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Abstract 11 

Background: 12 

In recent years, Structural Variation (SV) has been identified as having a pivotal role in causing 13 

genetic disease. The discovery of SVs based on short DNA sequence reads from next-generation 14 

DNA sequence methods is error-prone, suffering from low sensitivity and high false discovery. 15 

These shortcomings can be partially overcome with extensive orthogonal validation methods, 16 

or use of long reads, but currently the cost of either precludes their application for routine 17 

clinical diagnostics. In contrast, SV genotyping of known sites of SV occurrence is relatively 18 

robust. Structural Variant genotyping therefore offers a cost-effective clinical diagnostic tool, 19 

with potentially few false positives and low occurrence of false negatives, even when applied to 20 

short-read DNA sequence data. 21 
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 22 

Results: 23 

We assess five state- of-the- art SV genotyping software methods, applied to short read 24 

sequence data. The methods are characterized based on their ability to genotype different SV 25 

types, spanning different size ranges. Furthermore, we analyze their ability to parse different 26 

VCF file sub-formats and assess their reliance on specific metadata. We compare the SV 27 

genotyping methods across a range of simulated and real data including SVs that were not 28 

found with Illumina data alone. We assess sensitivity and the ability to filter initial false 29 

discovery calls. 30 

 31 

Conclusion: 32 

Our results indicate that, although SV genotyping software methods have superior performance 33 

to SV callers, there are limitations that suggest the need for further innovation. 34 

 35 

 36 

Keywords (3-10) 37 
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 39 

Background 40 

With the continuous advancement of sequencing technologies, our understanding of the 41 

importance of Structural Variation (SV) is increasing[1]. Structural Variation has a critical role in 42 

evolution[2], genetic diseases (e.g. mendelian or cancer) [2, 3] and the regulation of genes in 43 
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different cells and tissues[4]. Furthermore, SVs constitute a substantial proportion of the 44 

genomic differences between cell types, individuals, populations and species [1, 4-8]. Structural 45 

Variation is generally defined as 50bp or longer genomic variation and is categorized into five 46 

types: Insertions, Deletions, Duplications, Inversions and Translocations [9]. Structural Variation 47 

is most often identified by leveraging combinations of paired-end, split read signals and 48 

coverage information[8].  49 

 50 

Methods for the de novo detection of SVs are still in their infancy, with some procedures 51 

reporting high (up to 89%) levels of false discovery[7, 8, 10-12] (i.e. SVs that are inferred due to 52 

artifacts, but not truly present in the sample) and between 10% to 70% false negatives[5, 7] (i.e. 53 

missing present SVs in the samples). Although deeper DNA sequence coverage is often used to 54 

improve de novo discovery of SVs, for example in cancer samples [13], this alone does not solve 55 

the sensitivity and accuracy shortcomings. The performance of these methods can be improved 56 

by the use of long DNA sequence reads, however this is often not practical due to high 57 

sequencing costs [14-16]. Therefore, using short reads alone significantly hinders SV discovery 58 

for routine clinical diagnosis [17].  59 

 60 

An additional challenge is the interpretation of the possible functional consequences of SVs. 61 

Despite the availability of existing methods to compare SVs (e.g. SURVIVOR [5]) and to study 62 

the potential impact of SVs on genes (VCFanno [18], SURVIVOR_ant [19]), there is still a paucity 63 

of methods to assess their allele frequency among human populations. These issues can hinder 64 
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routine screening for SVs and limit their proper recognition and characterization for clinical 65 

diagnoses.  66 

 67 

The identification of SVs that have been previously identified in different samples is, in 68 

principle, easier than de novo detection. For known SVs it is possible to computationally detect 69 

SVs directly from short read DNA sequence data in data from individual patient samples, guided 70 

by the expected position of split reads and discordant paired reads that can confirm 71 

breakpoints. This less demanding approach reduces false discovery rates and therefore renders 72 

the methods more suitable for clinical applications. In addition, the false negative rate can be 73 

reduced as it is easier to genotype a variant than to identify a new SV. Focusing on known SVs 74 

has further the advantage, compared with de novo discovery of SVs, that SV databases will have 75 

likely recorded the event, together with its possible association with disease (e.g. dbVar [20]). 76 

 77 

Here, we review the current state of SVs genotyping methods and investigate their potential for 78 

application in clinical diagnoses. In particular, we address whether these SV calling softwares (‘ 79 

SV genotypers’) can re-identify SVs that short read de novo SV callers failed to identify (over 80 

GIAB [21, 22]call sets) and how they perform on initially falsely inferred SVs. We describe which 81 

SV genotypers most efficiently identify which types of SVs and the effect of SV sizes. 82 

