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sequence data. These methods are characterized based on their ability to genotype
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callers, there are performance limitations that suggest the need for further innovation.
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Abstract 11 

Background: 12 

In recent years, many Structural Variations (SVs) have been identified as having a pivotal role in 13 

causing genetic disease. Nevertheless, the discovery of SVs based on short DNA sequence reads 14 

from next-generation DNA sequence methods is still error-prone, suffering from low sensitivity 15 

and high false discovery. These shortcomings can be partially overcome with the use of long 16 

reads, but the current expense precludes their application for routine clinical diagnostics. SV 17 

genotyping, on the other hand, offers cost-effective application as diagnostic tool in the clinic, 18 

with potentially no false positives and low occurrence of false negatives. 19 

 20 

Results: 21 

Manuscript Click here to download Manuscript Manuscript.docx 
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We assess five state- of-the- art SV genotyping software methods that test short read sequence 22 

data. These methods are characterized based on their ability to genotype certain SV types and 23 

size ranges. Furthermore, we analyze their applicability to parse different VCF file sub-formats, 24 

or to rely on specific meta information that is not always at hand. We compare the SV 25 

genotyping methods across a range of simulated and real data including SVs that were not 26 

found with Illumina data alone. We assess their sensitivity and ability to filter out initial false 27 

discovery calls to assess their reliability. 28 

 29 

Conclusion: 30 

Our results indicate that, although SV genotypers have superior performance to SV callers, 31 

there are performance limitations that suggest the need for further innovation. 32 

 33 

Keywords  34 

Structural Variations, Genotyping, clinical diagnosis, Next Generation Sequencing 35 

 36 

Background 37 

With the continuous advancement of sequencing technologies, our understanding of the 38 

importance of Structural Variations (SVs) is increasing[1]. Structural Variations play critical roles 39 

in evolution[2], genetic diseases (e.g. mendelian or Cancer) [2, 3] and the regulation of 40 

cells/tissues[4]. Furthermore, SVs compromise a substantial proportion of genomic differences 41 

between cell types, individuals, populations and species [1, 4-8]. Structural Variations are 42 

generally identified as being 50bp or longer genomic variations and categorized into five types: 43 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



   
 

   
 

3 

Insertions, Deletions, Duplications, Inversions and Translocations [9]. They are most often 44 

identified by leveraging paired-end, split read signals and coverage information[8].  45 

 46 

Methods for the detection of SVs are still in their infancy, with some procedures reporting high 47 

(up to 89%) levels of false discovery[7, 8, 10-12] (i.e. SVs that are inferred due to artifacts, but 48 

not truly present in the sample) and between 10% to 70% false negatives[5, 7] (i.e. missing 49 

present SVs in the samples). Although the performance of these methods can improve by the 50 

use of long reads, this is often not practical due to high sequencing costs [13-15]. Therefore, 51 

using short reads alone significantly hinders SV discovery for routine clinical diagnosis [16].  52 

 53 

An additional challenge is the interpretation of the possible functional consequences of SVs. 54 

Despite the availability of existing methods to compare SVs (e.g. SURVIVOR [5]) and to study 55 

the potential impact of SVs on genes (VCFanno [17], SURVIVOR_ant [18]), there is still a paucity 56 

of methods to assess their allele frequency among the human populations. These issues lead to 57 

problems that hinder routine screening for SVs in patient data and limit their proper 58 

recognition and characterization for clinical diagnoses.  59 

 60 

The identification of SVs that have been previously identified in other, different samples is in 61 

principle, easier than de novo detection. For known SVs it is possible to computationally detect 62 

SVs directly from short read DNA sequence data in individual per patient samples, guided by 63 

the expected position of split reads and discordant paired reads that can confirm breakpoints. 64 

This is less demanding than calling de novo SVs, since we focus only on specific genomic 65 
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regions. This approach reduces the false discovery rates and therefore, reduces the potential 66 

misdiagnosis of patients. In addition, the false negative rate can be reduced as it is easier to 67 

genotype a variant than to identify a new SV. Genotyping known SVs has further the advantage 68 

that previous studies are likely to have annotated the event, and its possible association with 69 

certain diseases. Such events are recorded in SV databases (e.g. dbVar [19]). 70 

 71 

In this paper, we review the current state of SVs genotyping methods and investigate their 72 

potential applicability for clinical diagnosis. In particular, we address whether these SV 73 

genotypers can re-identify SVs that short read callers were initially blind to (over GiaB [20] call 74 

sets) and how they perform for initially falsely inferred SVs. We precisely map out which 75 

genotypers operate on which types of SVs and their ability to genotype SVs based on sizes. 76 

