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Extreme Polygenicity of Complex Traits
Is Explained by Negative Selection

Luke J. O’Connor,1,2,* Armin P. Schoech,1 Farhad Hormozdiari,1 Steven Gazal,1 Nick Patterson,3

and Alkes L. Price1,3,*

Complex traits and common diseases are extremely polygenic, their heritability spread across thousands of loci. One possible explana-

tion is that thousands of genes and loci have similarly important biological effects when mutated. However, we hypothesize that for

most complex traits, relatively few genes and loci are critical, and negative selection—purging large-effect mutations in these

regions—leaves behind common-variant associations in thousands of less critical regions instead. We refer to this phenomenon as

flattening. To quantify its effects, we introduce a mathematical definition of polygenicity, the effective number of independently asso-

ciated SNPs (Me), which describes how evenly the heritability of a trait is spread across the genome.We developed amethod, stratified LD

fourth moments regression (S-LD4M), to estimateMe, validating that it produces robust estimates in simulations. Analyzing 33 complex

traits (average N ¼ 361k), we determined that heritability is spread �43more evenly among common SNPs than among low-frequency

SNPs. This difference, together with evolutionarymodeling of newmutations, suggests that complex traits would be orders ofmagnitude

less polygenic if not for the influence of negative selection. We also determined that heritability is spread more evenly within function-

ally important regions in proportion to their heritability enrichment; functionally important regions do not harbor common SNPs with

greatly increased causal effect sizes, due to selective constraint. Our results suggest that for most complex traits, the genes and loci with

the most critical biological effects often differ from those with the strongest common-variant associations.
Introduction

Genome-wide association studies (GWASs) have revealed

that common diseases and complex traits are heritable

and highly polygenic.1–14 There are usually no large-effect

common SNPs, and heritability is evenly spread across

thousands of small-effect SNPs. The polygenic distribution

of heritability presents a challenge, as small-effect SNPs are

difficult to detect (leading to ‘‘missing heritability’’15) and

are difficult to interpret.16,17

One factor contributing to the polygenic distribution of

heritability is the complexity of the underlying biology:

many genes and regions of the genome have a nonzero

phenotypic effect if mutated. A plausible explanation for

the large mutational target is that cellular networks are

densely connected, such that nearly every gene expressed

in a relevant cell type has a small phenotypic effect (the

‘‘omnigenic model’’).17 A striking implication of this

model is that disease genes with direct phenotypic effects

would explain a minority of disease heritability.

Although biological complexity clearly contributes to

the polygenicity of complex traits, negative selection

may also be a critical factor. Biological complexity deter-

mines the effect-size distribution of new mutations. We

hypothesized that this distribution—in contrast to that

of heritability—is dominated by a relatively small number

of large-effect genes and loci (Figure 1A). In the absence of

negative selection, the resulting distribution of heritability

would be highly concentrated in these large-effect regions,

and hence only moderately polygenic (Figure 1B). How-
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ever, in the presence of negative selection, the heritability

explained by any single SNP is limited, and mutations in

these large-effect regions would not become common. As

a result, heritability would be spread much more evenly

across large- and small-effect regions alike (Figure 1B). We

refer to this phenomenon—negative selection causing

the distribution of heritability to be extremely poly-

genic—as flattening.

Negative selection has previously been shown to influ-

ence complex-trait genetic architectures. It limits the

average per-allele effect sizes of common variants,12,18–21

especially in coding regions and brain regulatory ele-

ments.20 It also causes average effect sizes to vary with link-

age disequilibrium (LD) and allele age.19 Various models

have been proposed for the mathematical relationship

between phenotypic effect sizes and selection coeffi-

cients.22–28 However, it is currently unclear whether nega-

tive selection merely limits common-variant heritability

on average without affecting how evenly it is spread across

the genome—as in the model of Zeng et al.12 and in one of

the evolutionary models that we explore below—or

whether it actually reshapes the genome-wide distribution

of heritability.