 83 
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Analyses 84 

Existing methods 85 

We assessed SVs genotypers: DELLY [23], Genome STRiP [24], STIX[25], SV2 [26] and SVTyper 86 

[27]. They share a common feature in which they require a bam file of the mapped reads and a 87 

VCF file that will be genotyped for SVs as inputs. Table 1 lists their dependencies and their 88 

ability to genotype certain types of SVs.  89 

 90 

Overall, they can be divided into groups that support only two SV types (e.g. Genome STRiP) up 91 

to methods that support all SV types (SVTyper and DELLY), but require specific meta-92 

information to do so. In the following, we give a brief description of each method that we 93 

assessed. Further insights can be obtained from their respective publications or manuals. 94 

 95 

Genotyper  Approach SV Type Inputs Dependencies 

Del Ins Inv Dup TRA/BND 

Delly RD, PR, SR ✓   * * * BAM, VCF, Ref  Bcftools [28] 

Svtyper SR, PR ✓   ✓ ✓ * BAM, VCF, Ref   

SV2 RD, PR, SR ✓     ✓   BAM, SNV VCF, 

VCF, Ref, PED 

file  

 

STIX PR,SR ✓   ✓     BAM 

compressed, 

Excord, Giggle 

[29] 
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PED file, VCF, 

Ref  

Genome 

StRiP 

RD, PR, SR ✓     ✓    BAM, VCF, Ref  GATK[30] 

Table 1: Overview of the SV genotypers assessed here and their ability to assess different SV types. ✓  : works on a 96 

standardized VCF file.  *: marks dependencies on specialized tags in the VCF files. RD: read depth, SR: split reads, PR: paired 97 

end reads 98 

DELLY[23] is originally an SV caller that includes a genotype mode to redefine multi-sample 99 

VCFs. It operates on split and paired-end reads to genotype deletions, duplications, inversions 100 

and translocations. However, for all types except the deletions, DELLY requires a sequence 101 

resolved call in its own format to be able to estimate the genotype. 102 

 103 

Genome STRiP[24] genotypes only deletions and duplications. The unique aspect of Genome 104 

STRiP is that it was designed to genotype multiple samples simultaneously. It requires the GATK 105 

pipeline and prepackaged reference metadata bundles.  106 

 107 

STIX[25], which is the most recently developed method included here, utilizes a reverse 108 

approach to the previous two examples. First, STIX extracts the discordant read pairs and split 109 

reads and generates a searchable index per sample. This index can then be queried if it 110 

supports a specific variant call. Noteworthy, STIX in the current form only provides information 111 

on how many reads support a variant rather than the genotype itself. This is done with a flag 112 

describing whether the reads are supported by a particular variant and the number of reads 113 

supporting it. 114 
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 115 

SVTyper[27] uses a Bayesian likelihood model that is based on discordant paired-end reads and 116 

split reads. It was designed to genotype deletions, duplications, inversions and translocations. 117 

For the latter, however, SVTyper requires specific ID tags provided by Lumpy[31] to complete 118 

genotyping.  119 

 120 

SV2[26] uses a support vector machine learning to genotype deletions and duplications based 121 

on discordant paired-end, split read and coverage. Furthermore, it was the only SV genotyper 122 

assessed here that leverages SNP calls for its prediction.  123 

 124 

Evaluation of SVs computational genotypers based on simulated data 125 

To first assess the performance of genotyping methods for SVs, we simulated data sets with 126 

100bp Illumina like paired-end reads. Each data set includes 20 homozygous SVs simulated for a 127 

certain SVs type (duplications, indels, inversions and translocation) and a certain size range 128 

(100bp, 250bp, 500bp, 1kbp, 2kbp, 5kbp, 10kbp, 50kbp). For each of the data sets, we called 129 

SVs using SURVIVOR[5] based on a union set of DELLY, Manta[32], Lumpy[31] calls to include 130 

true positive as well as false positive SVs calls (see methods).   131 

 132 

We discovered only 17 false positive calls after the initial SV discovery. This low number of false 133 

positives is in contrast to reports from other studies. However, we are using here simulated 134 

data which does not take into account the complexities involved in regions of SVs and other 135 
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sequencing biases. Interestingly, while this simulated data set represents an ideal case, we still 136 

missed around 17.25% of the simulated SVs.  137 

 138 

Supplementary Table 1 shows the results for the SV discovery set over the 32 simulated data 139 

sets based on 640 simulated SVs on chr21 and chr22. 140 

 141 

 142 

Figure 1: Evaluation of Illumina like reads to assess the SV genotyper ability to re-identify  insertions, deletions, duplications and 143 

inversions over different size ranges (x-axis). The colors indicate the SVs being detected/ genotyped by the respective SV 144 

genotypers. They were classified either precisely (green), indicated (yellow), not detected (red) or falsely identified (brown) (see 145 