 77 

Analyses 78 

Existing methods 79 

Here we assess SVs genotyping methods: DELLY [21], Genome STRiP [22], STIX[23], SV2 [24] and 80 

SVTyper [25]. They share a common feature in which they require a bam file of the mapped 81 

reads and a VCF file that will be genotyped for SVs as inputs. Table 1 lists their dependencies 82 

and their ability to genotype certain types of SVs.  83 

 84 

Overall, they can be divided into groups that support only two SV types (e.g. Genome STRiP) up 85 

to methods that support all SV types (SVTyper and DELLY), but require specific meta-86 
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information to do so. In the following, we give a brief description of each method that we 87 

assessed. Further insights can be obtained from their respective publications or manuals. 88 

 89 

 90 

 91 

 92 

Genotyper  Approach SV Type Inputs Dependencies 

Del Ins Inv Dup Tra 

Delly RD, PR, SR ✓   ✓ ✓ ✓ BAM, VCF, 

Ref  

Bcftools [26] 

Svtyper SR, PR ✓   ✓ ✓ ✓ BAM, VCF, 

Ref  

 

SV2 RD, PR, SR ✓     ✓   BAM, SNV 

VCF, VCF, 

Ref, PED file  

 

STIX PR,SR ✓   ✓     BAM 

compressed, 

PED file, 

VCF, Ref  

Excord, Giggle 

[27] 

Genome StRiP RD, PR, SR ✓     ✓    BAM, VCF, 

Ref  

GATK[28] 

Table 1: Overview of the SV genotypers assessed here and their ability to assess different SV types.  RD: read depth, SR: split 93 

reads, PR: paired end reads 94 

DELLY[21] is originally an SV caller that includes a genotype mode to redefine multi-sample 95 

VCFs. It operates on split and paired-end reads to genotype deletions, duplications, inversions 96 
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and translations. However, for all types except the deletions, DELLY requires a sequence 97 

resolved call in its own format to be able to estimate the genotype. 98 

 99 

Genome STRiP[22] genotypes only deletions and duplications. The unique aspect of Genome 100 

STRiP is that it was designed to genotype multiple samples simultaneously. It requires the GATK 101 

pipeline and prepackaged reference metadata bundles.  102 

 103 

STIX[23], which is the most recently developed method included here, is designed the other 104 

way around. First, it extracts the discordant read pairs and split reads and generates a 105 

searchable index per sample. This index can then be queried if it supports a particular variant. 106 

Noteworthy, STIX in the current form only provides information on how many reads support a 107 

variant rather than the genotype itself. This is done with a flag describing whether the reads are 108 

supported by a particular variant and the number of reads supporting it. 109 

 110 

SVTyper[25] uses a Bayesian likelihood model that is based on discordant paired-end reads and 111 

split reads. It was designed to genotype deletions, duplications, inversions and translocations. 112 

However, for the latter, it requires specific ID tags provided by Lumpy[29] to genotype them.  113 

 114 

SV2[24] uses a support vector machine learning to genotype deletions and duplications based 115 

on discordant paired-end, split read and coverage. Furthermore, it was the only SV genotyper 116 

assessed here that leverages SNP calls for its prediction.  117 

 118 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



   
 

   
 

7 

Evaluation of SVs computational genotypers based on simulated data 119 

To first assess the performance of genotyping methods for SVs, we simulated data sets with 120 

100bp Illumina like paired-end reads. Each data set includes 20 SVs simulated for a certain SVs 121 

type (duplications, indels, inversions and translocation) and a certain size range (100bp, 250bp, 122 

500bp, 1kbp, 2kbp, 5kbp, 10kbp, 50kbp). For each of the data sets, we called SVs using 123 

SURVIVOR[5] based on a union set of DELLY, Manta[30], Lumpy[29] calls to include true positive 124 

as well as false positive SVs calls (see methods). Given the nature of the simulated data, we only 125 

observed 17 false discoveries while we were missing 17.25% of the simulated SVs. 126 

Supplementary Table 1 shows the results for the discovery set over the 32 simulated data sets 127 

based on 640 simulated SVs on chr21 and chr22. 128 
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 129 

Figure 1: Evaluation of Illumina like reads to assess the SV genotyper ability to re-identify certain types and size ranges. 130 

