be underlined that each
cell type is
characterized by a peculiar transcriptional rate and therefore the technical assessment
of the reads
per cell vs. genes detected between different cell types, i.e. Figure 13A-C, might be
bias by
differences in the transcriptional rate of the different cells used in this specific example.
Instead, the
above-mentioned bias does not affect Figure 13D-F because they are generated by a
down sampling
of a set of cells sequenced with the smart-seq protocol at a coverage of 1 million
reads/cell.”
Q4) Figure 16, page 20: It is not possible to identify the cells that were removed after
filtering.
A4) In Figure 16 the removed cells are those labelled in blue. Figure 16 was modified
adding arrows
to better highlight cells that were removed and Figure 16 legend: “Effect of Lorenz
filtering, cells
shown in blue have been discarded because of their low quality”
was modified in the following way:
“Lorenz filtering: cells retained after filtering are labelled in red as instead cells
discarded because
of their low quality are labelled in blue.”
Q5) Figure 21 needs more explanation in the figure legend
A5) the phrase: “checkCountDepth output plot” was modified in: “checkCountDepth
output plot
provides an evaluation of count-depth relationship in un-normalized data. The effects
of the
normalization procedure is shown in the following figure.”
Q6) It is not possible to see the CSS for individual cells as displayed by the authors. I
would
recommend displaying a side-by-side plot where cells in one plot are coloured by
cluster ID and cells
in the other plot are coloured based on their CSS.
A6) A new plot was added to the NameOfCountMatrix_Stability_Plot.pdf file, which
provides the
results of the clustering. The new plot provides the cluster picture with cell coloured on
the basis of
their CSS. Figure 38 was also modified to include this new plot. CSS is described with
the following
colours: 0-25% black, 25-50% green, 50-75% gold and 75-100% red. The phrase: “The
plot in Figure
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38C provides a 2D view of the clustering results. In this plot each cell is labeled with a
symbol
indicating its cell stability score.”
was modified in the following way:
“In each clustering folder there is a pdf named NameOfCountMatrix_Stability_Plot.pdf,
which
contains two plots (Figure 38C-D) generated by the clustering program. These plots
provide a 2D
view of the clustering results from two different perspectives. In Figure 38C plot each
cell is coloured
on the basis of the belonging cluster and it is labeled with a symbol indicating its cell
stability score
(CSS). Instead, in the plot in Figure 38D each cell is coloured on the basis of its CSS:
0-25% black, 25-
50% green, 50-75% gold and 75-100% red.”
Q7) Page 51 in the vignette: there is a broken link to one figure
A7) We fixed it
Q8) There is a colouring discrepancy between Figure 51 (Z score transformed counts)
and Figure 54
(log10-tranformed counts) where the rCASC uses the same colour scale.
A8) Now the colours of Fig. 51 B and C correspond to those in Fig. 54 B and C.
Q9) Page 66 in the vignette: the authors should better explain why they chose k=6 and
not k=7 and
where the difference between Figure 57 A and B is coming from.
A9) To clarify the description of fig 57, the phrase:
“In Figure 57 are summarized the results of the analysis executed on the Pace’s
dataset. Data
perturbations, Figure 57A, allows data organization between 6 to 9 clusters, where 7
clusters is the
most represented group. Cell stability score, from the SIMLR analysis executed on the
above range
of clusters, is shown in Figure 57B. Six clusters show a slightly higher stability with
respect to the
others. The overall stability of 6 clusters is however sub-optimal, since it is spread
between 0 and
0.9 cell stability score. In Figure 57C it is shown the clusters structure generated with
SIMLR on 6
clusters. Clusters 1, 3 and 4 show a quite good stability, Figure 57C. Cluster 3 is made
of 44 N (88%)
and 48 Nd (96%), suggesting that naive CD8+ T lymphocytes are not affected by the
silencing of
Suv39h1 gene. Cluster 1 contains 16 NA (6.4%) and 14 NdA (5.6%). Cluster 2 is made
of 44.8% of NA
and 39.6% of NdA cells. Clusters 1 and 2 group together, interdependently from
Suv39h1 gene
silencing. Cluster 6 is made of 35% NA and 13.6% of NdA. In cluster 6 the amount of
NA and NdA is
unbalance, suggesting that the Suv39h1 silencing does not guarantee the efficient
differentiation of
the cell subpopulation in cluster 6. Cluster 4 only contains NdA (33%), indicating that at
least a
subpopulation of activated Suv39h1-silenced cells has a specific transcription profile
that
differentiate them from the wild type activated cells. Cluster 5 is made of 6 N cells, 2
Nd cells, 34 NA
cells, 21 NdA cells. Despite the presence of a limited amount of naive cells, which
might be explained
as partially activated, cluster 5 is made mainly of activated cells, i.e. 13.6% NA and
8.4% NdA of total
cells. The cluster structure (Figure 57D) and cell cluster stability scores (Figure 57C)
might suggest
that cluster 5 is made of a precursor subset.”
was modified in the following way:
“In Figure 57 are summarized the results of the analysis executed on the Pace’s
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dataset. A limitation
of the clustering based on SIMLR is due to the need of providing as input the number
of clusters (k)
in which the data should be organized. Instead of asking to user to define arbitrarily the
k number
of clusters, we used griph (https://github.com/ppapasaikas/griph) as tool to identify a
range of k
clusters to be inspected by SIMLR. Figure 57A shows the frequency of the k number of
clusters, in
which the Pace’s dataset can be organized using griph software, upon 160 bootstraps
in which 10%
of the cells is randomly removed from the initial data set. Griph analysis identify a
range of clusters
going from k=6 to k=9. K=7 is the most represented data organization detected by
griph, followed
by 8, 6 and 9 clusters.
The range of k clusters detected using griph is then investigated with SIMLR. SIMLR is
run for each k
of the k-range defined with griph tool. CSS violin plot (Figure 57B) shows that the mean
stability for
k=6 (CSSm ~ 0.5) is higher than to the others ks (CSSm < 0.3).
Clusters k=7 and k=8 do not represent the most stable organizations in terms of CSS
(Figure 57B),
although they are the most frequent organizations observed in griph analysis (Figure
57A).
Since the best CSSm is observed in k=6, we explored these clusters (Figure 57C). In
Figure 57C,
clusters 1, 3 and 4 show a quite good stability, since cells stay in these clusters
between 75% to
100% of the bootstraps.
The inspection of Pace’s experiment groups organization (i.e. N= naïve WT, Nd= naïve
Suv39h1 KO,
NA=activated WT, NdA=activated Suv39h1 KO) in k=6 clusters, Figure 57C, show that
cluster number
4 is the only one containing only NdA (33% of the total NdA) cells. Thus, suggesting
that a
subpopulation of activated Suv39h1-silenced cells has a specific transcription profile,
which
differentiates them from all wild type activated cells. Another interesting cluster is
number 6, where
the amount of NA and NdA is unbalance, 35% NA and 13.6% of NdA, suggesting that
Suv39h1
silencing does not guarantee at the same efficiency the differentiation of this cell
subpopulation as
in the case of wild type cells. Cluster 5 is the most heterogeneous cluster. It is
composed by 6 N cells,
2 Nd cells, 34 NA cells, 21 NdA cells. Despite the presence of a limited number of
naive cells, which
might be explained as partially activated, cluster 5 is composed by an unbalance
number of activated
cells, i.e. 13.6% NA and 8.4% NdA of total cells. However, since cluster 5 is
characterized by a very
low CSS (0-25%) it is possible that this cluster contains cells localized at the
boundaries of clusters 2,
3 and 6. On the other side clusters 1, 2, 3 have nearly the same number of wild type
and Suv39h1
silenced cells, suggesting that these subsets of cells are not influenced by Suv39h1
silencing:
•
•
•
cluster 1 contains nearly the same amount of activated wild type, 16 NA (6.4%), and
Suv39h1
KO cells, 14 NdA (5.6%); cluster 2 is made of 44.8% of NA and 39.6% of NdA cells;
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cluster 2 is made of 44.8% of NA and 39.6% of NdA cells;
cluster 3 is made of 44 N (88%) and 48 Nd (96%)”
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Abstract 

Background 

Single-cell RNA sequencing is an essential tool to investigate cellular heterogeneity, and to highlight 

cell sub-population specific signatures. Single-cell sequencing applications are now spreading from 

the most conventional RNAseq to epigenomics, e.g. ATAC-seq. Single-cell sequencing led to the 

development of a large variety of algorithms and tools. However, to the best of our knowledge, there 

are few computational workflows providing analysis flexibility and achieving at the same time 

functional (i.e. information about data and the utilized tools are saved in terms of meta-data) and 

computational reproducibility (i.e. real image of the computation environment used to generate the 

data is stored) through a user-friendly environment. 