Methods). For the SVs genotyped based on SV calls (left) we used SURVIVOR is a union set of Delly, Lumpy and Manta to 146 
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generate the VCF file as an input for the SV genotypers. Noteworthy, Delly and SVtyper can genotype more SVs, given the 147 

custom information from their respective callers- Delly and SVTyper, respectively. When the truth SV set is provided as a start 148 

point (right side) we see marginal improvements across the SV genotyping methods while maintaining the overall trend. 149 

The generated VCF files were taken as input for the five SV genotyper callers: DELLY, Genome 150 

STRiP, SV2, STIX and SVTyper. Figure 1 provides an overview with respect to the ability to 151 

discover SVs in the first place (SURVIVOR). We did not visualize translocations/ BND since none 152 

of the genotypers were able to identify them based upon our standard conform VCF file. 153 

Supplementary Table 1 shows the result for all SV genotypers, applied to the 32 simulated data 154 

sets.  155 

 156 

Interestingly, we observed that certain methods require a specialized VCF file with information 157 

provided specific to one SV caller. For example, while SVTyper is able to genotype deletions, 158 

inversion and duplications, it will work on BND (translocation) events only if the ID pairs 159 

provided by Lumpy are included in the VCF file. Additionally, DELLY, which is capable to infer 160 

deletions, inversion, duplications and translocations types of SVs is only able to genotype 161 

deletions given a standardized VCF is provided without the extra information.  162 

 163 

The overall performance of each method was evaluated based on the input VCF generated by 164 

SURVIVOR. Thus, if all of the short-read based SV callers were not able to resolve the insertions 165 

of 5kbp, then it would be assessed as a ‘wrong/missed’ SV.  166 

 167 

First, we assessed the ability of the SV genotypers to correctly genotype SVs. SVTyper (64.70%) 168 

had the highest rate of correctly genotyping SVs to be present, followed by SV2 (41.57%). 169 
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Importantly, SV2 was able to genotype deletions and duplications, while SVTyper assessed 170 

deletions, duplications and inversions. Genome STRiP had the lowest (14.40%) success rate of 171 

all methods because it can only genotype deletions and duplications. This result was expected 172 

considering Genome STRiP was designed primarily for population-based genotyping. SVTyper 173 

improved marginally (86.26%) when BND events, which represented translocations, were 174 

ignored, followed by the next best method SV2 (83.15%) when focused on deletions and 175 

duplications. Furthermore, we also benchmarked the SV genotyping methods on their 176 

performance, given the truth set (Supplementary Table 2). The different methods show 177 

performance differences in the runtime ranging from 0.3 seconds (STIX) to 33.8 minutes 178 

(GenomeSTRIP) (Supplementary Table 3).   179 

 180 

Next, we assessed the ability of the SV genotypers to reduce the rate at which false positives 181 

were observed, i.e. initially wrongly inferred SVs. This represents the scenario of accidentally 182 

genotyping a SV that is not represented in the sample due to sequencing or mapping biases. 183 

Over the 32 call sets, SURVIVOR had only 17 false positive calls for the simulated data. Genome 184 

STRiP performed best in filtering out all falsely detected SVs, but suffered from the lowest 185 

ability to genotype SV variations. STIX performed better as it can filter out 13 (76.4%) of the 186 

false positive SV calls. In contrast, STIX also achieved a higher (71.76%) performance for 187 

correctly identifying SVs. Although SVTyper had the highest accurately genotyped SVs, it filtered 188 

out less false positives (70.59%) obtained during the discovery phase. 189 

 190 



   
 

   
 

11 

In summary, we observed that none of the methods were clearly superior for correctly 191 

genotyping and correctly filtering/non-reporting SV variation. Strikingly, none of the programs 192 

were able to genotype insertions or translocations in the simulated data sets. Nevertheless, 193 

STIX and SV2 showed strong performance, with a good balance of sensitivity and being able to 194 

correctly discard false positives.  195 

 196 

Evaluation of SVs computational genotypers based on GIAB Ashkenazy Son 197 

We further assessed genotyping of SVs calls based on the long-read DNA sequence data from 198 

an ‘Ashkenazi Son’ (HG002) reference sample. Specifically, we tested the currently released call 199 

set (v0.5.0) from GIAB, generated using sequence resolved calls from multiple technologies 200 

such as Illumina, PacBio, BioNano etc. and multiple SV callers and de novo assemblies based on 201 

these technologies, alone or in combination [21]. It is important to note that 8,195 of these SV 202 

calls could not be initially discovered with any Illumina assembly or caller but originated from 203 