SURVIVOR is a union set of Delly, Lumpy and Manta to generate the VCF file as an input for the SV genotypers. The evaluation is 131 

based on the ability to discover SVs in the first place (SURVIVOR). Noteworthy, Delly and SVtyper can genotype more SVs given 132 

their costume information provided from their caller which are Delly and SVTyper, respectively.  133 

The generated VCF files were taken as input for five SV genotyper callers: DELLY, Genome 134 

STRiP, SV2, STIX and SVTyper. Figure 1 provides an overview with respect to the ability to 135 

discover SVs in the first place (SURVIVOR). Supplementary Table 1 shows the result for all 136 

genotypers over the 32 simulated data sets. Interestingly, we observed that not all methods 137 
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accept a standardized VCF file and certain SV types require unique information. For example, 138 

while SVTyper is able to genotype deletions, inversion and duplications, it will just work on BND 139 

(translocation) events if the ID pairs provided by Lumpy are included in the VCF file. Also DELLY, 140 

which is also capable to infer deletions, inversion, duplications and translocations types of SVs 141 

is only able to genotype deletions given a standardized VCF without the extra information.  142 

 143 

The overall performance of each method was evaluated based on the input VCF generated by 144 

SURVIVOR. Thus, if all of the short read based SV callers were not able to resolve the insertions 145 

of 5kbp, then it would count as wrong/missed identified SV. In addition, we assessed the ability 146 

for the SV genotyper to filter out falsely called SVs. SVTyper (64.70%) had the highest rate of 147 

correctly genotyping SVs to be present, followed by SV2 (41.57%). Importantly, SV2 was able to 148 

genotype deletions and duplications, while SVTyper assessed deletions, duplications and 149 

inversions. Genome STRiP had the lowest (13.40%) success rate of all methods because it can 150 

only genotype deletions and duplications. One possible reason to keep in mind for this is that 151 

Genome STRiP was designed for population-based genotyping. SVTyper improved marginally 152 

(86.26%) when BND events, which represented translocations, were ignored, followed by the 153 

second best method SV2 (83.15%) when focused on deletions and duplications.  154 

 155 

Next, we assessed the ability of the SV genotypers to reduce the false positives, i.e. initially 156 

wrongly inferred SVs. This will represent the scenario of accidentally genotyping a SV that is not 157 

represented in the sample due to sequencing or mapping biases. Over the 32 call sets, 158 

SURVIVOR had only 17 false positive calls for the simulated data. Genome STRiP performed best 159 
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with filtering out all falsely detected SVs, but suffers from the lowest ability to genotype SV 160 

variations. STIX performed better as it can filter out 13 (76.47%) of the false positive SV calls. In 161 

contrast, STIX also achieved a higher (71.76%) performance for correctly identifying SVs. 162 

Although SVTyper had the highest accurately genotyped SVs it performed poorly by filtering out 163 

81.82% of the false positives obtained during the discovery phase. 164 

 165 

In summary, we observed that none of the methods is clearly superior for correctly genotyping 166 

and correctly filtering/non-reporting variations. Especially non of the program were able to 167 

genotype insertions in the simulated data sets. Nevertheless, STIX and SV2 showed a good 168 

performance with a good balance of sensitivity and being able to correctly discard false 169 

positives.  170 

 171 

Evaluation of SVs computational genotypers based on GiaB Ashkenazy Son 172 

We further assessed the ability to genotype SVs calls based on the long read DNA sequence 173 

data from the Ashkenazy Son (HG002). We are using the current released call set (v0.5.0) from 174 

GiaB, which was generated using sequence resolved calls from multiple technologies such as 175 

Illumina, PacBio, BioNano etc. and multiple SV callers and de novo assemblies based on these 176 

technologies or a combination of them [20]. Here we are giving this call set the benefit of 177 

doubt. It is important to note that 8,195 of these SV calls could not be initially discovered with 178 

any Illumina assembly or caller but originated from PacBio based calls or BioNano based calling.  179 

We are using this call set to genotype the SVs based on a 300x Illumina bam file for HG002 and 180 

compare the obtained SV genotype predictions to the genotypes reported by GiaB. The first 181 
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observation was that most of the SV genotypers were unable to process the VCF file provided 182 

by GiaB. We used SURVIVOR to reduce the information included in the GiaB VCF file. Next, we 183 

filtered out the reported INS and complex events from this call set as most SV genotypers 184 

crashed while assessing these entries. Unfortunately, we were not able to run GenomeSTRiP 185 

successfully as it kept crashing even on a subset of these calls. 186 

 187 

 188 

 189 

Figure 2: Evaluation based on GiaB call set v0.5.0 deletions only.  190 

 191 

Figure 2 displays the detectable deletions based on the GiaB call set (v0.5.0) per SV genotyper. 192 