Findings 

rCASC is a modular workflow providing integrated analysis environment (from counts generation to 

cell subpopulation identification) exploiting docker containerization to achieve both functional and 

computational reproducibility in data analysis. Hence, rCASC provides preprocessing tools to remove 

low quality cells and/or specific bias, e.g. cell cycle. Subpopulations discovery can be instead 

achieved using different clustering techniques based on different distance metrics. Quality of clusters 

is then estimated through a new metric namely Cell Stability Score (CSS), which describes the 

stability of a cell in a cluster as consequence of a perturbation induced by removing a random set of 

cells from the overall cells’ population. CSS provides better cluster-robustness information than 

silhouette metric. Moreover, rCASC provides also tools for the identification of clusters-specific 

gene-signature.  

Conclusions  

rCASC is a modular workflow with valuable new features that could help researchers in defining 

cells subpopulations and in detecting subpopulation specific markers. It exploits docker framework 

to make easier its installation and to achieve a computation reproducible analysis. Moreover, a Java 

Graphical User Interface (GUI), is also provided in rCASC to make friendly the use of the tool even 

for users without computational skills in R.  

Keywords 

Single-cell data preprocessing, workflow, GUI, clustering, cluster stability metrics, cluster-specific 

gene signature. 

 

  



Findings 

rCASC: a single cell analysis workflow designed to provide data reproducibility. 

Since the end of the 90’s omics high-throughput technologies have generated an enormous amount 

of data, reaching today an exponential growth phase. The analysis of omics big data is a revolutionary 

means of understanding the molecular basis of disease regulation and susceptibility, and this resource 

is made accessible to the biological/medical community via bioinformatics frameworks. However, 

due to the increasing complexity and fast evolution of computation tools and omics methods, the 

reproducibility crisis [1] is becoming a very important issue [2] and there is a mandatory need to 

guarantee robust and reliable results to the research community [3].  

Single cell analysis is instrumental to understand the functional differences existing among cells 

within a tissue. Individual cells of the same phenotype are commonly viewed as identical functional 

units of a tissue or organ. However, single cells sequencing results [4] suggest the presence of a 

complex organization of heterogeneous cell states producing together system-level functionalities. A 

mandatory element of single cell RNAseq is the availability of dedicated bioinformatics workflows. 

rCASC is one of the tools developed under the umbrella of the Reproducible Bioinformatics project 

(http://www.reproducible-bioinformatics.org/), an open-source community aimed to provide to 

biologists and medical scientists, without advance scripting skills, an easy to use framework, which 

also guarantees the ability to reproduce results independently by the underlying hardware, using 

docker containerization (computational reproducibility). Indeed, it was developed following the best 

practice rules for reproducible computational research, proposed in 2013 by Sandve [5] (functional 

reproducibility). The reproducible bioinformatics project was founded and it is maintained by the 

research team of Elixir node at University of Turin. The reproducible bioinformatics project was 

published on BMC Bioinformatics [6]. An example of stand-alone hardware/software infrastructure 

for bulk RNAseq, developed within the Reproducible Bioinformatics project, was described in 

Beccuti [7]. Thus, because of the philosophy of the Reproducible Bioinformatics project, to the best 

of our knowledge, rCASC is the only computational framework, which provides both computational 

and functional reproducibility for an integrated analysis of single cell data, from counts generation to 

cell subpopulation identification. rCASC is also listed within the tools developed by the Italian Elixir 

node (https://bio.tools/rCASC).  

All computational tools in rCASC are embedded in dockers images stored in a public repository on 

docker hub. Parameters are delivered to docker containers via a set of R functions, part of rCASC R 

github package [8]. To simplify the use of rCASC package to users without scripting experience, R 



functions can be controlled by a dedicated GUI, integrated in the 4SeqGUI tool previously published 

by us [7], which is also available as github package [9]. rCASC is specifically designed to provide an 

integrated analysis environment for cell-subpopulation discovery. The workflow allows the direct 

analysis of fastq files, generated with 10X Genomics and inDrop platforms, or count matrices. 

Therefore, rCASC provides raw data preprocessing, subpopulation discovery via different clustering 

approaches and cluster-specific genes-signatures detection. The key elements of rCASC workflow 

are shown in Figure 1, and the main functionalities are summarized in Methods section. A detailed 

description of the rCASC functions is also available in the vignettes section of rCASC github [8].  

The overall characteristics of rCASC were compared with other four workflows for single-cells 

analysis (Figure 2): i) simpleSingleCell, Bioconductor workflow package [10]; ii) Granatum, web-

based scRNA-Seq analysis suite [11]; iii) SCell, graphical workflow for single-cell analysis [12]; iv) 

R toolkit Seurat [13]. The comparison was based on the following elements: a) supported single-cell 

platforms, b) types of tools provided by the workflow, c) type of reproducibility granted by the 

workflow, d) usage flexibility.  

rCASC is the only workflow providing support at fastq level because all the others packages require 

as input the processed counts table. Cell quality control and outliers’ identification is available in all 

workflow but Granatum. Association of ENSEMBL gene IDs to gene symbols is only provided by 

rCASC. All workflows provide genes filtering tools but simpleSingleCell. All packages provide 

normalization procedures to be applied to raw counts data. However, rCASC is the only tool 

providing both Seurat specific normalization [13] and count-depth specific normalization [14]. The 

workflows implement different data reduction and clustering methods. rCASC integrates two 

clustering tools, i.e. Seurat [13] and SIMLR [15], which mainly differ in the metrics driving the 

clustering analysis. Notably, Freytag [16] recently published a comparison of single-cell clustering 

methods, in which SIMLR and Seurat were included. Freytag showed that the two methods performed 

better than other clustering methods and they behaved in similar way on Freytag’s golden standard 

dataset. Cluster stability is an important topic in Clustering (for a review see [17]). Stability 

measurement, taking advantage of bootstrapping, was also addressed by Hennig [18]. Specifically, 

Hennig uses Jaccard index to evaluate the overall stability of each cluster. In rCASC, we have 

implemented a cell stability score (CSS), which uses the Jaccard index to estimate the stability of 

each cell in each cluster. CSS provides an enhanced description of each cluster, since it allows the 

identification of subset of cells, in any cluster, which are particularly sensitive to perturbation of the 

overall dataset structure, i.e. cell bootstrapping. Moreover, the cluster stability measurement proposed 

by Henning was included in rCASC. Specifically, we have implemented the “clusterboot” function 



from the fpc R package [19], which allows the evaluation of the cluster stability using a personalized 

clustering function (see Supplementary file Section 5.3). To the best of our knowledge, rCASC is the 

only workflow performing clustering in presence of data perturbation, i.e. removal of a subset of cells, 

and measuring cluster quality using Cell Stability Score (CSS is a cluster quality metrics developed 

by us, which measures the persistence of each cell in a cluster upon data perturbation, see 

Supplementary file section 5.1) and Silhouette score (SS is a cluster quality metrics measuring the 

consistency within clusters of data). In our experiments, CSS provides a better estimation of the 

cluster stability with respect to what can be depicted using SS (Figure 2). Gene feature selection 

approaches are implemented in different way in the five workflows. Granatum is the only one 

providing biological inference. Granatum and Seurat implements various statistical methods to detect 

cluster specific genes signatures (Figure 3). rCASC embeds an ANOVA-like statistics derived from 

EdgeR Bioconductor package [20] and Seurat/SIMLR genes prioritization procedures (see 

Supplementary file section 7). Visualization of genes-signatures by heatmap, coloring cells on the 

basis of gene expression is only provided by rCASC (see Supplementary file Figure 51). Considering 

reproducibility, only rCASC provides both computational and functional reproducibility. Finally, 

rCASC is the only one providing both command line and GUI (Figure 4). 

rCASC was used to re-analyze the single-cell dataset from Pace paper [21]. In this paper, authors 

highlighted that Suv39h1-defective CD8+ T-cells show sustained survival and increased long-term 

memory reprogramming capacity. Our re-analysis extends the information described in Pace paper, 

suggesting the presence of an enriched Suv39h1-defective memory subset. A complete description of 

the above analysis is available at section 8 of supplementary file.  

Methods 

Counts table generation 

inDrop single-cell sequencing approach was originally published by Klein [22]. Then, the authors 

published the detailed protocol in Nature Methods in 2017 [23]. In rCASC, the generation of the 

count table starting from fastq files refers to the version 2 of the inDrop chemistry described in [23], 

which is commercially distributed by 1CellBio. The procedure described in the inDrop github [24] in 

embedded in a docker image. rCASC function indropIndex allows the generation of the transcripts 

index required to convert fastq to counts and indropCounts function converts reads in UMI counts.  