PacBio based calls or BioNano based calling.  204 

We next utilized this call set to genotype the SVs based on a 300x Illumina bam file for HG002 205 

and compare the obtained SV genotype predictions to the genotypes reported by GIAB. The 206 

first observation was that most of the SV genotypers were unable to process the VCF file 207 

provided by GIAB. We used SURVIVOR to reduce the information included in the GIAB VCF file. 208 

Next, we filtered out the reported INS and complex events from this call set as most SV 209 

genotypers failed computationally to complete assessing these entries. Unfortunately, we were 210 

not able to run GenomeSTRiP successfully as it repeatedly failed, even when applied to just a 211 

subset of these calls. 212 
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 213 

 214 

 215 

Figure 2: Evaluation based on GIAB call set v0.5.0 deletions only.  216 

 217 

Figure 2 displays the detectable deletions based on the GIAB call set (v0.5.0) per SV genotyper. 218 

STIX performed the best among all methods identifying 24,574 (78.74%) of the provided 219 

deletions. It is important to note that STIX does not currently report genotypes. Thus, we relied 220 

only on the information if STIX found reads that support this event rather than genotype 221 

information. DELLY performed as the second best identifying 18,528 (59.37%) deletions 222 

followed by SVTyper (34.24%) and SV2 (9.99%). Only 6.27% of the deletion calls from GIAB call 223 

set were genotyped by all SV genotype methods. Although this is a very low percent, it is 224 
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positive that up to 78.74% of the deletions could be successfully identified out of 62,676 225 

deletions (20bp+) in total. Noteworthy, 4921 deletions out of this set were never observed by 226 

any Illumina based caller or assembly. This highlights the potential benefit of using SV 227 

genotypers. 228 

 229 

Next, we assessed the size ranges that SVs genotypers were able to recognize SVs. The 230 

deletions from GIAB call set 0.5.0 ranged from 20bp up to 997kbp with a median size of 36bp. 231 

All of the SV genotypers were able to identify deletions down to a size of 20bp. Interestingly we 232 

observed different median sizes of genotyped deletions, which represents the ability of specific 233 

methods to resolve small versus large events.  DELLY (31bp) had the lowest median SV size 234 

followed by SVTyper (32bp), STIX (35bp) and SV2 (116bp). Furthermore, DELLY (816kbp) 235 

genotyped also the longest SVs followed by STIX (694kbp), SV2 (656bkbp) and SVTyper 236 

(656bkbp). See Supplementary Table 4 for details. 237 

 238 

When assessing the genotype concordance (see Supplementary Table 5), DELLY performed the 239 

best with an agreement rate of 87.08% given that it identified the variant in the first place. SV2 240 

achieved a 78.59% of genotype agreement, however it had one of the lowest recall rates 241 

(9.99%). SVTyper showed a 67.79% genotypes concordance. We did not evaluate STIX in this 242 

perspective since it does not report a genotype estimation in its current version. 243 

 244 
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In summary, STIX and DELLY performed the best in re-identifying the deletions reported by 245 

GIAB for HG0002. Furthermore, DELLY (87.08%) had also the highest agreement over the 246 

genotypes with the GIAB call set. 247 

 248 

Discussion 249 

In this paper, we assessed the current state of SV genotyping methods. These methods are 250 

valuable for identifying the genotype of SVs in new samples, at sites of already known validated 251 

and functionally annotated SVs. The methods are important for diagnostic applications and as 252 

they offer better accuracy and reproducibility for the clinic than de novo detection methods. 253 

 254 

A significant observation was that as a practical matter, many SV genotypers are limited to 255 

applications linked to their de novo SV caller counterpart. For example, DELLY successfully 256 

genotyped all SV types subsequent to its use as a discovery method, but only when supplied 257 

with the DELLY-specific VCF file. Similarly, SVTyper relies on specific IDs associated to 258 

translocations (in this case BND) events provided by Lumpy. 259 

 260 

We provided the first assessments of sensitivity and false discovery rate for SV genotypers that 261 

include not only Illumina detectable SVs, but those that could only be initially discovered via 262 

long read technologies such as PacBio or Oxford Nanopore [14, 16]. These technologies often 263 

enable the detection of more complex SVs and those within regions that are difficult to resolve 264 

by Illumina alone – but are neither scalable or accurate enough to support routine de novo SV 265 

identification in a clinical setting [17]. 266 
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 267 