Here, we investigate the hypothesis that negative selec-

tion flattens the distribution of heritability across the

genome, explaining the extreme polygenicity of complex

traits. We evaluate two specific predictions. First, heritabil-

ity should be spread more evenly across common

SNPs than across low-frequency SNPs. Ideally, we would

compare the polygenicity of common SNPs and new
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Figure 1. Illustration of Flattening due to
Negative Selection
(A) We illustrate the range of possible per-
allele effect sizes for a SNP at each site for a
toy example of three genes and nearby reg-
ulatory regions. Here, the distribution of de
novo effects is not highly polygenic; it is
dominated by coding mutations in a single
large-effect gene (although other genes
also harbor small effects). Negative selection
imposes an upper effect size bound
(possibly soft) on common variants (and,
to a lesser extent, low-frequency variants),
resulting in increased polygenicity. Within
functionally important regions (e.g., cod-
ing), a larger proportion of variants have
effect sizes near the bound, leading to espe-
cially large polygenicity. In practice, this
bound may vary across the genome, but
we hypothesize that it is much more even
than the effect-size distribution of de novo
variants.
(B) We illustrate the expected per-SNP pro-
portion of heritability for SNPs ranked by
per-allele effect size, for a hypothetical
trait whose de novo effect-size distribution
has a mixture of small- and large-effect

mutations. In the absence of negative selection (blue), heritability is concentrated among a limited number of large-effect SNPs. In
the presence of negative selection (orange), large-effect SNPs are prevented from becoming common, and thus explain little heritability;
instead, heritability is spread across a large number of SNPs with small effects.
mutations, but this comparison is not possible using

GWAS data; instead, we compare common and low-

frequency SNPs, reasoning that the polygenicity of low-fre-

quency SNPs will lie in between the polygenicity of

common SNPs and the polygenicity of new mutations

(Figure 1A). Second, functionally important regions of the

genome should not harbor common SNPs with greatly

increased causal effect sizes, as the maximum effect size is

determined by the strength of selection. Instead, their

heritability enrichment should be predominantly ex-

plained by increased polygenicity: a larger proportion of

SNPs in functionally important regions should have effect

sizes close to the upper bound imposed by selection

(Figure 1A). In order to evaluate these predictions, we intro-

duce a mathematical definition of polygenicity, the effec-

tive number of independently associated SNPs (Me). We

develop amethod, stratified LD fourthmoments regression

(S-LD4M), to estimateMe from summary association statis-

tics. We validate S-LD4M in simulations and apply it to

summary statistics for 33 diseases and complex traits.
Material and Methods

Defining Polygenicity: The Effective Number of

Independently Associated SNPs
In this manuscript, we use the term ‘‘polygenicity’’ to describe the

phenomenon that heritability is spread evenly across many genes

and loci, such that the strongest genetic associations explain a

limited fraction of heritability (leading to ‘‘missing heritabili-

ty’’1,2,15). According to this definition, schizophrenia, which is

predominantly driven by thousands of small-effect common
The American
variants, is extremely polygenic.1,4,13 In contrast, severe neurode-

velopmental disorders, which are predominantly driven by delete-

rious mutations in one or a few genes, are not highly polygenic—

despite the fact that they are also influenced by many common

variants (cumulatively explaining <10% of variance).29 Previous

studies defined polygenicity as the total number of SNPs with

nonzero effects (i.e., the total number of independently associated

SNPs) (Mt),
1,3,6–8,12–14 but this definition fails to describe how

heritability is spread across causal SNPs; Mt could be similar for

schizophrenia and a predominantly monogenic developmental

disorder, despite their qualitatively different genetic architectures.

Moreover, in practice, estimates ofMt implicitly rely on a detection

threshold, causing them to vary with sample size and with the

parametric model that is specified13 (see Simulations). Variability

in sample size and power could bias comparisons among traits

or between common and low-frequency SNPs.

We introduce a mathematical definition of polygenicity, the

effective number of independently associated SNPs (Me), which

quantifies how evenly heritability is spread across loci. Roughly,

if all associated SNPs have similar effect sizes, then Me is equal to

Mt. However, if a small number of SNPs explain a large proportion

of heritability, then the number of independently associated SNPs

can be literally large but effectively small—in terms of missing

heritability, risk prediction, and biological implications—and Me

can be much smaller than Mt. Despite the widespread use of Mt

to define polygenicity,1,3,6–8,12–14 we use the term ‘‘polygenicity’’

to refer to Me, as it is the even distribution of heritability—and

not the number of SNPs with nonzero effects—that makes the ge-

netic architecture of complex traits different from that of predom-

inantly monogenic disorders.29 We note that if several causal SNPs

are in very strong linkage disequilibrium (LD) (see e.g.,

Hormozdiari et al.30), then Me counts them as a single associated

SNP, hence our use of the term ‘‘independently associated’’