STIX performed the best among all methods identifying 24,574 (78.74%) of the provided 193 
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deletions. It is important to note that STIX does not currently report genotypes. Thus, we relied 194 

only on the information if STIX found reads that support this event rather than genotype 195 

information. DELLY performed as the second best identifying 18,528 (59.37%) deletions 196 

followed by SVTyper (34.24%) and SV2 (9.99%). Only 6.27% of the deletion calls from GiaB call 197 

set were genotyped by all SV genotype methods. Although this is a very low percent, it is 198 

positive that up to 78.74% of the deletions could be successfully identified out of 62,676 199 

deletions (20bp+) in total. Noteworthy, 4921 deletions out of this set were never observed by 200 

any Illumina based caller or assembly. This highlights the potential benefit of using SV 201 

genotypers. 202 

 203 

Next, we assessed the size regimes that SVs genotypers were able to recognize SVs 204 

(Supplementary Table 2 ). The deletions from GiaB call set 0.5.0 ranged from 20bp up to 205 

997kbp with a median size of 36bp. All of the SV genotypers were able to identify deletions 206 

down to a size of 20bp. Interestingly we observed different median sizes of genotyped 207 

deletions, which represents the ability of specific methods to genotype small or large events.  208 

DELLY (31bp) had the lowest median SV size followed by SVTyper (32bp), STIX (35bp) and SV2 209 

(116bp). Furthermore, DELLY (816kbp) genotyped also the longest SVs followed by STIX 210 

(694kbp), SV2 (656bkbp) and SVTyper (656bkbp). 211 

 212 

When assessing the genotype concordance (Supplementary Table 3 ), DELLY performed the 213 

best with an agreement rate of 87.08% given that it identified the variant in the first place. SV2 214 

achieved a 78.59% of genotype agreement, however it had one of the lowest recall rates 215 
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(9.99%). SVTyper showed a 67.79% genotypes concordance. We did not evaluate STIX in this 216 

perspective since it does not report a genotype estimation in its current version. 217 

 218 

In summary, STIX and DELLY performed the best in re-identifying the deletions reported by GiaB 219 

for HG0002. Furthermore, DELLY (87.08%) had also the highest agreement over the genotypes 220 

with the GiaB call set. 221 

 222 

Discussion 223 

In this paper, we assessed the current state of SV genotyping methods. These methods are 224 

essential not just in assigning genotypes to discovery methods, but represents the ability to 225 

genotype already known, validated and functional annotated SVs. This latter aspect is 226 

important for clinical applications as it represents an early opportunity to reliably assess 227 

relevant SVs in the clinic. 228 

 229 

Unfortunately, we discovered that many SV genotypers are only designed for their de novo SV 230 

caller counterpart in mind to report genotype estimations. This is especially obvious for DELLY, 231 

which can genotype all types subsequent to its discovery method, but only works on deletions 232 

based on a standardized VCF file. The same behavior, although reduced, can be observed by 233 

SVTyper that relies on specific IDs associated to translocations (in this case BND) events 234 

provided by Lumpy. 235 

 236 
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We were able to establish the first assessments of sensitivity and false discovery rate for SV 237 

genotypers not only focusing on Illumina detectable SVs, but further for SVs that were 238 

impossible to be discovered by Illumina alone. The latter becomes important as the field is 239 

continuously identifying SVs that based on long read technologies such as PacBio or Oxford 240 

Nanopore [13, 15]. These technologies often enable the detection of more complex SVs and 241 

also the detection of variations in regions that are hard to assess by Illumina alone. Thus, we 242 

rely on SV genotyper to assess if a particular SVs is present either in experiments with large 243 

sample sizes to evaluate the allele frequency or in clinical screenings to ease the diagnosis of 244 

patients [16].  245 

 246 

Unfortunately, our study also highlights multiple general issues of SV genotyping methods. 247 