10XGenomics Cellranger is packed in a docker image and the function cellrangerCount converts 

fastq to UMI matrix using any of the genome indexes available at 10XGenomics data repository. 

Detailed description about the counts table generation is available in Supplementary file section 2. 



Counts table exploration and manipulation  

rCASC provides various data inspection and preprocessing tools.  

genesUmi function generates a plot where the number of detected genes are plotted for each cell with 

respect to the number of UMI/reads quantified for each cell (Figure 5A,C).  

mitoRiboUmi calculates the percentage of mitochondrial/ribosomal genes with respect to the total 

number of detected genes in each cell and plots percentage of mitochondrial genes with respect to 

percentage of ribosomal genes. Furthermore, cells are colored on the basis of the number of detected 

genes (Figure 5B, D). mitoRiboUmi allows to identify cells with low information content, i.e. those 

cells with a little number of detectable genes, e.g. < 100 genes/cell, little ribosomal content and high 

content of mitochondrial genes, which indicate cell stress [25]. 

The function scannobyGtf uses ENSEMBL gtf and the R package refGenome to associate gene 

symbol with the ENSEMBL gene ID. Furthermore, scannobyGtf allows the removal of 

mitochondrial/ribosomal genes (Figure 5A, C) and the removal of “stressed” cells detectable with 

mitoRiboUmi function (Figure 5B, D). 

The function lorenzFilter embeds the Lorenz statistics developed by Diaz [12], a cell quality statistics 

correlated with cell live-dead staining (see Supplementary file sections 3.3). Specifically, the outlier 

filtering for single-cell RNA-seq experiments designed by Diaz estimates genes expressed at 

background levels in each sample, then samples with significantly high background levels are 

discarded [12]. 

As counts table preprocessing steps, we implemented the functions checkCountDepth/scnorm to 

detect the presence of sample specific count–depth relationship [14] (i.e. the relationship existing 

between transcript-specific expression and sequencing depth) and adjust the counts table for it. 

Specifically, checkCountDepth initially executes a quantile regression, thus estimating the 

dependence of transcript expression on sequencing depth for every gene. Then, genes with similar 

dependence are aggregated (see Supplementary file section Figure 21). Scnorm, after executing 

checkCountDepth, executes a new quantile regression to estimate scale factors within each group of 

genes. Then, sequencing depth adjustment is done within each group using the estimated scale factors. 

Furthermore, we have added two other functions recatPrediction and ccRemove, which are based 

respectively on the paper of Liu [26] and Barron [27]. The function recatPrediction organizes the 

single cell data to reconstruct cell cycle pseudo time-series and it is used to understand if a cell cycle 

effect is present. The above function embeds reCAT software [26], which models the reconstruction 

of time-series as a traveling salesman problem, thus identifying the shortest possible cycle by passing 

through each cell exactly once and returning to the start. Since the traveling salesman problem is a 

NP-hard problem, reCAT is based on a heuristic algorithm, which is used to find the solution. 



ccRemove function is instead based on the work of Barron and Li [27] and embeds their scLVM 

(single-cell latent variable model) algorithm, which uses a sophisticated Bayesian latent variable 

model to reconstruct hidden factors in the expression profile of the cell-cycle genes. This algorithm 

is able to remove cell-cycle effect from real scRNA-Seq datasets. Thus, ccRemove is used to mitigate 

the cell cycle effect of the inter-samples transcriptome, when it is detected by recatPrediction 

function (see Supplementary file sections 3.6 ad 3.8).  

Clustering 

For the identification of cell subpopulations we implemented two approaches: Seurat [13] and SIMLR 

[15]. Seurat is a toolbox for single-cell RNAseq data analysis. We have implemented in rCASC one 

of the clustering procedures present in Seurat toolbox. The function seuratPCAEval has to be run 

before executing the clustering program to identify the ‘metafeatures’, i.e. subset of PCA components 

describing the relevant source of cells’ heterogeneity, to be used for clustering. seuratBootstrap 

function implements data reduction and clustering. Specifically, cells undergo to global scaling 

normalization, i.e. LogNormalize method, and scaling factor 10000. Subsequently, a linear 

dimensional reduction is done using the range of principal components defined with seuratPCAEval. 

Then, clustering is performed using the cell PCA scores. The Seurat clustering procedure, embedded 

in seuratBootstrap, is based on the Louvain modularity optimization algorithm. Differently SIMLR 

implements a k-mean clustering, where the number of clusters (i.e. k) is taken as input. SIMLR, 

requires as input raw counts log10 transformed. SIMLR is capable of learning an appropriate cell-to-

cell similarity metric from the input single-cell data and to exploit it for the clustering task. In the 

learning phase SIMLR identifies a distance metric that best fits the structure of the data by combining 

multiple Gaussian kernels [15]. Thus, the tool can deal with the large noise and drop-out effects of 

single-cell data, which could not easily fit with specific statistical assumptions made by standard 

dimension reduction algorithms [15]. The function simlrBootstrap controls the clustering procedure 

and the function nClusterEvaluationSIMLR, a wrapper for the R package griph (Graph Inference of 

Population Heterogeneity) [28], is exploited to estimate the (sub)optimal number “k” of clusters. 

Griph clustering is based on Louvain modularity optimization algorithm. 

We developed, for both Seurat and SIMLR, a procedure to measure the cluster quality on the basis 

of data structure. The rationale of our approach is that cells belonging to a specific cluster should be 

little affected by changes in the numerosity of the dataset, e.g. removal of 10% of the total number of 

cells used for clustering. Thus, we developed a metrics called CSS (Cell Stability Score), which 

describes the persistence of a cell in a specific cluster upon jackknifing and therefore offers a peculiar 

way of describing cluster stability. Detailed description of CSS metrics is available in Supplementary 



file at section 5.1. CSS is embedded in seuratBootstrap and simlrBootstrap, and it is also used in 

nClusterEvaluationSIMLR to identify which number of clusters gives the best CSS behavior. 

Feature selection 

To select the most important features of each cluster we implemented in the anovaLike function the 

edgeR ANOVA-like method for single cells [20] and in the functions seuratPrior and 

genesPrioritization/genesSelection respectively the Seurat and SIMLR genes prioritization methods. 

hfc function allows the visualization of the genes prioritized with the above methods as heatmap and 

provides plots of prioritized genes in each single cell (Figure 6). 

Scalability 

To estimate the scalability of rCASC clustering we used the GSE106264 dataset made of 10035 cells 

and published by Pace and coworkers in 2018 [21]. We randomly sampled the 10035 cells (27998 

ENSEMBL GENE IDs) to obtain the following subsets of cells: 400, 600, 800, 1000, 2000, 5000. 

Starting from the 800 cells set we randomly sampled the genes: 10000, 8000, 6000, 4000, 2000, 1000, 

800. We run SIMLR, tSne, griph and Seurat using 160 permutation within SeqBox hardware [7]: 

Intel i7 3.5GHz (4 cores), 32 GB RAM and 500 GB SSD disk. SIMLR resulted to be the slowest and, 

given the above hardware implementation, it cannot allocate for the analysis more than 2000 cells 

(Figure 7A). All the other tools were able to handle up to 5000 cells within the limit of 32 GB of 

RAM available in the hardware setting used in this analysis. Computation time was nearly linear for 

all tools till 1000 cells. Only griph clustering resulted to be nearly insensitive to the increasing number 

of cells (Figure 7A). The computing time as function of increasing number of genes has a quite limited 

effect on the overall computing time (Figure 7B). 

 

Availability and requirements 

Project name: rCASC: reproducible Classification Analysis of Single Cell sequencing data 

Project home page: https://github.com/kendomaniac/rCASC; https://github.com/mbeccuti/4SeqGUI  

Operating system: Linux 

Programming language: R and JAVA 

Other Requirements: None 

License: The GNU Lesser General Public License, version 3.0 (LGPL-3.0) 

Any restrictions to use by non-academics: None 
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Figure legend 
 

Figure 1: rCASC workflow. Blue boxes indicate preprocessing tools. Yellow boxes define clustering 

tools. Green box indicates genes-signatures tools. 

 

Figure 2: Cell Stability Score versus Silhouette Score calculated on Pace’s dataset (see 

Supplementary file section 8) using SIMLAR over a set of number of clusters ranging between 5 and 

8. A) Cell Stability Score violin plot. Looking at the mean value and data dispersion the best number 

of clusters is 5, indicating the with 5 clusters cells remain in the same cluster more about 80% of the 

times a random removal of 10% of the cell is applied to the full dataset. B) Silhouette Score violin 

plot. Looking at the mean value of the SS distribution there are no clear evidences that one 

clusterization is better that another. Furthermore, the dispersion of the SS value is getting narrow as 

the number of the clusters increases. 

