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e.g. ATAC-seq. Single-cell sequencing led to the development of a large variety of
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computational workflows providing analysis flexibility and achieving at the same time
functional (i.e. information about the data and the utilized tools are saved in terms of
meta-data) and computational reproducibility (i.e. real image of the computational
environment used to generate the data is stored) through a user-friendly environment.

Findings

rCASC is a modular workflow providing integrated analysis environment (from counts
generation to cell subpopulation identification) exploiting docker containerization to
achieve both functional and computational reproducibility in data analysis. Hence,
rCASC provides preprocessing tools to remove low quality cells and/or specific bias,
e.g. cell cycle. Subpopulations discovery can be instead achieved using different
clustering techniques based on different distance metrics. Quality of clusters is then
estimated through a new metric namely Cell Stability Score (CSS), which describes the
stability of a cell in a cluster as consequence of a perturbation induced by removing a
random set of cells from the overall cells' population. Our experiments highlight that
CSS provides better cluster-robustness information than silhouette metric. Moreover,
rCASC provides tools for the identification of clusters-specific gene-signature.

Conclusions

rCASC is a modular workflow with valuable new features that could help researchers in
defining cells subpopulations and in detecting subpopulation specific markers. It
exploits docker framework to make easier its installation and to achieve a computation
reproducible analysis. Moreover, a Java Graphical User Interface (GUI), is provided in
rCASC to make friendly the use of the tool even for users without computational skills
in R.
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Luca Alessandrì, Francesca Cordero, Marco Beccuti, Maddalena Arigoni, Martina
Olivero, Greta Romano, Sergio Rabellino,Nicola Licheri, Gennaro De Libero, Luigia
Pace and Raffaele A Calogero

Dear Editor,
First of all, we wish to thank the reviewers for their valuable comments and useful
suggestions which helped us to substantially improve the paper and its associated tool.

Hereafter we report our answers to the reviews’ comments.

Reviewer reports:

Reviewer #1: The authors incorporated additional clustering methods (Scanpy and
Griph) that prove to be scalable for datasets having larger sizes which corresponds to
the field needs.
In particular, Scanpy seems to reveal no issue to scale up to 100K cells in the
benchmark executed opposite to the other methods.
I recommend accepting this manuscript since I think it is well suited for current and
future analytical needs for single cells.

Minor comments:

Question 1: Is there any limitation or trick to use for the preprocessing procedures (low
cell quality filter, normalization, annotation, cell cycle removal, matrix creation)
executed before the clustering when increasing the sample / feature size?
I presume no because the authors have used them with large dataset. Then, It will be
worth metioning that in the manuscript with a brief estimate of the computational time /
memory needed.

Answer 1: All samples were preprocessed removing ribosomal/mitochondrial protein
genes and cells with a total count of UMIs lower than 100. This information was added
in the scalability paragraph: “All the above samples were preprocessed removing
ribosomal/mitochondrial protein genes and cells with a total count of UMIs lower than
100.”
Concerning the computational time/memory required for the analysis we added the
following phrase at the end of Scalability paragraph:
“The definition of the computing time for an analysis depends on multiple parameters: i)
the number of permutations performed in parallel, ii) the number of cells under
analysis, iii) the clustering tool in use and iv) the hardware used for the analysis.
Concerning the amount of RAM required for each permutation run in parallel, up to
5000 cells the maximum amount of RAM required is approximately 4 GB, from 10000
to 100000 cells, the maximum RAM required is approximately 20 GB. Independently by
the clustering approach and the size of the dataset, we suggest to run at least 100
permutations to correctly estimate CSS.”

Question 2: The figure 3 is not updated with Scanpy and griph.
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Answer2: We updated Fig. 3 as suggested by the reviewer. Moreover, we  updated
Fig. 4C which now includes griph and scanpy functions
Question 3: I don't understand the use of the term hierarchical clustering in the
manuscript and in the suppl. material.

Answer 3: We removed the term “hierarchical” from Fig. 1 and in supplementary data.