First, we observed that the methods tested here suffer from a limitation of SV types that they 248 

are able to assess. None of the methods were able to assess novel insertions that also 249 

represent repeat expansions, which is a subclass of SVs recognized to for their impact in cancer 250 

and other phenotypes. Second, most of the methods suffer from a very strict VCF formatting 251 

requirement ignoring the current standard and relied further on individual flags that are hard or 252 

impossible to regenerate. 253 

 254 

Overall STIX performed well on simulated and GiaB based SVs calls. It showed a good balance of 255 

sensitivity vs false discovery and was able to be run on standard VCF files. Nevertheless, the 256 

lack of genotype estimations is a clear limitation since it is often relevant to know if a variation 257 

is heterozygous or homozygous. Overall, the current methods, although limited in performance, 258 
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represents an advantage to diagnose patients with SVs compared to the discovery of SVs simply 259 

because of their much reduced false discovery rate. 260 

 261 

Potential implications  262 

SVs genotyping represents a possibility to infer SVs in clinical diagnosis by solving the problems 263 

of false discovery and false negative called SVs, compared to the discovery SV methods. 264 

However, genotyping SVs methods seem to require additional development to improve their 265 

ability to operate on different size regimes and all types of SVs (including insertions). Here we 266 

presented an overview of the current state-of-the-art methods, which highlights the need to 267 

improve upon the current state of the art to enable SV diagnosis of patients in clinical setups. 268 

 269 

Methods 270 

Simulated datasets 271 

We simulated 20 SVs per dataset each for a certain type (indel, inversions, duplication and 272 

translocation) and a certain size (100bp, 250bp, 500bp, 1kbp, 2kbp, 5kbp, 10kbp, 50kbp) for chr 273 

21 and 22 using SURVIVOR simSV. These simulations included a 1% SNP rate. After the 274 

simulation of the sample genomes we simulated reads using Mason [31] with the following 275 

parameter “Illumina -ll 500 -n 100 –N 39773784 -sq -mp -rn 2 “ to generate 100bp paired-end 276 

Illumina like reads. The reads were mapped with BWA MEM[32] using the –M option to mark 277 

duplicated reads to the entire genome (GRCh38-2.1.0). Subsequently, we ran Manta (v1.2.1), 278 

DELLY (v0.7.8) and Lumpy (v0.2.13) to call SVs over the simulated datasets. For each data set 279 

we generated a union call set based on all 3 callers using SURVIVOR merge (v1.0.3) allowing 280 
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1kbp distance and allowing only the same SV type to be merged.  This union set, as well as the 281 

SV genotyper output, was evaluated with SURVIVOR eval for the following categories: 282 

Precise: calling an SVs within 10bp and inferring the correct type. Indicated: allowing a 283 

maximum of 1kbp between the simulated and the called breakpoints and ignoring the 284 

predicted type of SVs. Missing: a simulated SVs but not re identified. Additional: a SVs that was 285 

called, but not simulated. The results were summarized using a costume R script operating on 286 

the output of SURVIVOR available on request.  287 

 288 

SV genotyping: simulated data 289 

For genotyping the simulated data set we used the union call VCF based on the SURVIVOR 290 

output as described above. We used DELLY (v0.7.8) specifying the output (-o), the vcf to be 291 

genotyped (-v) and the reference file (-g) as fasta and the bam file. We ran DELLY with the VCF 292 

file from SURVIVOR over the SV discovery caller. The obtained output from DELLY was 293 

converted using bcftools view (v1.7 (using htslib 1.7)) [26] to obtain a VCF file and was filtered 294 

to ignore genotyped calls with 0/0.  SVTyper (v0.1.4) was used on the VCF generated from 295 

SURVIVOR based on the discovery phase. We filtered the obtained VCF for genotypes that could 296 

not have been accessed by SVTyper. SV2 (version 1.4.3) was run on the SURVIVOR generated 297 

VCF file for SVs genotyping but required also a SNV file. We generated this SNV file using 298 

Freebayes (v1.1.0-46-g8d2b3a0-dirty) [33] with the default parameters. The resulting SNV file 299 

from Freebayes was compressed and indexed by bgzip and tabix –p vcf [34], respectively. SV2 300 

report their result in three folders (sv2_preprocessed, sv2_features and sv2_genotypes) from 301 

which we used the result reported in sv2_genotypes to benchmark the method. Genome 302 
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STRIP(v2.00.1774) was used following the suggested parameters and the VCF file generated by 303 

SURVIVOR. STIX (early version available over GitHub on April 6th 2018) was used to index the 304 

bam file using giggle (v0.6.3) [27], excord (v0.2.2) and samtools (v1.7) [26] following the 305 

suggested pipeline. Next, we run STIX with “-s 500” on the VCF files from SURVIVOR and 306 

ignoring output VCF entries with "STIX_ZERO=1", which filters out entries where STIX does not 307 

find any evidence for the SV.  308 

 309 

SV genotyping: GiaB 310 

We obtained the GiaB SV call set (v0.5.0) from ftp://ftp-311 

trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/NIST_UnionSVs_12122017/ . 312 