This study also identified both general and method-specific limitations of SV genotyping 268 

methods. First, we observed that none of the methods tested were able to assess novel 269 

insertions that also represent repeat expansions, which is a subclass of SVs recognized as 270 

important in cancer and other diseases. Second, most of the methods suffer from strict VCF 271 

formatting requirements, ignoring the current standards conventions, relying on individual flags 272 

that are difficult to emulate. 273 

 274 

Among the SV genotypers, STIX performed best when applied to simulated and GIAB based SVs 275 

calls, demonstrating a good balance of high sensitivity versus reduced false discovery with the 276 

added ability to use standard VCF files. Nevertheless, the lack of genotype estimations for STIX 277 

remains a limitation. In aggregate, our results indicate SV genotypers have better performance 278 

than SV callers. Our approach can be integrated into existing analysis pipelines for routine 279 

scanning of known pathogenic SVs, representing an efficient and quick way to diagnose patients 280 

with SVs in the clinic. 281 

 282 

Potential implications  283 

SVs genotyping represents an opportunity to infer SVs in clinical diagnostic settings where low 284 

false discovery and false negative rates are critical. However, genotyping SVs methods seem to 285 

require additional development to improve their ability to operate on different size events and 286 

on all types of SVs (including insertions). Here we presented an overview of the current state-287 

of-the-art methods, and highlight the need for specific methodological improvements.  288 
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 289 

Methods 290 

Simulated datasets 291 

We simulated 20 SVs per dataset each for a certain type (indel, inversions, duplication and 292 

translocation) and a certain size (100bp, 250bp, 500bp, 1kbp, 2kbp, 5kbp, 10kbp, 50kbp) for chr 293 

21 and 22 using SURVIVOR simSV. These simulations included a 1% SNP rate. After the 294 

simulation of the sample genomes we simulated reads using Mason [33] with the following 295 

parameter “Illumina -ll 500 -n 100 –N 39773784 -sq -mp -rn 2 “ to generate 100bp paired-end 296 

Illumina like reads. The reads were mapped with BWA MEM[34] using the –M option to mark 297 

duplicated reads to the entire genome (GRCh38-2.1.0). Subsequently, we ran Manta (v1.2.1), 298 

DELLY (v0.7.8) and Lumpy (v0.2.13) to call SVs over the simulated datasets. For each data set 299 

we generated a union call set based on all 3 callers using SURVIVOR merge (v1.0.3) allowing 300 

1kbp distance and allowing only the same SV type to be merged. To assess the performance of 301 

the SV genotypers across the SV truth set, we used the output of SURVIVOR which was used for 302 

the evaluation. Subsequently, we converted that output to a VCF file using SURVIVOR bed2vcf. 303 

We incorporated CPOS and CIEND with both 0,0 to enable running SVTyper.  304 

 305 

This union set, as well as the SV genotyper output, was evaluated with SURVIVOR eval for the 306 

following categories: 307 

Precise: calling an SVs within 10bp and inferring the correct type. Indicated: allowing a 308 

maximum of 1kbp between the simulated and the called breakpoints and ignoring the 309 

predicted type of SVs. Missing: a simulated SVs but not re identified. Additional: a SVs that was 310 
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called, but not simulated. The results were summarized using a custom R script operating on 311 

the output of SURVIVOR available on request.  312 

The runtime of each method was measured across all simulated data set using Linux time and 313 

the average CPU time was reported.  314 

SV genotyping: simulated data 315 

For genotyping the simulated data set, we used the union call VCF based on the SURVIVOR 316 

output as described above. We used DELLY (v0.7.8) specifying the output (-o), the vcf to be 317 

genotyped (-v) and the reference file (-g) as fasta and the bam file. We ran DELLY with the VCF 318 

file from SURVIVOR over the SV discovery caller. The obtained output from DELLY was 319 

converted using bcftools view (v1.7 (using htslib 1.7)) [28] to obtain a VCF file and was filtered 320 

to ignore genotyped calls with 0/0.  SVTyper (v0.1.4) was used on the VCF generated from 321 

SURVIVOR based on the discovery phase. We filtered the obtained VCF for genotypes that could 322 

not have been accessed by SVTyper. SV2 (version 1.4.3) was run on the SURVIVOR generated 323 

VCF file for SVs genotyping but required also a SNV file. We generated this SNV file using 324 

Freebayes (v1.1.0-46-g8d2b3a0-dirty) [35] with the default parameters. The resulting SNV file 325 

from Freebayes was compressed and indexed by bgzip and tabix –p vcf [36], respectively. SV2 326 

report their result in three folders (sv2_preprocessed, sv2_features and sv2_genotypes) from 327 

which we used the result reported in sv2_genotypes to benchmark the method. Genome 328 

STRIP(v2.00.1774) was used following the suggested parameters and the VCF file generated by 329 