-------------------------------------------------------------------------------------------------------------------
--------
Concerning software repository:
-------------------------------------------------------------------------------------------------------------------
--------

Dear Editor,
hereafter we reported general information about the current software repositories:

1. The rCASC package is  available at this github repository:
https://github.com/kendomaniac/rCASC
2. All the docker images are stored in the docker hub:
docker.io/repbioinfo/
3.GUI for rCASC is available at this github repository:
https://github.com/mbeccuti/4SeqGUI
4. All the sample data are retrievable at 130.192.119.59  and the paths are indicated in
the supplementary material.

Moreover we registered rCASC in bio.tools and in SciCrunch.org (id: SCR_017005)

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly

Yes
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encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes
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Abstract 

Background 

Single-cell RNA sequencing is an essential tool to investigate cellular heterogeneity, and to highlight 

cell sub-population specific signatures. Single-cell sequencing applications are now spreading from 

the most conventional RNAseq to epigenomics, e.g. ATAC-seq. Single-cell sequencing led to the 

development of a large variety of algorithms and associated tools. However, to the best of our 

knowledge, there are few computational workflows providing analysis flexibility and achieving at 

the same time functional (i.e. information about the data and the utilized tools are saved in terms of 

meta-data) and computational reproducibility (i.e. real image of the computational environment used 

to generate the data is stored) through a user-friendly environment. 

Findings 

rCASC is a modular workflow providing integrated analysis environment (from counts generation to 

cell subpopulation identification) exploiting docker containerization to achieve both functional and 

computational reproducibility in data analysis. Hence, rCASC provides preprocessing tools to remove 

low quality cells and/or specific bias, e.g. cell cycle. Subpopulations discovery can be instead 

achieved using different clustering techniques based on different distance metrics. Quality of clusters 

is then estimated through a new metric namely Cell Stability Score (CSS), which describes the 

stability of a cell in a cluster as consequence of a perturbation induced by removing a random set of 

cells from the overall cells’ population. Our experiments highlight that CSS provides better cluster-

robustness information than silhouette metric. Moreover, rCASC provides tools for the identification 

of clusters-specific gene-signature.  

Conclusions  

rCASC is a modular workflow with valuable new features that could help researchers in defining 

cells subpopulations and in detecting subpopulation specific markers. It exploits docker framework 

to make easier its installation and to achieve a computation reproducible analysis. Moreover, a Java 

Graphical User Interface (GUI), is provided in rCASC to make friendly the use of the tool even for 

users without computational skills in R.  

Keywords 

Single-cell data preprocessing, workflow, GUI, clustering, cluster stability metrics, cluster-specific 

gene signature. 

 

  



Findings 

rCASC: a single cell analysis workflow designed to provide data reproducibility. 

Since the end of the 90’s omics high-throughput technologies have generated an enormous amount 

of data, reaching today an exponential growth phase. The analysis of omics big data is a revolutionary 

means of understanding the molecular basis of disease regulation and susceptibility, and this resource 

is made accessible to the biological/medical community via bioinformatics frameworks. However, 

due to the increasing complexity and the fast evolution of omics methods, the reproducibility crisis 

[1] is becoming a very important issue [2] and there is a mandatory need to guarantee robust and 

reliable results to the research community [3].  

Single cell analysis is instrumental to understand the functional differences existing among cells 

within a tissue. Individual cells of the same phenotype are commonly viewed as identical functional 

units of a tissue or an organ. However, single cells sequencing results [4] suggest the presence of a 

complex organization of heterogeneous cell states producing together system-level functionalities. A 

mandatory element of single cell RNAseq is the availability of dedicated bioinformatics workflows.  

To the best of our knowledge, rCASC is the only computational framework, which provides both 

computational and functional reproducibility for an integrated analysis of single cell data, from counts 

generation to cell subpopulation identification. It is one of the tools developed under the umbrella of 

the Reproducible Bioinformatics project1 (http://reproducible-bioinformatics.org/), an open-source 

community aimed to provide to biologists and medical scientists an easy-to-use and flexible 

framework, which also guarantees the ability to reproduce results independently by the underlying 

hardware, using docker containerization (computational reproducibility). Indeed, it was developed 

following the best practice rules for reproducible computational research, proposed in 2013 by 

Sandve [5]. It is also listed within the tools developed by the Italian Elixir node 

(https://bio.tools/rCASC).  