 

Figure 3: Comparison between the analysis features available in rCASC and in other single-cell 

analysis workflows. 

 

Figure 4: rCASC graphical interface within 4seqGUI. A) Counts table generation menu: this set of 

function is devoted to the conversion of fastq to a counts table. B) Counts table manipulation menu: 

this set of functions allows inspection, filtering and normalization of the counts table. C) Clustering 

menu: these functions allow the use of SIMLR, tSne and Seurat to group cells in subpopulations. D) 

Feature selection menu: this set of functions allow the identification of cluster-specific subsets of 

genes and their visualization using heatmaps. 

 

Figure 5: genesUmi plots the number of detectable genes in each cell (a cell is called present if 

supported by a user defined N number of UMI/reads, suggested values N=3 for UMI or N=5 for 

smart-seq sequencing [29]) with respect to the number of sequences UMI/reads. mitoRiboUmi 

calculates the percentage of mitochondrial/ribosomal genes with respect to the total number of 

detected genes in each cell and plots % of mitochondrial genes with respect to % of ribosomal genes. 

Furthermore, cells are colored on the basis of the number of detected genes: A) genesUmi plot for 

resting CD8+ T-cells [21], sequencing average 83,000 reads/cell. B) mitoRiboUmi plot for resting 

CD8+ T-cells [21]. It is notable that cells aggregated in two groups: the majority of the cells with less 

than 100 detected genes groups together and they are characterized by high relative percentage of 

mitochondrial genes and low relative percentage of ribosomal genes. Remaining cells are 



characterized by few detectable genes, 100÷250 genes/cell, with a percentage of ribosomal genes 

greater than 30%. C) genesUmi plot for Listeria activated CD8+ T-cells [21], sequencing average 

83,000 reads/cell, it is notable the activated cells show a wider range of detectable genes. D) 

mitoRiboUmi plot for Listeria activated CD8+ T-cells [21]. The majority of the cells are characterized 

by more the 100 genes called present and they show low percentage of mitochondrial genes and 

percentage of ribosomal genes between 15 to 35%. The remaining cells, with less than 100 detected 

genes groups together and are characterized by high relative percentage of mitochondrial genes and 

low relative percentage of ribosomal genes. 

 

Figure 6: Heat map and cell expression plot for prioritized genes. A) Heat map for the set of 577 

genes selected for Pace datasets (see Supplementary file section 8) by SIMLR prioritization. B) Nkg7 

CPM expression in the cell clusters. Nkg7 is expressed in activated T-cells (clusters 1, 2, 4, 5) [30] 

but not in resting T-cells (cluster 3). 

 

Figure 7: Scalability analysis of clustering tools implemented in rCASC. A) Time required to 

perform 160 permutations as function of increasing number of cells on a set of 27998 genes. B) Time 

required to perform 160 permutations as function of increasing number of genes on a set of 800 cells. 

  



Figure 1 

 

 
 

  



Figure 2 

 

 
 

  



Figure 3 

 

 
 

  



Figure 4 

 

 
 

  



 

Figure 5 

 

 
 

 

  



Figure 6 

 

 

  



Figure 7 

 
 

 

 



Fig.1

All figures Click here to access/download;Figure;AllFigures.pdf

https://www.editorialmanager.com/giga/download.aspx?id=63910&guid=43fb2388-f929-4db2-94fe-29460b00ad1f&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=63910&guid=43fb2388-f929-4db2-94fe-29460b00ad1f&scheme=1


Fig.2

Fig.3



Fig.4



Fig.5



Fig.6

Fig.7



  

Supplementary material

Click here to access/download
Supplementary Material

rCASC_supplementary_file.pdf

https://www.editorialmanager.com/giga/download.aspx?id=63911&guid=8c969551-e34f-43c7-a7ac-4a6324af6c9b&scheme=1


GIGA-D-18-00522 
 
Dear Editor, 
 
First of all, we wish to thank the reviewers for their valuable comments and useful suggestions which 
helped us to improve the paper and the tool. 
 
Editor request: Please register any new software application in the SciCrunch.org database to 
receive a RRID (Research Resource Identification Initiative ID) number, and include this in your 
manuscript. This will facilitate tracking, reproducibility and re-use of your tool. 
Answer: we registered rCASC to SciCrunch and it is now associated with the Research Resource 
Identification Initiative ID : SCR_017005 
 
Reviewer #1:  
Comments to the Author: 
This paper presents a pipeline to infer single-cell clusters using scRNA-Seq data (rCASC), infer 
significant features linked to each cluster, and can analyse various metrics during the processing. 
Notably, the results of the pipeline can be divided into 3 major outputs, A) cells-features matrix 
generation, B) Clustering, and C) inference of significant features per clusters. Also, the pipeline is 
able to perform various additional substeps such as Matrix preprocessing (normalization), outliers 
removal, features removal, cell cycle specific features removal. The pipeline is implemented in R 
using Docker containers and has a GUI interface coded in Java. Finally; the authors claimed have 
invented a metric: the CSS, to evaluate cluster stability in their single-cell analyses. First, It is a 
pleasant surprise to be able to install everything needed to perform scRNA-Seq analysis with few 
simple commands (with exception of Docker which can be tricky for non IT people). Also, developing 
scRNA-Seq analytical toolbox easy to use and efficient are an innovative direction due to the 
importance and the multidisciplinary aspect of the field. However, I have major concerns which I 
think should be addressed before publication. 
 
Major Comments: 
Comment 1: First, the abstract and the text contain different confusing aspects that must be 
rewritten. The authors describe a "supervised approach": SIMLR which is seen as the alternative of 
the "Seurat clustering". From my knowledge, SIMLR is a clustering workflow and thus is also an 
unsupervised approach, by contrast with any other supervised approaches using training datasets 
as input (classification/regression…). I don't know what is a "supervised clustering" if not a 
classification procedure. Clustering are always unsupervised with the exception of "semi-
supervised" clustering (use of seed samples).  
Answer 1: As pointed out by the reviewer both Seurat and SIMLR use an unsupervised approach, 
and they mainly differ in the metrics driving the clustering analysis. SIMLR is capable of learning an 
appropriate cell-to-cell similarity metric from the input single-cell data and to exploit it for the 
clustering task. In details, the learning phase identifies a distance metric that best fits the structure 
of the data by combining multiple Gaussian kernels. This allows the tool to deal with the large noise 
and drop-out effect of single-cell data that could not be easily fitted with specific statistical 
assumptions made by standard dimension reduction algorithms. Differently, Seurat clustering 
algorithm is based on the Euclidean distance in PCA space, and refines the edge weights between 
any two cells based on the shared overlap in their local neighbourhoods (Jaccard similarity). Since 
these two clustering approaches have their specific criticality and strengths we decided to integrate 

Rebuttal Click here to access/download;Personal
Cover;GIGA_rebuttal_craMBFCcra1a.pdf
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both of them in our framework. Finally, according to the reviewer’ comments we modified the 
following sentences: 
In Abstract-Findings: “Subpopulations discovery can be instead achieved using unsupervised and 
supervised clustering technique”  
was modified in  
“Subpopulations discovery can be instead achieved using different clustering techniques based on 
different distance metrics”. 
 In keywords: “supervised clustering, unsupervised clustering”  
was modified in  
“clustering” 
In Findings: “Therefore, rCASC provides raw data preprocessing, subpopulation discovery via 
supervised/unsupervised clustering and cluster-specific genes-signatures detection” 
was modified in 
 “Therefore, rCASC provides raw data preprocessing, subpopulation discovery via different 
clustering approaches and cluster-specific genes-signatures detection” 
“rCASC implements as unsupervised clustering tool  and  as supervised clustering tools”. 
was modified in 
“rCASC integrates two clustering tools, namely Seurat [13] and SIMLR [15], which mainly differ in 
the  metrics driving the clustering analysis”. 
Comment 2: Also, I don't understand why this package is superior in term of "Computational and 
Functional" reproducibility compared with any other packages for which a similar reasoning can be 
also applied. 
Answer 2: We would like to thank the reviewer to give us the possibility to explain better this aspect. 
rCASC is one of the tools developed under the umbrella of the Reproducible Bioinformatics project 
(http://www.reproducible-bioinformatics.org/), an open-source community aimed to provide to 
biologists and medical scientists, without scripting skills, a easy to use framework, which also 
guarantees the ability to reproduce results independently by the underlying hardware, using docker 
containerization (computational reproducibility), and providing tools that fulfil the best practice 
rules for reproducible computational research, proposed in 2013 by Sandve [PLoS computational 
biology 2013, 9(10)] (functional reproducibility). The reproducible bioinformatics project was 
founded and it is maintained by the research team of Elixir node at University of Turin. The 
reproducible bioinformatics project was published on BMC Bioinformatics (Kulkarni et al. 2018). An 
example of stand-alone hardware/software infrastructure for bulk RNAseq, developed within the 
Reproducible Bioinformatics project, was described in Beccuti et al. (Bioinformatics 2017). Thus, to 
the best of our knowledge, rCASC is the only computational framework, which provides a complete 
computational reproducibility for integrated analysis of single cell data (from counts generation to 
cell subpopulation identification). Last but not least rCASC is listed within the tools developed by 
the Italian Elixir node (https://bio.tools/rCASC). 
Finally, the following phrase in the Findings section: “In this context rCASC provides a modular 
workflow to address at the same time the problem of functional and computational reproducibility. 
rCASC provides single cell analysis functionalities within the reproducible rules described by Sandve 
[5]. rCASC is part of the Reproducible Bioinformatics Project [6], which is a project designed to 
provide to the biological community a reproducible and user-friendly bioinformatics ecosystem [8].” 
was modified in: 
“rCASC is one of the tools developed under the umbrella of the Reproducible Bioinformatics project 
(http://www.reproducible-bioinformatics.org/), an open-source community aimed to provide to 
biologists and medical scientists, without advance scripting skills, an easy to use framework, which 
also guarantees the ability to reproduce results independently by the underlying hardware, using 