SURVIVOR. STIX (early version available over GitHub on April 6th 2018) was used to index the 330 

bam file using giggle (v0.6.3) [29], excord (v0.2.2) and samtools (v1.7) [28] following the 331 

suggested pipeline. Next, we run STIX with “-s 500” on the VCF files from SURVIVOR and 332 
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ignoring output VCF entries with "STIX_ZERO=1", which filters out entries where STIX does not 333 

find any evidence for the SV.  334 

 335 

SV genotyping: GIAB 336 

We obtained the GIAB SV call set (v0.5.0) [37] , the GIAB gold standard SNV calls [38] and the 337 

corresponding bam file [39] from the GIAB FTP. The SVs call set needed to be filtered and 338 

reduced for just one sample (HG002) using cat and SURVIVOR and was subsequently filtered for 339 

deletions only. We ran all SV genotyping methods like described above. Subsequently, we 340 

filtered the results for genotypes: 0/1 and 1/1  with the exception of STIX. STIX was filtered 341 

based on if it reports reads to support the SVs or not. This was necessary since STIX does 342 

currently not report genotypes. After filtering we merged all data sets together including the 343 

original VCF provided using SURVIVOR with a maximum distance of 10bp and requiring the 344 

same SV types. We analyzed these merged calls based on if the original call set reported a 345 

genotype to be heterozygous or homozygous alternative. The Venn diagram was generated 346 

based on the support vector reported by SURVIVOR and the R package Venn.diagram. The 347 

length of the SVs that were able to be genotyped were extracted using awk filtering for existing 348 

calls. 349 

 350 

Availability of data and materials 351 

Datasets and scripts were deposited in the GigaScience Database, GigaDB [40] . We obtained 352 

the GIAB SV call set (v0.5.0) [37] , the GIAB gold standard SNV calls [38] and the corresponding 353 

bam file [39] from the GIAB FTP. 354 
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Editor: 
 
A: We thank the reviewers for their helpful suggestions and for highlighting the 
importance of this first side-by-side assessment of SV genotyping software. We 
were able to incorporate all the suggestions made and performed the suggested 
analysis as requested. The modified text is highlighted in red in the manuscript.  
 
Reviewer reports: 
 
Reviewer #1: In this manuscript Chander and colleagues compare the 
performance of several tools that have been developed to assess the presence of 
a target set of structural variants in a new sample, given an aligned sequence file 
and VCF as input. The introduction describes the problem in sufficient detail. The 
authors conclude that none of the methods is clearly superior for correctly 
genotyping samples. Moreover, it appears that none of the methods can be 
endorsed as a strong overall performer, and attempting to combine the results of 
several tools in a voting approach may be unwise due to either lack of coverage of 
certain classes of SV, or requirements that VCFs be pre-processed using specific 
tools. Overall, the impression is of a field grappling with a difficult problem, with 
tools that are not yet ready for general use by non-specialists. 
 
The manuscript is technically well-executed. The writing requires some proof-
reading. 
 
A: We thank the reviewer for his recommendations. Yes, we agree that the field is 
in an early stage, which asserts the importance of such benchmarks to reveal the 
current state and highlight what is missing. 
 
Major comments: 
 
1) Figures for the accuracy of SV calling are derived from high-quality but older 
citations that used low-pass sequencing that was more prevalent 6-8 years ago 
(e.g. Mills Nature 2011). More recent studies of SV (at least in cancer) use deeper 
short read sequencing (e.g. 30-100x depth). These methods are applied to non-
homogenous cell populations where not all cells will harbor a given SV. The 
introduction would be improved if the authors commented briefly on 1) the 
trade-offs between higher sequencing depth, SV calling accuracy, and cost; and 2) 

Response to the comments of the reviewers Click here to access/download;Personal Cover;GIGA-D-19-
00035_Response.docx

https://www.editorialmanager.com/giga/download.aspx?id=80283&guid=9141230e-5461-4934-a870-7af4aaa72484&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=80283&guid=9141230e-5461-4934-a870-7af4aaa72484&scheme=1


the different applications of SV genotyping in a germline vs. tumor context. These 
factors may influence the utility of a given tool for different applications. 
 
A: We agree with the reviewer that recent studies focus on higher sequencing 
depth. We did that for our simulation study (30x) and utilized even the full 300x 
data set for GIAB. However, we disagree that these are outdated methods. The 
methods we focused here are for SV genotyping and not for the initial SV 
discoveries. Other publications have already presented benchmarking of the 
latter (e.g. Kosugi et al. 2019, PMID: 31159850; Sedlazeck et. al. 2018 and 
Nattestad et. al 2018, PMID: 29713083 and 29954844).  
 