In details all the computational tools in rCASC are embedded in docker images stored in a public 

repository on docker hub. Parameters are delivered to docker containers via a set of R functions, part 

of rCASC R github package [8]. To simplify the use of rCASC package to users without scripting 

experience, R functions can be controlled by a dedicated GUI, integrated in the 4SeqGUI tool 

                                                      
1 The reproducible bioinformatics project was founded and it is maintained by the research team of Elixir node at 
University of Turin. The reproducible bioinformatics project was published on BMC Bioinformatics [6]. An example of 
stand-alone hardware/software infrastructure for bulk RNAseq, developed within the Reproducible Bioinformatics 
project, was described in Beccuti [7]. 



previously published by us [7], which is also available as github package [9]. rCASC is specifically 

designed to provide an integrated analysis environment for cell subpopulation discovery. The 

workflow allows the direct analysis of fastq files, generated with 10X Genomics and inDrop platforms, 

or count matrices. Therefore, rCASC provides raw data preprocessing, subpopulation discovery via 

different clustering approaches and cluster-specific genes-signatures detection. The key elements of 

rCASC workflow are shown in Figure 1, and the main functionalities are summarized in Methods 

section. A detailed description of the rCASC functions is also available in the vignettes section of 

rCASC github [8].  

The overall characteristics of rCASC were compared with other four workflows for single-cells 

analysis (Figure 2): i) simpleSingleCell, Bioconductor workflow package [10]; ii) Granatum, web-

based scRNA-Seq analysis suite [11]; iii) SCell, graphical workflow for single-cell analysis [12]; iv) 

R toolkit Seurat [13]. The comparison was based on the following elements: a) supported single-cell 

platforms, b) types of tools provided by the workflow, c) type of reproducibility granted by the 

workflow, d) tools flexibility.  

rCASC is the only workflow providing support at fastq level because all the other packages require 

as input the processed counts table. Cell quality control and outliers’ identification is available in all 

the workflows but Granatum. Association of ENSEMBL gene IDs to gene symbols is only provided 

by rCASC. All the workflows provide genes filtering tools but simpleSingleCell. All packages 

provide normalization procedures to be applied to raw counts data. However, rCASC is the only tool 

providing both Seurat specific normalization [13] and count-depth specific normalization [14]. The 

workflows implement different data reduction and clustering methods. rCASC integrates four 

clustering tools, i.e. Seurat [13] SIMLR [15], griph [16], and scanpy [17] which differ in the metrics 

driving the clustering analysis. Cluster stability is an important topic in Clustering (for a review see 

[19]). Stability measurement, taking advantage of bootstrapping, was also addressed by Hennig [20]. 

Specifically, Hennig uses Jaccard index to evaluate the overall stability of each cluster. In rCASC, 

we have implemented a cell stability score (CSS), which uses the Jaccard index to estimate the 

stability of each cell in each cluster. CSS provides an enhanced description of each cluster, since it 

allows the identification of subset of cells, in any cluster, which are particularly sensitive to 

perturbation of the overall dataset structure, i.e. cell bootstrapping. Moreover, the cluster stability 

measurement proposed by Henning was included in rCASC. Specifically, we have implemented the 

“clusterboot” function from the fpc R package [21], which allows the evaluation of the cluster 

stability using a personalized clustering function (see Supplementary file Section 5.3). To the best of 

our knowledge, rCASC is the only workflow performing clustering in presence of data perturbation, 



i.e. removal of a subset of cells, and measuring cluster quality using Cell Stability Score (CSS is a 

cluster quality metrics developed by us, which measures the persistence of each cell in a cluster upon 

data perturbation, see Supplementary file section 5.1) and Silhouette score (SS is a cluster quality 

metrics measuring the consistency within clusters of data). In our experiments, CSS provides a better 

estimation of the cluster stability compared to that of SS (Figure 2). Gene feature selection approaches 

are implemented in different way in the five workflows. Granatum is the only one providing 

biological inference. Granatum and Seurat implements various statistical methods to detect cluster 

specific genes signatures (Figure 3). rCASC embeds an ANOVA-like statistics derived from EdgeR 

Bioconductor package [22] and Seurat/SIMLR genes prioritization procedures (see Supplementary 

file section 7). Visualization of genes-signatures by heatmap, coloring cells on the basis of gene 

expression is only provided by rCASC (see Supplementary file Figure 51). Considering 

reproducibility, only rCASC provides both computational and functional reproducibility. Finally, 

rCASC is the only one providing both a command line interface and graphical user interface (Figure 

4). 