docker containerization (computational reproducibility). Indeed, it was developed following the 
best practice rules for reproducible computational research, proposed in 2013 by Sandve [PLoS 
computational biology 2013, 9(10)] (functional reproducibility). The reproducible bioinformatics 
project was founded and it is maintained by the research team of Elixir node at University of Turin. 
The reproducible bioinformatics project was published on BMC Bioinformatics (Kulkarni et al. 2018). 
An example of stand-alone hardware/software infrastructure for bulk RNAseq, developed within 
the Reproducible Bioinformatics project, was described in Beccuti et al. (Bioinformatics 2017). Thus, 
to the best of our knowledge, rCASC is the only computational framework, which provides both 
computational and functional reproducibility for an integrated analysis of single cell data, from 
counts generation to cell subpopulation identification. rCASC is also listed within the tools 
developed by the Italian Elixir node (https://bio.tools/rCASC).” 
Comment 3: Then, the authors claimed to have invented a new metric: the "Cell-stability Score", 
which is based on the computation of a stability score by clustering multiple bootstrap sampling and 
computing the jaccard index. Clustering stability measurement is not new and previous works 
already described more formally the use of bootstrapping together with clustering and Jaccard index 
to estimate cluster stability (http://www.homepages.ucl.ac.uk/~ucakche/papers/clusta.pdf (2006), 
https://arxiv.org/abs/1503.0205). These example algorithms are not based on single-cell datasets 
(other stability approaches exist for single-cells), but since the approach described in the first paper 
is very similar, a more comprehensive bibliography of clustering stability should be present in the 
manuscript as well a rewriting of the CSS description/notion, highlighting the similarity with 
previous works. 
Answer 3: As mentioned by the reviewer the cell stability score method implemented by us uses 
Jaccard index, which is also used in Hennig paper 
(http://www.homepages.ucl.ac.uk/~ucakche/papers/clusta.pdf 2006). However, between our 
approach and the one of Hennig’s paper there is a substantial difference: in Hennig’s paper the 
Jaccard index is used to evaluate the similarity between clusters and the calculated score provides 
an overall quality score for each of the clusters in toto. In our implementation the stability score is 
not related to the clusters, but it is specific for each cell. We believe that cell stability score allows 
us to have a more precise view of which are the cells affected by perturbations of the dataset 
structure.  
To better explain this issue, we modify the paper section “rCASC: a single cell analysis workflow 
designed to provide data reproducibility.”, adding the following phrases before the sentence: “To 
the best of our knowledge, rCASC is the only workflow performing clustering in presence of data 
perturbation …”:  
“Cluster stability is an important topic in Clustering (for a review see von Luxburg 2010). Stability 
measurement, taking advantage of bootstrapping, was also addressed by Hennig (2007). Specifically, 
Hennig uses Jaccard index to evaluate the overall stability of each cluster. In rCASC, we have 
implemented a cell stability score (CSS), which uses the Jaccard index to estimate the stability of 
each cell in each cluster. CSS provides an enhanced description of each cluster, since it allows the 
identification of subset of cells, in any cluster, which are particularly sensitive to perturbation of the 
overall dataset structure, i.e. cell bootstrapping. Moreover, the cluster stability measurement 
proposed by Henning was included in rCASC. Specifically, we have implemented the “clusterboot 
“function from the fpc R package (https://cran.r-project.org/web/packages/fpc/index.html), which 
allows the evaluation of the cluster stability using a personalized clustering function). So far in our 
knowledge, rCASC is the only single-cell analysis workflow performing clustering in presence of data 
perturbation …”. We added the Section 5.3 in Supplementary file to describe this functionality. 
 



Comment 4: In term of additional experiments, I think it would be interesting to have an idea of the 
ratio: number of CPUs/ RAM/ computational time according to: the number of cells / number of 
features (i.e.: matrix dimension), and read depth (linked to fastq size). More specifically, what are 
the limiting steps in term of computation? What are the steps the less expensive ? A new figure 
might be necessary to represent the contribution of each step in term of computation.  
Answer 4: We thanks the reviewer for this comment. We added a new figure describing the effect 
of cells and number of genes on the computation efficacy of SIMLR, Seurat, tSne and griph (Figure 
7). In the Methods section we also added the paragraph “Scalability”, in which we discussed the 
computational performance of the used methods. 
See also A9 major comments reviewer 2 and A6a to your Comment 6. 
Comment 5: Ideally, a comparison with the other cited pipeline would be also interesting, but this 
amount of work might be out of scope of this study. 
Answer 5: We agree with reviewer that this point is out of the scope of our manuscript.  
Comment 6:  
Q6a) I have some concerns with the choice of clustering algorithms used. Despite Seurat is well 
established in the community and SIMLR is also a well recognized algorithm, I am not sure if these 
algorithms can handle very large sparse datasets (i.e. more than 10K cells), that are becoming the 
new standard in the field. Notably, are these algorithms able to handle sparse data? SIMLR needs a 
specified K, thus inferring the best K requires to screen amongst an array of Ks and thus might be 
very time consuming. Would it exist better and simpler alternatives to handle very large and sparse 
datasets that might be included in rCASC? 
A6a) To answer to the above comment we run a performance experiment increasing the cell size 
and varying the number of genes used in clustering experiment. Please see Answer A9 major 
comments reviewer 2. A new paragraph, scalability, was added in method section in the main 
manuscript. In Figure 7A of paragraph scalability, it is shown the computing time (Intel i7 3.5 GHx, 4 
cores, 32 GB RAM, 500GB SSD) required to execute 160 permutations on a dataset varying from 200 
to 5000 cells using SIMLR, tSne, griph and Seurat. Specifically, Seurat analysis with 5000 cells can be 
completed in 50 hours. Computing times can be significantly reduced if a high-end multi-cores 
server is used. We observe that when the number of considered cells overcomes 5000 units then all 
the clustering tool integrated in rCASC requires more than 32GB RAM. 
 SIMLR, tSne, griph and Seurat were all designed to work with sparse data.  
We agree with reviewer that SIMLR is more computational demanding with respect to the other 
implemented tools, but it provides very good clustering performance as reported in SIMLR paper 
(Wang et al. 2017). SIMLR was also released in a version to handle large scale dataset, but we did 
not integrate it because, when we tested it, we observed that the sensitivity and specificity of the 
method were not better of those of tSne (not shown in this manuscript). Of course, we are 
constantly looking for new clustering methods, proposed in the literature, able to overcame the 
limitations of the current tools. The latest comparison between clustering methods (Duò et al. 2018 
on F1000: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6134335/) indicates that the clustering 
algorithm implemented in Seurat toolkit is the most computationally time efficient. 
Q6b) Using a clustering stability metric is I think a very good idea. Is it possible to get an average 
stability score per cluster to have an idea if a cluster is noisy or robust?  
A6b) We thank the reviewer with this useful comment. We answer to this point at the above 
comment 3. 
Q6c) Also, even a stable cluster according to a bootstrap experiment is not a guarantee of a 
"biologically" stable cluster, and can reflect a biased in the method used (for example, a dummy 
algorithm clustering cells according to their name will produce very stable but useless clusters). 