The SNV calls were taken from here ftp://ftp-313 

trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/latest/GRCh37/ 314 

and the corresponding bam file from ftp://ftp-315 

trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/NIST_HiSeq_HG00316 

2_Homogeneity10953946/NHGRI_Illumina300X_AJtrio_novoalign_bams/HG002.hs37d5.300x.b317 

am . The SVs call set needed to be filtered and reduced for just one sample (HG002) using cat 318 

and SURVIVOR and was subsequently filtered for deletions only. We ran all SV genotyping 319 

methods like described above. Subsequently,we filtered the results for genotypes: 0/1 and 1/1  320 

with the exception of STIX. STIX was filtered base on if it reports reads to support the SVs or 321 

not. This was necessary since STIX does currently not report genotypes. After filtering we 322 

merged all data sets together including the original VCF provided using SURVIVOR with a 323 

maximum distance of 10bp and requiring the same types. We analyzed these merged calls 324 
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based on if the original call set reported a genotype to be heterozygous or homozygous 325 

alternative. The Venn diagram was generated based on the support vector reported by 326 

SURVIVOR and the R package Venn.diagram. The length of the SVs that were able to be 327 

genotyped were extracted using awk filtering for existing calls. 328 

 329 

Availability of data and materials 330 

The data sets used in this study are available here ftp://ftp-331 

trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/NIST_UnionSVs_12122017/ and 332 

from ftp://ftp-333 

trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/NIST_HiSeq_HG00334 

2_Homogeneity10953946/NHGRI_Illumina300X_AJtrio_novoalign_bams/HG002.hs37d5.300x.b335 

am. The simulated data sets are available on request. 336 

 337 

Funding 338 

This research was supported by National Institutes of Health award (UM1 HG008898). 339 

 340 

Authors’ contributions 341 

VC and FS performed the analysis. VC, FS and RG wrote the manuscript. FS and RG directed the 342 

project.  343 

 344 

Ethics approval and consent to participate 345 

Not applicable 346 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/NIST_UnionSVs_12122017/
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/NIST_UnionSVs_12122017/
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/NIST_HiSeq_HG002_Homogeneity10953946/NHGRI_Illumina300X_AJtrio_novoalign_bams/HG002.hs37d5.300x.bam
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/NIST_HiSeq_HG002_Homogeneity10953946/NHGRI_Illumina300X_AJtrio_novoalign_bams/HG002.hs37d5.300x.bam
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/NIST_HiSeq_HG002_Homogeneity10953946/NHGRI_Illumina300X_AJtrio_novoalign_bams/HG002.hs37d5.300x.bam
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/NIST_HiSeq_HG002_Homogeneity10953946/NHGRI_Illumina300X_AJtrio_novoalign_bams/HG002.hs37d5.300x.bam


   
 

   
 

19 

 347 

Consent for publication 348 

Not applicable 349 

 350 

Competing interests 351 

F.J.S. has participated in PacBio sponsored meetings over the past few years and have received 352 

travel reimbursement and honoraria for presenting at these events 353 

 354 

References 355 

1. Weischenfeldt J, Symmons O, Spitz F and Korbel JO. Phenotypic impact of genomic 356 

structural variation: insights from and for human disease. Nat Rev Genet. 2013;14 357 

2:125-38. doi:10.1038/nrg3373. 358 

2. Lupski JR. Structural variation mutagenesis of the human genome: Impact on disease 359 

and evolution. Environ Mol Mutagen. 2015;56 5:419-36. doi:10.1002/em.21943. 360 

3. Macintyre G, Ylstra B and Brenton JD. Sequencing Structural Variants in Cancer for 361 

Precision Therapeutics. Trends Genet. 2016;32 9:530-42. doi:10.1016/j.tig.2016.07.002. 362 

4. Consortium GT, Laboratory DA, Coordinating Center -Analysis Working G, Statistical 363 

Methods groups-Analysis Working G, Enhancing Gg, Fund NIHC, et al. Genetic effects on 364 

gene expression across human tissues. Nature. 2017;550 7675:204-13. 365 

doi:10.1038/nature24277. 366 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



   
 

   
 