Finally, rCASC was used to re-analyze the single-cell dataset from Pace paper [23]. In this paper, 

authors highlighted that Suv39h1-defective CD8+ T-cells show sustained survival and increased long-

term memory reprogramming capacity. Our re-analysis extends the information described in Pace 

paper, suggesting the presence of an enriched Suv39h1-defective memory subset. A complete 

description of the above analysis is available at section 8 of supplementary file.  

Methods 

Counts table generation 

inDrop single-cell sequencing approach was originally published by Klein [24]. Then, the authors 

published the detailed protocol in Nature Methods in 2017 [25]. In rCASC, the generation of the 

count table starting from fastq files refers to the version 2 of the inDrop chemistry described in [25], 

which is commercially distributed by 1CellBio. The procedure described in the inDrop github [26] is 

embedded in a docker image. rCASC function indropIndex allows the generation of the transcripts 

index required to convert fastq in counts, and indropCounts function converts reads in UMI counts.  

10XGenomics Cellranger is packed in a docker image and the function cellrangerCount converts 

fastq to UMI matrix using any of the genome indexes with cellrangerIndexing function. Detailed 

description about the counts table generation is available in Supplementary file section 2. 

Counts table exploration and manipulation  

rCASC provides various data inspection and preprocessing tools.  



genesUmi function generates a plot where the number of detected genes are plotted for each cell with 

respect to the number of UMI (Figure 5A,C).  

mitoRiboUmi calculates the percentage of mitochondrial/ribosomal genes with respect to the total 

number of detected genes in each cell and plots percentage of mitochondrial genes with respect to 

percentage of ribosomal genes. Furthermore, cells are colored on the basis of the number of detected 

genes (Figure 5B, D). mitoRiboUmi allows to identify cells with low information content, i.e. those 

cells with a little number of detectable genes, e.g. < 100 genes/cell, little ribosomal content and high 

content of mitochondrial genes, which indicate cell stress [27]. 

The function scannobyGtf uses ENSEMBL gtf and the R package refGenome to associate gene 

symbol with the ENSEMBL gene ID. Furthermore, scannobyGtf allows one to remove 

mitochondrial/ribosomal genes (Figure 5A, C) and “stressed” cells detectable with mitoRiboUmi 

function (Figure 5B, D). 

The function lorenzFilter embeds the Lorenz statistics developed by Diaz [12], a cell quality statistics 

correlated with cell live-dead staining (see Supplementary file sections 3.3). Specifically, the outlier 

filtering for single-cell RNA-seq experiments designed by Diaz estimates which genes are expressed 

at background levels in each sample, then samples with significantly high background levels are 

discarded [12]. 

As counts table preprocessing steps, we implemented the functions checkCountDepth/scnorm to 

detect the presence of sample specific count–depth relationship [14] (i.e. the relationship existing 

between transcript-specific expression and sequencing depth) and to adjust the counts table for it. 

Specifically, checkCountDepth initially executes a quantile regression, thus estimating the 

dependence of transcript expression on sequencing depth for every gene. Then, genes with similar 

dependence are aggregated (see Supplementary file section Figure 21). Scnorm, after executing 

checkCountDepth, performs a new quantile regression to estimate scale factors within each group of 

genes. Then, sequencing depth adjustment is done within each group using the estimated scale factors. 

Furthermore, we added two other functions recatPrediction and ccRemove, which are based 

respectively on the paper of Liu [28] and Barron [29]. The function recatPrediction organizes the 

single cell data to reconstruct cell cycle pseudo time-series and it is used to understand if a cell cycle 

effect is present. The above function embeds reCAT software [28], which models the reconstruction 

of time-series as a traveling salesman problem, thus identifying the shortest possible cycle by passing 

through each cell exactly once and returning to the start. Since the traveling salesman problem is a 

NP-hard problem, reCAT is based on a heuristic algorithm, which is used to find the solution. 

ccRemove function is instead based on the work of Barron and Li [29] and embeds their scLVM 

(single-cell latent variable model) algorithm, which uses a sophisticated Bayesian latent variable 



model to reconstruct hidden factors in the expression profile of the cell-cycle genes. This algorithm 

is able to remove cell-cycle effect from real scRNA-Seq datasets. Thus, ccRemove is used to mitigate 

the cell cycle effect of the inter-samples transcriptome, when it is detected by recatPrediction 

function (see Supplementary file sections 3.6 ad 3.8).  