A6c) According to one of the requests of reviewer 2, see A2b major comments reviewer 2, we 
collected extra data, which are indicating that cell stability score (CSS) inversely correlate with the 
cells’ heterogeneity of clusters, see Section 5 Figure 41 of the supplementary information. Since, we 
observed that the clusters characterized by high CSS are mainly constituted of cells of the same type, 
this suggests a correlation with the biological characteristics of the cells.  
Q6d) What is the use of griph (Graph Inference of Population Heterogeneity). Why not using the 
stability measure to estimate the best K? 
A6d) Indeed, we use the clusters stability measure to estimate with K is the best choice. However, 
to provide a suggestion on the range of numbers of clusters to be investigated, we decided to use 
griph tool, first because it is based on Louvain modularity optimization algorithm, as the Seurat 
clustering method we have integrated in rCASC. Then, because its execution time is the best 
between the clustering tools we have implemented in rCASC, see Figure 7 in the main manuscript. 
We did not implement griph as complete clustering tool in rCASC, because it is not published, yet. 
Q6e) The package requires a very large amount of memory to be able to install all the docker 
dependencies and I was not able to install it on my own computer (out of memory). Is there any way 
to propose "lighter" versions in order to be able to use it on a standard computer? Overall, I am not 
sure if all these different steps are always mandatory to obtain biologically meaningful single-cell 
clusters (Of course, they might be required in some specific cases), compared to more 
straightforward approaches (matrix creation -> embedding -> clustering).  
A6e) Concerning the docker images storage in local computer, it is not necessary to execute the 
command downloadContainers(), which download all rCASC docker images. In this case, only the 
required images will be downloaded on the basis of the rCASC function in use. This option will 
require extra time to execute each new function, since the corresponding docker image needs to be 
downloaded. We have also added the option “mini” for downloadContainers(), which downloads 
only 17 dockers out 26 docker images and provides all basic functionalities to handle a single-cell 
counts table.  
Concerning RAM requirements, we can execute all rCASC functions with 16 GB RAM on datasets up 
1000 cells. The main limitation is given by the possibility of performing no more than one 
permutation at a time. 
Minor Comments: 
Q1) The supplementary files document very rigorously the software which is really pleasant. 
Some figures are not very informative and might be combined together (For example figures 1, 3 
and 4 And figures 2 and 6?). 
A1) We thank reviewer for the suggestion, but we prefer to leave these figures separated to keep 
clear the analysis workflow structure. 
Q2) Can you describe briefly what is the Seurat specific normalization? 
A2) Seurat normalization step is the one suggested from the Seurat workflow. This information was 
added in supplementary file: “Before clustering data are normalized as suggested from the Seurat 
workflow using Seurat NormalizeData function, with LogNormalize as normalization.method and 
10000 as scale.factor parameters.” 
 
Reviewer #2: The authors present rCASC, an integrated analysis framework for single-cell RNA 
sequencing data that combines a range of existing and novel computational tools. While some 
workflows for reproducible scRNA-Seq data analysis exist, the authors provide an analysis strategy 
using docker containers and a graphical user interface for reproducibility. rCASC is implemented as 
an R package and as graphical user interface, which allows bioinformaticians as well as biologists 
with little experience to perform statistical data analysis. However, there are some concerns about 



the chosen analysis tools and the presentation of results that need to be addressed: 
Major comments 
Q1) The description of the algorithms used is often not clear. In the main text (p.4 l.16-21), the 
authors mention normalization and clustering strategies taken from other tools. When other tools 
are used, it would be good to briefly describe the underlying algorithms (either in the main text or 
the methods section). For example, Seurat is a toolbox for data analysis and not a clustering tool 
and it has to be specified which clustering strategy is used. The authors should also make sure to 
properly cite the original publication of functions implemented in the rCASC toolbox (for example 
the reCAT function and the griph package). 
A1) We added for each function described in section Methods a brief description of the 
implemented algorithm. We apologize for the error in citing reCAT, we fixed it. Concerning griph, 
we only provided the github repository, because developers told us that it will be published as part 
of a larger paper entitled “Self-organization and symmetry breaking in intestinal organoid 
development” accepted for publication in Nature. However, at the time of this rebuttal the paper is 
not out, yet. We will update its reference as soon as it will be available. 
Q2a) The authors developed the Cell Stability Score based on iteratively clustering a sub-sampled 
dataset. This is a good approach and informative for cluster stability. It would however be good to 
visualize the stability scores for datasets subsampled to 20%, 30%, and even 50%.  
A2a) We extended the analysis described in Figure 38 of the vignette removing 20%, 30% and 50% 
of the cells. The results were added as Figure 40 and commented in vignette text: “The effect of the 
perturbations induced in the clustering upon the removal of 10%, 20%, 30% and 50% of the data set 
was also investigated in SetA (annotated_bmsnkn_5x100cells.txt), Figure 40. We can observe that 
the overall cell stability score of each cell in each cluster is reduced increasing of the fraction of cells 
removed in each permutation. However, the reduction in CSS is not identical for all clusters. In Figure 
40, it is clear that cluster 2, completely composed of NK cells, is the most stable cluster to the 
perturbations induced by increasing the number of removed cells. On the other side, cluster 4, 
mainly made by stem cells (92 cells), together with few B-cells (2 cells) and Monocytes (7 cells) is 
the least stable. Sorting by increasing CSS the cells in cluster 4, Figure 40D, all B-cells and Monocytes 
are found within the first 15 most unstable cells.” 
Q2b) Furthermore, it is crucial to link the CSS to the clustering ground truth with the underlying 
assumption that the true discovery rate for "stable" cells is larger than the one for cells with lower 
CSS. 
A2b) We have investigated the clusters composition of two sets of cells described in section 4.2: 
SetA and SetC. SetA is composed by cells with different biological characteristics, i.e. (B) B-cells, (M) 
Monocytes, (S) Stem cells, (NK) Natural Killer cells, (N) Naive T-cells. SetC contains Monocytes, 
Natural Killer cells and with T-cells subpopulations, i.e. (C) Cytotoxic T-cells, (H) T-helper cells and 
Naive T-cell. The results are summarized in Figure 41 and commented in the vignette text: “We 
investigated clusters composition of two sets of cells described in section 4.2: SetA and SetC.  
SetA composed by cells with different biological characteristics, i.e. (B) B-cells, (M) Monocytes, (S) 
Stem cells, (NK) Natural Killer cells, (N) Naive T-cells.  
SetC contains Monocytes, Natural Killer cells and with T-cells subpopulations, i.e. (C) Cytotoxic T-
cells, (H) T-helper cells and Naive T-cell, Figure 41. CSS provides indications on clusters cells 
heterogeneity. In Figure 41A and C, clusters characterized by high cell stability score are mainly 
constituted by one cell type. On the other hand, as CSS decrease, Figure 41B and D, the clusters 
become characterized by an increasing heterogeneity in the cell types composition. E.g. In Figure 
41B and D, cluster 5 (violet) has a CSS between 75% to 100% and it is composed only by monocytes, 
cluster 2 (light green), which has a CSS between 50% and 75%, has a 11% contamination of T-helper 
cells. Cluster 3 (green), which has a CSS between 25 to 50%, is contaminated by 12% Cytotoxic T-