20 

5. Jeffares DC, Jolly C, Hoti M, Speed D, Shaw L, Rallis C, et al. Transient structural 367 

variations have strong effects on quantitative traits and reproductive isolation in fission 368 

yeast. Nat Commun. 2017;8:14061. doi:10.1038/ncomms14061. 369 

6. Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, et al. Large-scale copy 370 

number polymorphism in the human genome. Science. 2004;305 5683:525-8. 371 

doi:10.1126/science.1098918. 372 

7. Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J, et al. An 373 

integrated map of structural variation in 2,504 human genomes. Nature. 2015;526 374 

7571:75-81. doi:10.1038/nature15394. 375 

8. Tattini L, D'Aurizio R and Magi A. Detection of Genomic Structural Variants from Next-376 

Generation Sequencing Data. Front Bioeng Biotechnol. 2015;3:92. 377 

doi:10.3389/fbioe.2015.00092. 378 

9. Alkan C, Coe BP and Eichler EE. Genome structural variation discovery and genotyping. 379 

Nat Rev Genet. 2011;12 5:363-76. doi:10.1038/nrg2958. 380 

10. English AC, Salerno WJ and Reid JG. PBHoney: identifying genomic variants via long-read 381 

discordance and interrupted mapping. BMC Bioinformatics. 2014;15:180. 382 

doi:10.1186/1471-2105-15-180. 383 

11. Mills RE, Walter K, Stewart C, Handsaker RE, Chen K, Alkan C, et al. Mapping copy 384 

number variation by population-scale genome sequencing. Nature. 2011;470 7332:59-385 

65. doi:10.1038/nature09708. 386 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



   
 

   
 

21 

12. Teo SM, Pawitan Y, Ku CS, Chia KS and Salim A. Statistical challenges associated with 387 

detecting copy number variations with next-generation sequencing. Bioinformatics. 388 

2012;28 21:2711-8. doi:10.1093/bioinformatics/bts535. 389 

13. Sedlazeck FJ, Rescheneder P, Smolka M, Fang H, Nattestad M, von Haeseler A, et al. 390 

Accurate detection of complex structural variations using single-molecule sequencing. 391 

Nat Methods. 2018;  doi:10.1038/s41592-018-0001-7. 392 

14. Goodwin S, McPherson JD and McCombie WR. Coming of age: ten years of next-393 

generation sequencing technologies. Nat Rev Genet. 2016;17 6:333-51. 394 

doi:10.1038/nrg.2016.49. 395 

15. Chaisson MJ, Huddleston J, Dennis MY, Sudmant PH, Malig M, Hormozdiari F, et al. 396 

Resolving the complexity of the human genome using single-molecule sequencing. 397 

Nature. 2015;517 7536:608-11. doi:10.1038/nature13907. 398 

16. Merker JD, Wenger AM, Sneddon T, Grove M, Zappala Z, Fresard L, et al. Long-read 399 

genome sequencing identifies causal structural variation in a Mendelian disease. Genet 400 

Med. 2018;20 1:159-63. doi:10.1038/gim.2017.86. 401 

17. Pedersen BS, Layer RM and Quinlan AR. Vcfanno: fast, flexible annotation of genetic 402 

variants. Genome Biol. 2016;17 1:118. doi:10.1186/s13059-016-0973-5. 403 

18. Sedlazeck FJ, Dhroso A, Bodian DL, Paschall J, Hermes F and Zook JM. Tools for 404 

annotation and comparison of structural variation. F1000Res. 2017;6:1795. 405 

doi:10.12688/f1000research.12516.1. 406 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



   
 

   
 

22 

19. Lappalainen I, Lopez J, Skipper L, Hefferon T, Spalding JD, Garner J, et al. DbVar and 407 

DGVa: public archives for genomic structural variation. Nucleic Acids Res. 2013;41 408 

Database issue:D936-41. doi:10.1093/nar/gks1213. 409 

20. Zook JM, Catoe D, McDaniel J, Vang L, Spies N, Sidow A, et al. Extensive sequencing of 410 

seven human genomes to characterize benchmark reference materials. Sci Data. 411 

2016;3:160025. doi:10.1038/sdata.2016.25. 412 

21. Rausch T, Zichner T, Schlattl A, Stutz AM, Benes V and Korbel JO. DELLY: structural 413 

variant discovery by integrated paired-end and split-read analysis. Bioinformatics. 414 