Clustering 

For the identification of cell subpopulations we implemented four approaches: Seurat 

(RRID:SCR_016341) [13], SIMLR [15], griph [16] and scanpy [17]. Seurat is a toolbox for single-

cell RNAseq data analysis. We implemented in rCASC one of the clustering procedures present in 

Seurat toolbox. The function seuratPCAEval has to be run before executing the clustering program 

to identify the ‘metafeatures’, i.e. the subset of PCA components describing the relevant source of 

cells’ heterogeneity, to be used for clustering. seuratBootstrap function implements data reduction 

and clustering. Specifically, cells undergo to global scaling normalization, i.e. LogNormalize method, 

and scaling factor 10000. Subsequently, a linear dimensional reduction is done using the range of 

principal components defined with seuratPCAEval. Then, clustering is performed using the cell PCA 

scores. The Seurat clustering procedure, embedded in seuratBootstrap, is based on the Louvain 

modularity optimization algorithm. Differently SIMLR implements a k-mean clustering, where the 

number of clusters (i.e. k) is taken as input. SIMLR, requires as input raw counts log10 transformed. 

SIMLR is capable of learning an appropriate cell-to-cell similarity metric from the input single-cell 

data and to exploit it for the clustering task. In the learning phase SIMLR identifies a distance metric 

that better fits the structure of the data by combining multiple Gaussian kernels [15]. Thus, the tool 

can deal with the large noise and drop-out effects of single-cell data, which could not easily fit with 

specific statistical assumptions made by standard dimension reduction algorithms [15]. The function 

simlrBootstrap controls the clustering procedure and the function nClusterEvaluationSIMLR, a 

wrapper for the R package griph (Graph Inference of Population Heterogeneity) [16], is exploited to 

estimate the (sub)optimal number “k” of clusters. Griph clustering [16] is based on Louvain 

modularity. Griph algorithm is closer to agglomerative clustering methods, since every node is 

initially assigned to its own community and communities are subsequently built by iterative merging. 

Also scanpy [17] uses for clustering a heuristic method based on modularity optimization.  

We developed, for Seurat, SIMLR, griph and scanpy, a procedure to measure the cluster quality on 

the basis of data structure. The rationale of our approach is that cells belonging to a specific cluster 

should be little affected by changes in the numerosity of the dataset, e.g. removal of 10% of the total 

number of cells used for clustering. Thus, we developed a metrics called CSS (Cell Stability Score), 

which describes the persistence of a cell in a specific cluster upon Jackknife resampling and therefore 

offers a peculiar way of describing cluster stability. Detailed description of CSS metrics is available 



in Supplementary file at section 5.1. CSS is embedded in seuratBootstrap, simlrBootstrap, 

scanpyBootstrap and griphBootstrap. 

Feature selection 

To select the most important features of each cluster we implemented in the anovaLike function the 

edgeR ANOVA-like method for single cells [22] and in the functions seuratPrior and 

genesPrioritization/genesSelection respectively the Seurat and SIMLR genes prioritization methods. 

hfc function allows the visualization of the genes prioritized with the above methods as heatmap and 

provides plots of prioritized genes in each single cell (Figure 6). 