cells and 4% T-helper cells. Finally, clusters 1 and 4, characterized by CSS between 0% to 25%, are 
very heterogeneous incorporating 4 out of 5 cell types present in this dataset.”. 
Q3) The authors should discuss why they chose to store e.g. normalized data and analysis results 
in .csv or .txt files rather than using slots of a S4 class (in sparse matrix format) commonly used in R 
data analysis.  
A3) All tools embedded in rCASC use as input source a tab or a comma delimited file and only Seurat 
imports counts table file in an object of class Seurat. 10XGenomics distributes counts table file also 
in H5 (Hierarchical Data Format 5 File) format, Bioconductor rhdf5 package offers support for this 
type of files, but none of the tools implemented in rCASC is able handle the R data structure returned 
by the rhdf5 package. Since, as far as we know there is not a general agreement on the format of 
single cell count tables we prefer to wait till an agreement on standardized data format will become 
available.  
Q4) In the vignette is it often not clear what the scale bars or colour coding means. The authors 
should expand figure legends, plots and axes with the necessary information to understand what is 
displayed.  
A4) We carefully revised the figure legend to clarify colours and legend bars.  
Q5) When performing dimensionality reduction it is important to i) correctly normalize the data and 
ii) indicate if the counts were log-transformed. These information are missing in some parts of the 
vignette. For example the authors use a wrapper function to perform PCA on page 17. It is not clear 
if the data was normalized and log-transformed which could have an impact on the interpretability 
of the results. 
A5) We carefully revised the various part of the vignette and we added information referring to the 
data characteristics.  
Q6) The scannobyGtf function performs gene annotation and removes mitochondrial genes and 
genes encoding ribosomal proteins. For some analyses, these genes can be informative regarding 
the metabolic and proliferative state of the cell and should not be removed. The authors should 
therefore consider splitting the scannobyGtf function into two functions; one for annotation and 
one for filtering. If users detect unwanted variation in the expression of genes encoding for 
ribosomal proteins, this effect should be removed using regression approaches such as scLVM rather 
than excluding the genes from the dataset. 
A6) The scannobyGtf function was updated to make optional the removal of mitochondrial and 
ribosomal protein genes.  
Q7) Section 3.5 Top expressed genes: By selecting the set of top expressed genes the authors might 
be biased by the variation detected in highly expressed housekeeping genes. Instead, and in line 
with commonly performed analysis for scRNA-Seq data, the authors should include an approach to 
detect highly variable genes as the set of informative genes. This also facilitates the inclusion of cell-
type specific genes in the clustering approach (see paragraph on page 39 in the vignette). 
A7) We thank reviewer for this useful comment. We have added the option to filter the dataset on 
the basis of gene dispersion in the topx function. Section 3.5: “For clustering purposes user might 
decide to use the top expressed genes. The function topx selects the X top expressed genes given a 
user defined threshold.” 
was modified in: 
“For clustering purposes user might decide to use the top expressed/variable genes. The function 
topx provides two options: 
- the selection of the X top expressed genes given a user defined threshold, parameter 
type="expression" 
-the selection of the X top variable genes given a user defined threshold, parameter type="variance" 



The function also produces a pdf file gene_expression_distribution.pdf showing the changes in the 
UMIs/gene expression distribution upon topx filtering.” 
Q8) When toy datasets are used it is important to state if these are the data from the original 
publication or if the data were pre-processed (see bottom of page 29 in the vignette). 
A8) We updated the description of the toy experiments 
Q9) The authors implemented different clustering strategies in the rCASC toolbox. While the cell 
stability score is explained in detail, it is not clear what exactly is used for SIMLR and tSNE clustering. 
Both are methods to perform non-linear dimensionality reduction and only SIMLR is designed to 
also perform clustering. tSNE is not a clustering tool and it is well known that it introduces artefacts 
when visualizing complex data. It would therefore be good to explain if the SIMLR internal clustering 
approach is used or if the authors perform k-means clustering on the dimensionality reduced data-
points. For reasons of scalability and the number of input genes, I wonder whether the SIMLR 
approach is suitable for large dataset (e.g. 50,000 cells).  
A9) In vignette section 5 and 6 we described SIMLR and Seurat as the two clustering tools used in 
rCASC. The choice of these two tools is given by the comparisons performed by Wang and coworkers 
in their paper on SIMLR (Nat Methods. 2017) and by the independent observations of Freytag and 
coworkers (https://f1000research.com/articles/7-1297/v2) and Duo’ and Robinson 
(https://f1000research.com/articles/7-1141/v2) indicating that, in their tests, Seurat delivered the 
overall best performance in cells clustering. The above-mentioned references are indicated in 
section 5 and 6.  
In section 5 we described that bootstraps are used to estimate the cell stability score using SIMLR. 
To clarify that also in Seurat clustering the bootstraps are implemented we added the following 
phrase in section 6: “The bootstrap approach described in section 5.1 is also applied to Seurat 
clustering to assign cell stability score to the clustered cells.” 
In rCASC tSne is implemented using the Rtsne package (https://cran.r-
project.org/web/packages/Rtsne/index.html). The tSne implementation is only used for 
comparison with respect to SIMLR and Seurat in section 6.1. Rtsne package provides an internal k-
mean clustering, which is performed on the dimensionality reduced data-points. To clarify this point 
we added the following phrases in section 6.1: “The bootstrap approach described in section 5.1 is 
also applied on tSne clustering to assign cell stability score to the clustered cells. In rCASC tSne is 
implemented using the Rtsne (https://cran.r-project.org/web/packages/Rtsne/index.html) package. 
Rtsne performs a data reduction on which k-mean clustering is applied.” 
Concerning scalability and the number of input genes a similar request was also asked by reviewer 
1. Therefore, we run a scalability test using the GSE106264 dataset described in Section 8 of the 
vignette. The scalability analysis is described in the main manuscript in materials section subsection 
scalability: “To estimate the scalability of rCASC clustering we used the GSE106264 dataset made of 
10035 cells and published by Pace and coworkers in 2018 [18]. We randomly sampled the 10035 
cells (27998 ENSEMBL GENE IDs) to obtain the following subsets of cells: 400, 600, 800, 1000, 2000, 
5000. Starting from the 800 cells set we randomly sampled the genes: 10000, 8000, 6000, 4000, 
2000, 1000, 800. We run SIMLR, tSne, griph and Seurat using 160 permutation within SeqBox 
hardware [26]: Intel i7 3.5GHz (4 cores), 32 GB RAM and 500 GB SSD disk. SIMLR resulted to be the 
slowest and, given the used workstation, it cannot allocate for the analysis more than 2000 cells 
(Figure 7A). All the other tools were able to handle up to 5000 cells, within the limit of 32 GB of RAM 
available in the hardware setting used in this analysis. Computation time was nearly linear for all 
tools till 1000 cells. Only griph clustering resulted to be nearly insensitive to the increasing number 
of cells (Figure 7A). The computing time as function of increasing number of genes has a quite 
limited effect on the overall computing time (Figure 7B).” 



Q10) There are typos and phrasing issues in the figure legends and the vignette. For example, the 
legend of figure 2 needs editing to make it understandable. 
A10) We thank reviewer for the careful and precise reading of our manuscript. We edited the 
vignette to eliminate typos and phrasing issues. 
 
Minor comments 
Q1) The processing of raw sequencing data in the form of fastq files is computationally expensive 
and usually performed on high performance computing systems. The authors decided to implement 
wrapper functions to process 10X and inDrop data. While these technologies are used by the 
majority of the field, other technologies generate individual fastq files per cell and a function could 
be implemented to process this data. Furthermore, the authors use the pre-build genomes supplied 
by 10X for the cellranger pipeline but on the other hand build the reference for the inDrop pipeline 
from scratch. These approaches are not comparable since the 10X genomes are filtered to only 
include protein-coding genes. The authors should therefore implement a wrapper function for the 
cellranger mkref call to allow a more flexible use of genomic references. 
A1) We thank reviewer for the useful comments. Concerning the processing of fastq data we 
implemented inDrop and 10XGenomics fastq processing software because they are compliant with 
the minimal hardware requirements indicated in Section 1.1.  
For smart-seq we have added into the vignette the following paragraph: “Section 2.3 Smart-seq full 
transcript sequencing. 
Smart-seq protocol generates a full transcript library for each cell, i.e. a fastq file for each cell. To 
convert fastq in counts we suggest to use rnaseqCounts or wrapperSalmon counts from docker4seq 
package [Kulkarni et al.]. Both above-mentioned functions are compliant with minimal hardware 
requirements indicated for rCASC and are part, as rCASC, of the Reproducible Bioinformatics Project. 
The function rnaseqCounts is a wrapper executing on each fastq: 
• quality evaluation of fastq with FastQC software, 
• trimming of adapters with skewer, 
• mapping reads on genome using STAR and counting isoforms and genes with RSEM. 
The function wrapperSalmon instead implements FastQC and skewer and calculates isoforms and 
genes counts using Salmon software.”  
We have also implemented a new function called cellrangeIndexing, which allows the generation of 
10Xgenomics compliant reference genome. The description of cellrangeIndexing was added to the 
vignette in Section 2.2. 
Q2) The framework is developed to run on a linux machine and it would be useful to provide an 
implementation for Mac and Windows. 
A2) The rCASC framework was developed to be compliant with SeqBox (Beccuti et al. Bioinformatics 
2017), i7 3.5GHz, 32GB RAM, 500 GB SSD running linux. We have tested rCASC with the latest version 
of Docker Desktop (v 2.0.0.3) on a Mac machine with 16 GB RAM i7 GHz 3.5, 4 cores. Configuring 
the virtual machine to use 12 GB RAM and 2 cores we can execute all examples provided in the 
rCASC vignette. However, RAM requirements become quite demanding, exceeding 12 GB, when 
more than 1000 cells are used for clustering. We decided to not extend the rCASC framework to 
window platform. Instead, within the Elixir framework, we are in the early phase of porting rCASC 
(https://github.com/pmandreoli/rCASC_wrappers) in LANIAKEA galaxy (https://elixir-italy-science-
gateway.cloud.ba.infn.it/) in collaboration with LANIAKEA’s developers.  
Q3) On page 16 in the vignette, the authors discuss the relationship between the number of reads 
per cell and the number of genes detected. While this dependency is known, the authors should 
acknowledge that different cell-types show differences in their transcriptional rate and that a 