2012;28 18:i333-i9. doi:10.1093/bioinformatics/bts378. 415 

22. Handsaker RE, Van Doren V, Berman JR, Genovese G, Kashin S, Boettger LM, et al. Large 416 

multiallelic copy number variations in humans. Nat Genet. 2015;47 3:296-303. 417 

doi:10.1038/ng.3200. 418 

23. Layer RM:  https://github.com/ryanlayer/stix (2018). 419 

24. Antaki D, Brandler WM and Sebat J. SV2: accurate structural variation genotyping and 420 

de novo mutation detection from whole genomes. Bioinformatics. 2018;34 10:1774-7. 421 

doi:10.1093/bioinformatics/btx813. 422 

25. Chiang C, Layer RM, Faust GG, Lindberg MR, Rose DB, Garrison EP, et al. SpeedSeq: 423 

ultra-fast personal genome analysis and interpretation. Nat Methods. 2015;12 10:966-8. 424 

doi:10.1038/nmeth.3505. 425 

26. Li H. A statistical framework for SNP calling, mutation discovery, association mapping 426 

and population genetical parameter estimation from sequencing data. Bioinformatics. 427 

2011;27 21:2987-93. doi:10.1093/bioinformatics/btr509. 428 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://github.com/ryanlayer/stix


   
 

   
 

23 

27. Layer RM, Pedersen BS, DiSera T, Marth GT, Gertz J and Quinlan AR. GIGGLE: a search 429 

engine for large-scale integrated genome analysis. Nat Methods. 2018;15 2:123-6. 430 

doi:10.1038/nmeth.4556. 431 

28. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The 432 

Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA 433 

sequencing data. Genome Res. 2010;20 9:1297-303. doi:10.1101/gr.107524.110. 434 

29. Layer RM, Chiang C, Quinlan AR and Hall IM. LUMPY: a probabilistic framework for 435 

structural variant discovery. Genome Biol. 2014;15 6:R84. doi:10.1186/gb-2014-15-6-436 

r84. 437 

30. Chen X, Schulz-Trieglaff O, Shaw R, Barnes B, Schlesinger F, Kallberg M, et al. Manta: 438 

rapid detection of structural variants and indels for germline and cancer sequencing 439 

applications. Bioinformatics. 2016;32 8:1220-2. doi:10.1093/bioinformatics/btv710. 440 

31. Holtgrewe M. Mason-A Read Simulator for Second Generation Sequencing Data.  2010. 441 

Institut für Mathematik und Informatik, Freie Universität Berlin. 442 

32. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. 443 

ArXiv e-prints. 2013;  doi: arXiv:1303.3997 [q-bio.GN]. 444 

33. Garrison E and Marth G. Haplotype-based variant detection from short-read sequencing. 445 

ArXiv e-prints. 2012. 446 

34. Li H. Tabix: fast retrieval of sequence features from generic TAB-delimited files. 447 

Bioinformatics. 2011;27 5:718-9. doi:10.1093/bioinformatics/btq671. 448 

 449 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



  

Supplementary Material

Click here to access/download
Supplementary Material

Tables.xlsx

https://www.editorialmanager.com/giga/download.aspx?id=59007&guid=be89cb24-1cc8-41a2-bda9-bbe4c1e88a56&scheme=1


February 1, 2019 
 
To the editors, 
 
We are pleased to share our manuscript with you for consideration as a 
manuscript in GigaScience. Our work entitled “Evaluation of 
computational genotyping of Structural Variations for clinical 
diagnoses.”, represents the first systematically assessment of Structural 
Variation (SV) genotyping methods and their individual advances and 
disadvantages.  
 
As you may know, calling SVs using short reads is often discussed as error-prone and lacking of 
sensitivity. On the other hand, more and more papers appear highlighting the impact of SVs on 
different human diseases and across phenotypes among many species ranging from bacteria to 
humans. Here we suggest to utilize SV genotyping as a way to overcome this paradigm and to 
scan for annotated SVs in short read based sequencing data sets on a routine basis. This reduces 
the false positive rate significantly compared to short read based de novo SV calling.  
 
In our manuscript, we further assess the ability and state of the art of these methods to recall 
SVs. This is first done over simulated data but then extended using the new gold standard from 
GIAB.  Here we focus on variants that short read based calling is blind to and that were only 
found with long read technologies. We could show that our proposed strategy enables the 
detection of SVs also with short read based methods. This allows a broader screen for these 
important variant class for multiple studies and even a path forward for clinical screenings.  
 
In the end, we conclude giving advice to which method performed the best and which method to 
choose to accomplish these goals. We further highlight general problems to the currently existing 
methods and make suggestions for future developments. Thus, we think our manuscript is of 
interest to the readers of GigaScience and in general for people that are currently interested in 
SVs and genetic diversity, but are cautious about the low performance of SV calling based on 
short read data.  
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