Scalability 

To estimate the scalability of rCASC clustering we used the GSE106264 dataset made of 10,035 cells 

and published by Pace and coworkers in 2018 [23] and the 10,000/33,000/68,000 cells  PBMC human 

datasets, available at 10xGenomics repository (www.10xgenomics.com). We randomly generated 

from the 10035 cells (27998 ENSEMBL GENE IDs) the following subsets of cells: 400, 600, 800, 

1000, 2000, 5000. Moreover for the subsets with more than 600 cells we randomly sampled the genes: 

10000, 8000, 6000, 4000, 2000, 1000, 800. We run SIMLR, tSne, griph and Seurat using 160 

permutations within SeqBox hardware [7]: Intel i7 3.5GHz (4 cores), 32 GB RAM and 500 GB SSD 

disk. SIMLR resulted to be the slowest and, given the above hardware implementation, it cannot 

allocate for the analysis more than 2000 cells (Figure 7A left panel). All the other tools were able to 

handle up to 5000 cells within the limit of 32 GB of RAM available in the hardware setting used in 

this analysis. Computation time was nearly linear for all tools till 1000 cells. Only griph clustering 

resulted to be nearly insensitive to the increasing number of cells (Figure 7A). We extended, for 

Seurat, griph and scanpy, the scalability analysis to 10K, 33K, 68K and 101K cells, using 

10,000/33,000/68,000 cells from PBMC human datasets, available at 10xGenomics repository 

(www.10xgenomics.com), and 101,000 cells dataset, made assembling the above mentioned 33,000 

and 68,000 PBMC datasets. The analysis was executed on a SGI server (10 x CPU E5-4650 2.4GHz 

(16 cores), 1TB RAM, 30 TB SATA raid disk) allocating 40 threads for each analysis. Scanpy 

outperforms the other two methods and griph behaves slightly better than Seurat (Figure 7A right 

panel).  

All the above samples were preprocessed removing ribosomal/mitochondrial protein genes and cells 

with a total count of UMIs lower than 100. 

The computing time as function of increasing number of genes has a quite limited effect on the overall 

computing time (Figure 7B).” 

The definition of the computing time for an analysis depends on multiple parameters: i) the number 

of permutations performed in parallel, ii) the number of cells under analysis, iii) the clustering tool in 

http://www.10xgenomics.com/


use and iv) the hardware used for the analysis. Concerning the amount of RAM required for each 

permutation run in parallel, up to 5000 cells the maximum amount of RAM required is approximately 

4 GB, from 10000 to 100000 cells, the maximum RAM required is approximately 20 GB. 

Independently by the clustering approach and the size of the dataset, we suggest to run at least 100 

permutations to correctly estimate CSS. 

 

Availability of supporting data 

Snapshots of the code and test data are available from the GigaScience GigaDB repository [32]. All 

the docker images are stored in docker hub: https://hub.docker.com/u/repbioinfo  

Availability and requirements 

Project name: rCASC: reproducible Classification Analysis of Single Cell sequencing data 

Project home page: https://github.com/kendomaniac/rCASC; https://github.com/mbeccuti/4SeqGUI  

Operating system: Linux 

Programming language: R and JAVA 

Other Requirements: None 

License: The GNU Lesser General Public License, version 3.0 (LGPL-3.0) 

RRID:SCR_017005 
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the workflow and release code. MB wrote the Java and C++ code, and acted as corresponding author. 
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conversion. SR revised all packages and generated the docker files for docker images maintenance 
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Figure legend 
 

Figure 1: rCASC workflow. Blue boxes indicate preprocessing tools. Yellow boxes define clustering 

tools. Green box indicates genes-signatures tools. 

 

Figure 2: Cell Stability Score versus Silhouette Score calculated on Pace’s dataset (see 

Supplementary file section 8) using SIMLR over a set of number of clusters ranging between 5 and 

8. A) Cell Stability Score violin plot. Mean value and data dispersion suggest that the best number of 

clusters is 5. Cells remain in the same cluster about 80% of the times, repeating the clustering upon 

random removal of 10% of the cells. B) Silhouette Score violin plot. Mean value of the SS distribution 

does not provide clear evidences that one clustering condition is better that another. Furthermore, the 

dispersion of the SS value shrinks as the number of the clusters increases. 

 

Figure 3: Comparison between the analysis features available in rCASC and in the other single-cell 

analysis workflows. 

 

Figure 4: rCASC graphical interface within 4seqGUI. A) Counts table generation menu: this set of 

functions is devoted to the conversion of fastq to a counts table. B) Counts table manipulation menu: 

this set of functions provides inspection, filtering and normalization of the counts table. C) Clustering 

menu: these functions allow the use of SIMLR, tSne, Seurat, griph and scanpy to group cells in 

subpopulations. D) Feature selection menu: this set of functions allows the identification of cluster-

specific subsets of genes and their visualization using heatmaps. 