technical assessment of the reads per cell vs. genes detected is difficult to perform when comparing 
different cell-types.  
A3) We thank reviewer for this important indication. To incorporate reviewer’s suggestion, we 
added in the page 16 the following phrase: “However, it has to be underlined that each cell type is 
characterized by a peculiar transcriptional rate and therefore the technical assessment of the reads 
per cell vs. genes detected between different cell types, i.e. Figure 13A-C, might be bias by 
differences in the transcriptional rate of the different cells used in this specific example. Instead, the 
above-mentioned bias does not affect Figure 13D-F because they are generated by a down sampling 
of a set of cells sequenced with the smart-seq protocol at a coverage of 1 million reads/cell.”  
Q4) Figure 16, page 20: It is not possible to identify the cells that were removed after filtering.  
A4) In Figure 16 the removed cells are those labelled in blue. Figure 16 was modified adding arrows 
to better highlight cells that were removed and Figure 16 legend: “Effect of Lorenz filtering, cells 
shown in blue have been discarded because of their low quality”  
was modified in the following way:  
“Lorenz filtering: cells retained after filtering are labelled in red as instead cells discarded because 
of their low quality are labelled in blue.”  
Q5) Figure 21 needs more explanation in the figure legend 
A5) the phrase: “checkCountDepth output plot” was modified in: “checkCountDepth output plot 
provides an evaluation of count-depth relationship in un-normalized data. The effects of the 
normalization procedure is shown in the following figure.”  
Q6) It is not possible to see the CSS for individual cells as displayed by the authors. I would 
recommend displaying a side-by-side plot where cells in one plot are coloured by cluster ID and cells 
in the other plot are coloured based on their CSS. 
A6) A new plot was added to the NameOfCountMatrix_Stability_Plot.pdf file, which provides the 
results of the clustering. The new plot provides the cluster picture with cell coloured on the basis of 
their CSS. Figure 38 was also modified to include this new plot. CSS is described with the following 
colours: 0-25% black, 25-50% green, 50-75% gold and 75-100% red. The phrase: “The plot in Figure 
38C provides a 2D view of the clustering results. In this plot each cell is labeled with a symbol 
indicating its cell stability score.”  
was modified in the following way:  
“In each clustering folder there is a pdf named NameOfCountMatrix_Stability_Plot.pdf, which 
contains two plots (Figure 38C-D) generated by the clustering program. These plots provide a 2D 
view of the clustering results from two different perspectives. In Figure 38C plot each cell is coloured 
on the basis of the belonging cluster and it is labeled with a symbol indicating its cell stability score 
(CSS). Instead, in the plot in Figure 38D each cell is coloured on the basis of its CSS: 0-25% black, 25-
50% green, 50-75% gold and 75-100% red.”  
Q7) Page 51 in the vignette: there is a broken link to one figure 
A7) We fixed it 
Q8) There is a colouring discrepancy between Figure 51 (Z score transformed counts) and Figure 54 
(log10-tranformed counts) where the rCASC uses the same colour scale. 
A8) Now the colours of Fig. 51 B and C correspond to those in Fig. 54 B and C.  
Q9) Page 66 in the vignette: the authors should better explain why they chose k=6 and not k=7 and 
where the difference between Figure 57 A and B is coming from. 
A9) To clarify the description of fig 57, the phrase:  
“In Figure 57 are summarized the results of the analysis executed on the Pace’s dataset. Data 
perturbations, Figure 57A, allows data organization between 6 to 9 clusters, where 7 clusters is the 
most represented group. Cell stability score, from the SIMLR analysis executed on the above range 
of clusters, is shown in Figure 57B. Six clusters show a slightly higher stability with respect to the 



others. The overall stability of 6 clusters is however sub-optimal, since it is spread between 0 and 
0.9 cell stability score. In Figure 57C it is shown the clusters structure generated with SIMLR on 6 
clusters. Clusters 1, 3 and 4 show a quite good stability, Figure 57C. Cluster 3 is made of 44 N (88%) 
and 48 Nd (96%), suggesting that naive CD8+ T lymphocytes are not affected by the silencing of 
Suv39h1 gene. Cluster 1 contains 16 NA (6.4%) and 14 NdA (5.6%). Cluster 2 is made of 44.8% of NA 
and 39.6% of NdA cells. Clusters 1 and 2 group together, interdependently from Suv39h1 gene 
silencing. Cluster 6 is made of 35% NA and 13.6% of NdA. In cluster 6 the amount of NA and NdA is 
unbalance, suggesting that the Suv39h1 silencing does not guarantee the efficient differentiation of 
the cell subpopulation in cluster 6. Cluster 4 only contains NdA (33%), indicating that at least a 
subpopulation of activated Suv39h1-silenced cells has a specific transcription profile that 
differentiate them from the wild type activated cells. Cluster 5 is made of 6 N cells, 2 Nd cells, 34 NA 
cells, 21 NdA cells. Despite the presence of a limited amount of naive cells, which might be explained 
as partially activated, cluster 5 is made mainly of activated cells, i.e. 13.6% NA and 8.4% NdA of total 
cells. The cluster structure (Figure 57D) and cell cluster stability scores (Figure 57C) might suggest 
that cluster 5 is made of a precursor subset.” 
was modified in the following way:  
“In Figure 57 are summarized the results of the analysis executed on the Pace’s dataset. A limitation 
of the clustering based on SIMLR is due to the need of providing as input the number of clusters (k) 
in which the data should be organized. Instead of asking to user to define arbitrarily the k number 
of clusters, we used griph (https://github.com/ppapasaikas/griph) as tool to identify a range of k 
clusters to be inspected by SIMLR. Figure 57A shows the frequency of the k number of clusters, in 
which the Pace’s dataset can be organized using griph software, upon 160 bootstraps in which 10% 
of the cells is randomly removed from the initial data set. Griph analysis identify a range of clusters 
going from k=6 to k=9. K=7 is the most represented data organization detected by griph, followed 
by 8, 6 and 9 clusters. 
The range of k clusters detected using griph is then investigated with SIMLR. SIMLR is run for each k 
of the k-range defined with griph tool. CSS violin plot (Figure 57B) shows that the mean stability for 
k=6 (CSSm ~ 0.5) is higher than to the others ks (CSSm < 0.3).  
Clusters k=7 and k=8 do not represent the most stable organizations in terms of CSS (Figure 57B), 
although they are the most frequent organizations observed in griph analysis (Figure 57A). 
Since the best CSSm is observed in k=6, we explored these clusters (Figure 57C). In Figure 57C, 
clusters 1, 3 and 4 show a quite good stability, since cells stay in these clusters between 75% to 
100% of the bootstraps.  
The inspection of Pace’s experiment groups organization (i.e. N= naïve WT, Nd= naïve Suv39h1 KO, 
NA=activated WT, NdA=activated Suv39h1 KO) in k=6 clusters, Figure 57C, show that cluster number 
4 is the only one containing only NdA (33% of the total NdA) cells. Thus, suggesting that a 
subpopulation of activated Suv39h1-silenced cells has a specific transcription profile, which 
differentiates them from all wild type activated cells. Another interesting cluster is number 6, where 
the amount of NA and NdA is unbalance, 35% NA and 13.6% of NdA, suggesting that Suv39h1 
silencing does not guarantee at the same efficiency the differentiation of this cell subpopulation as 
in the case of wild type cells. Cluster 5 is the most heterogeneous cluster. It is composed by 6 N cells, 
2 Nd cells, 34 NA cells, 21 NdA cells. Despite the presence of a limited number of naive cells, which 
might be explained as partially activated, cluster 5 is composed by an unbalance number of activated 
cells, i.e. 13.6% NA and 8.4% NdA of total cells. However, since cluster 5 is characterized by a very 
low CSS (0-25%) it is possible that this cluster contains cells localized at the boundaries of clusters 2, 
3 and 6. On the other side clusters 1, 2, 3 have nearly the same number of wild type and Suv39h1 
silenced cells, suggesting that these subsets of cells are not influenced by Suv39h1 silencing:  



• cluster 1 contains nearly the same amount of activated wild type, 16 NA (6.4%), and Suv39h1 
KO cells, 14 NdA (5.6%); cluster 2 is made of 44.8% of NA and 39.6% of NdA cells; 

• cluster 2 is made of 44.8% of NA and 39.6% of NdA cells; 
• cluster 3 is made of 44 N (88%) and 48 Nd (96%)” 