2) Table 1 should distinguish between tools that are agnostic to the SV calling tool 

and those such as Delly or SVTyper that require a VCF generated using a specific 

SV method.  

 

A: We thank the reviewer for this suggestion and have modified the table 

accordingly. 

 

3) It's not clear what lines 125-126 mean, "given the nature of the data". Please 

be explicit about results were expected, why they were expected, and the degree 

to which the observed results conformed to those expectations.  

 
A: We have clarified that by this statement- “We discovered only 17 false positive 
calls after the initial SV discovery. This low number of false positives is in contrast 
to reports from other studies. However, we are using here simulated data which 
does not take into account the complexities involved in regions of SVs and other 
sequencing biases. Interestingly, while this simulated data set represents an ideal 
case we still missed around 17.25% of the simulated SVs.  
 “ at line 133 
 
4) The authors test whether the SV genotypers fail to call incorrectly genotyped 
SVs; this seems a distinct task from whether they correctly report the absence of 
a given SV when it is truly not present in the sample.  
 
A: In this benchmark, we have assessed true positives (SVs that are present and 
should be re-found by the SV genotypers), false positives (SVs that are present in 
the input VCF but not present in the sample) and false negatives (SVs that are 



present in the sample and in the input VCF but were not re – identified). The case 
where SVs are provided in the input VCF but are not supported in the sample is 
reflected as false positives test cases. The case where reads don’t show any 
significant distortion in this region is trivial and thus was not explicitly assessed.  
 
 
Reviewer #2: This study is designed to evaluate tools for the genotyping or 
validation of structural variant calls, with regard to their accuracy, applicability to 
types of structural variant, and usability. The authors make a strong case for the 
importance of this evaluation, due to the high false positive rates of most 
structural variant calling techniques that rely on short read sequencing 
technology and the utility of genotyping SVs, as well as counting alleles for 
population-level studies. SV genotypers were evaluated against a set of simulated 
SVs of different types, then against a set of SVs identified in a real sample through 
the use of many different and complementary technologies and methods by the 
GIAB consortium. The conclusion of this study is that while SV genotypers can be 
used to improve the accuracy of SV calls, they require considerable enhancement 
in usability and general applicability. 
 
I like the simulation experiment, but the analysis needs to be improved. First, the 
figure. The axes are not labeled, and the colors are not described. The yellow and 
the orange are so similar, and the plots are so small that I didn't realize they were 
different colors until I zoomed way in. I kept getting lost in the description about 
which SVs are supported by which method. 
 
A: We thank the reviewer for this suggestion. We have followed the guidelines for 
preparing the figures and used colors that are suggested for color blind people. 
The figure is meant to give a general trend showing in green/orange and red for 
the different performance abilities of the SV genotypers. The precise numbers are 
provided in Supplementary Tables.  
 
It may be worth using some other visual cue (maybe another color) to indicated 
that a particular method does not work for a particular SV type, instead of just 
saying it genotypes 0% of the SVs. For example, SVTYPER supports BNDs but just 
misses all of them while GenomeSTRIP doesn't even try to genotype BNDs. That 
different is important and it would be helpful if it was clearer.  
 



A: We discussed these limitations in the introduction of the manuscript and now 
this is also highlighted in Table 1. Figure 1 represents the ability to call certain SV 
types and sizes, from a standard VCF file. To clarify the presentation, we removed 
the BND assessment from Figure1 since none of the methods were able to 
successfully provide those genotypes. In the example of SVTyper, it cannot call 
BND events since it requires specific input data provided only by Lumpy. For other 
SV types we have included tags that we could reproduce (e.g. CIPOS, CIEND) in 
the VCF files to enable a comparison. In contrast, GenomeSTRIP indeed only 
focuses on DEL/ DUP events, which is similar to SV2.  
 
In the description, since the overall rates are so dependent on the supported SV 
types, it may be worth reorganizing this section around SV types instead of going 
through each method and given a single rate (e.g., for DEL the method A was x%, 
B was y% and C doesn't do DEL).   
 
A: We have made minor modifications to the text, since we were motivated to 
illustrate the overall combined performance of the methods. Figure 1 already 
illustrates the different advantages and disadvantages of the individual methods 
based on the different types and size regimes.  
 
Question on the simulation experiment. Were the events all HET?  
 
A: The SVs were all homozygous. We have clarified this in the manuscript. 
 
Why only test the events that were detected? I get that in a non-simulated 
scenario you will only test the SVs that you detect, but it would be interesting to 
test how/if undetected SVs can be genotyped. This is a claim that has been made 
from long-read sequencing and it seems you can test it here too. 
 