 

Figure 5: genesUmi plots the number of detectable genes in each cell (a cell is called present if it is 

supported by at least N UMI/reads, suggested values are N=3 for UMI or N=5 for smart-seq 

sequencing [30]) with respect to the number of UMI/cell. mitoRiboUmi calculates the percentage of 

mitochondrial and ribosomal genes with respect to the total number of detected genes in each cell. It 

plots % of mitochondrial genes with respect to % of ribosomal genes. Furthermore, cells are colored 

on the basis of the number of detected genes: A) genesUmi plot for resting CD8+ T-cells [23], 

sequencing average 83,000 reads/cell. B) mitoRiboUmi plot for resting CD8+ T-cells [23]. The 

majority of the cells with less than 100 detected genes groups together and they are characterized by 

high relative percentage of mitochondrial genes and low relative percentage of ribosomal genes. 

Remaining cells are characterized by few detectable genes, 100250 genes/cell, with a percentage of 

ribosomal genes greater than 30%. C) genesUmi plot for Listeria activated CD8+ T-cells [23], 



sequencing average 83,000 reads/cell, it is notable the activated cells show a wider range of detectable 

genes with respect to resting cells (B). D) mitoRiboUmi plot for Listeria activated CD8+ T-cells [23]. 

The majority of the cells are characterized by more the 100 genes and they show low percentage of 

mitochondrial genes and percentage of ribosomal genes between 15% and 35%. The remaining cells, 

with less than 100 detected genes groups together and are characterized by high relative percentage 

of mitochondrial genes and low relative percentage of ribosomal genes. 

 

Figure 6: Heatmap and cell expression plot for prioritized genes. A) Heatmap for the set of 577 genes 

selected for Pace datasets (see Supplementary file section 8) by SIMLR prioritization. B) Nkg7 CPM 

expression in the cell clusters. Nkg7 is expressed in activated T-cells (clusters 1, 2, 4, 5) [31] but not 

in resting T-cells (cluster 3). 

 

Figure 7: Scalability analysis of the clustering tools implemented in rCASC. A) Time required to 

perform 160 permutations as function of increasing number of cells on approximately 20,000 genes. 

Left panel: SIMLR, tSne, Seurat and griph clustering up to 5,000 cells was executed on a SeqBox [7] 

(1 x CPU i7-6770HQ 3.5 GHz (8 cores), 32 GB RAM, 1TB SSD). Right panel: Seurat, griph and 

scanpy analyses were extended until 101,000 cells using an SGI server (10 x CPU E5-4650 2.4GHz 

(16 cores), 1TB RAM, 30 TB SATA raid disk). B) Time required to perform 160 permutations as 

function of increasing number of genes on a set of 800 cells, analysis performed on a SeqBox. 
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Hereafter we report our answers to the reviews’ comments.
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Reviewer #1: The authors incorporated additional clustering methods (Scanpy and Griph) that prove
to be scalable for datasets having larger sizes which corresponds to the field needs.
In particular, Scanpy seems to reveal no issue to scale up to 100K cells in the benchmark executed 
opposite to the other methods. 
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analytical needs for single cells.
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Question 1: Is there any limitation or trick to use for the preprocessing procedures (low cell quality 
filter, normalization, annotation, cell cycle removal, matrix creation) executed before the clustering 
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I presume no because the authors have used them with large dataset. Then, It will be worth 
metioning that in the manuscript with a brief estimate of the computational time / memory needed.

Answer 1: All samples were preprocessed removing ribosomal/mitochondrial protein genes and 
cells with a total count of UMIs lower than 100. This information was added in the scalability 
paragraph: “All the above samples were preprocessed removing ribosomal/mitochondrial protein 
genes and cells with a total count of UMIs lower than 100.”
Concerning the computational time/memory required for the analysis we added the following 
phrase at the end of Scalability paragraph:
“The definition of the computing time for an analysis depends on multiple parameters: i) the 
number of permutations performed in parallel, ii) the number of cells under analysis, iii) the 
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Question 3: I don't understand the use of the term hierarchical clustering in the manuscript and in 
the suppl. material.
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