A: Thank you for raising this point. We had these tests included over the GIAB 
data set where a multitude of SV were only detectable using long reads. We 
highlighted the ability of SVgenotypers to identify these events. Furthermore, in 
the simulation we benchmarked the case where there were false SV calls and the 
ability of the SV genotypers to detect these. 
 
On line 147, I don't think you meant "filter out falsely called SVs." That part is 
about true positives. The next paragraph is about filtering false positives. 



 
A: We have modified the main text to clarify this point. This was one of the points 
we assessed in the benchmarks. We used standard SV callers (Delly, Lumpy and 
Manta) over a union set to obtain SV calls over each simulated data set. This also 
included a 17 falsely called SVs due to mapping errors or other reasons. We used 
these 17 artifacts to benchmark how these SV genotypers perform over a false 
indication of an SV in the sample. This could, for example, represent regions that 
are repetitive or otherwise challenging.  
 
In the false positive part, you say that STIX does better than SVTYPER, but the 
numbers given do not seem to support that. STIX filters 76.47% and SVTYPER 
filters 81.82%. I am guessing the 81.82 is typo since you can't get to that number 
with 17 as a denominator. 
 
A: We apologize for this confusion. The numbers reported in the Supplementary 
table were correct. We corrected this sentence: “… Genome STRiP performed 
best with filtering out all falsely detected SVs, but suffers from the lowest ability 
to genotype SV variation. STIX performed better as it can filter out 13 (76.4 %) of 
the false positive SV calls. In contrast, STIX also achieved a higher (71.76%) 
performance for correctly identifying SVs. Although SVTyper had the highest 
accurately genotyped SVs, it filtered out less of the false positives (69.70%) 
obtained during the discovery phase.” 
 
The dependence that some methods have on particular VCF flags is interesting, 
but I think you should comment on if either meet the VCF spec. 
 
A: We clarified this in the main text. The issue is that all the input VCFs conform to 
the expected standard, but many tools require additional flags, which are not 
provided by other methods and are not easily reproducible.  
 
This study, like most which deal with SV detection methods, suffered from a lack 
of fully reliable positive controls. The combination of simulated data and highly 
vetted GIAB SV calls provide a likely best currently possible answer to that 
problem. The low number of false positive SV calls in the simulated data suggest 
that the simulation was a best-case scenario for SV calling and therefore 
genotyping. Testing against a curated set of known false calls from previous 
published work might provide a useful complementary test of how well the 



genotypers handle false positives.  
 
A: We appreciate the comment – and the recognition of the difficulty of providing 
a ‘gold standard’ for this kind of work. In the simulation, we focused on the SVs 
that are falsely called but are in regions that show mapping errors. The other 
cases, as suggested here, would be exemplified by an SV in an input VCF vs. non-
altered mapping within specified regions. These cases are easily distinguishable by 
e.g. a lack of abnormally mapped reads and thus we did not assess this.   
 
Use of the GIAB SV callset as a second test case for the genotypers is a valuable 
exercise and demonstrates the performance of these genotypers in real data. A 
mostly unavoidable source of concern is the reliability of the calls from GIAB that 
are used in this experiment. These calls are an attempt to sensitively identify all 
structural variation in the Ashkenazi Son sample and seem likely (due to the 
number of events) to contain a large number of false positives. This could be 
reflected in the number of variants that were not detected by any of the 
genotypers, but those could also represent real variants that genotypers could 
not identify. It would therefore strengthen the argument to have some additional 
analysis of the variants that were not identified by any genotyper, such as a 
downsampling and visual review. If the majority of those variants appear to be 
false positives in GIAB rather than false negatives in genotyping, the performance 
of the genotypers may potentially be much stronger than it currently appears to 
be. 
 
A: We agree with the reviewer that this could have been a potential pitfall. 
However, the GIAB calls in v0.5 have been produced via multiple rounds of 
manual curation using various sequencing technologies and assembly and 
mapping approaches. The combined high confidence set within the high 
confidence regions indeed represents a highly accurate SV call set that has been 
assessed multiple times by us and others over various studies. Hence, we do not 
share this concern.  
 
How dependent is the performance of STIX on finding just one read supporting an 
SV? 
 



A: As we highlighted in the main text, it is a disadvantage of STIX to only report 
read counts vs. genotypes from other methods. Since this is a limitation of the 
method itself, we can just highlight this in the discussion as we did.  
 
A missing piece for all of the experiments is runtime. Is one of these more 
efficient than the others? 
 
A: Thank you for this suggestion. We have included the average CPU time 

measured over 20 runs as Supplementary Table. STIX is the fastest method (0.4 

seconds) followed by Delly (3.7s) and SVtyper (9.6s). The slowest by far is 

GenomeSTRiP (33.8 min).  

 