(see Appendix A).
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Figure 2. Comparison of the Effective Number of Independently Associated SNPs (Me) with the Total Number of SNPs with Nonzero
Effects (Mt)
(A and B) Examples of three genetic architectures with Mt ¼ 100.
(A) Each colored or gray block corresponds to one SNP; both height and width are proportional to the expected proportion of heritability
explained by that SNP. The average unit of heritability, denoted Eh2 ða2Þ, is the average height (equal to the total area) of the colored and
gray regions. Me is equal to h2=Eh2 ða2Þ.
(B) Mt and Me as a function of the effect size magnitude of the four large-effect SNPs.
(C and D) Simulations of the same three genetic architectures with the number of SNPs (and causal SNPs) scaled up by 1003.
(C) Estimates of Mt under a point-normal model, at different sample sizes.
(D) Estimates ofMe using S-LD4M, at different sample sizes. Error bars denote 95% confidence intervals (based on 1,000 simulations) but
are smaller than the data points.
If there is no LD between causal SNPs, the heritability of a trait is

proportional to the second moment of its effect size distribution,

E½b2�, while Me is inversely proportional to the fourth moment,

E½b4�. The fourth moment heavily weights SNPs with the largest

effects, such that if m large-effect SNPs explain most heritability,

then Me will be close to m, irrespective of how many other SNPs

may have small nonzero effects. We define:

Me ¼ 3M

k
; k ¼ E

�
b4
�

E
�
b2
�2; (Equation 1)

where M is the number of SNPs, b is the causal effect size of a SNP

in standardized units (see below), and k is the kurtosis (normalized

fourth moment) of b. We note thatMe is closely related to missing

heritability and to polygenic prediction accuracy (see Appendix A,

Properties of Me).

We define effect sizes b in standardized units, i.e., the number of

standard deviations increase in phenotype per 1 standard devia-

tion increase in genotype. In these units, the squared effect size

of a SNP is equal to the heritability it explains, and the kurtosis de-

scribes how evenly heritability is spread across SNPs. Thus, a rare

SNP explaining little heritability will contribute little to Me, even

if its per-allele effect size is large.

We refer to h2 divided by Me as the average unit of heritability,

denoted Eh2 ða2Þ (where a is the standardized marginal effect size

of a SNP, inclusive of LD; see below); heritability is spread across

loci in units of average size Eh2 ða2Þ. This quantity can be visualized

as the area under the curve in Figure 2A. For example, if 4 causal

SNPs each contribute 1=6 of heritability (2=3 of heritability in to-

tal) and 96 other causal SNPs have much smaller effects (standard-

ized causal effects drawn from a mixture of two Gaussian

distributions13), then the average unit of heritability is approxi-

mately ð1=63 2=3 ¼ 1=9Þ, and Me z 9 (Figure 2A bottom). More

generally, adding a large-effect SNP increases Eh2 ða2Þ and decreases

Me (Figure 2B). In the case of a neurodevelopmental disorder pre-

dominantly caused by nearly penetrant mutations in one or a
458 The American Journal of Human Genetics 105, 456–476, Septem
few genes, with thousands of common variants also having a small

cumulative effect,29 Me will be small (e.g., �10), while Mt will be

large (e.g., �10,000).

Me can be defined for categories of SNPs, such as low-frequency

SNPs or coding SNPs. To compare categories of different size, we

divideMe by the number of SNPs in each category. We refer to dif-

ferences in per-SNP Me simply as differences in polygenicity. We

define polygenicity enrichment as the per-SNP Me of all SNPs in

a category divided by the per-SNP Me of all SNPs; analogously,

we define heritability enrichment as the per-SNP heritability of

all SNPs in a category divided by the per-SNP heritability of all

SNPs (similar to previous work31). ‘‘All SNPs’’ refers to common

(MAF R 0.05) and low-frequency (0.005 % MAF < 0.05) SNPs.

Enrichment can be either >1 or <1 (i.e., depletion).
Estimating Polygenicity: Stratified LD Fourth Moments

Regression
We developed a method, stratified LD fourth moments regression

(S-LD4M), to estimate Me from summary association statistics and

LD from a reference panel. S-LD4M regresses squared c2 statistics

(i.e., fourth powers of signed Z scores) on LD fourth moments,

defined as sums of r4 values to each category of SNPs. Intuitively,

S-LD4M provides a bridge between the fourth moment of the

marginal effect size distribution (i.e., squared c2 statistics) and

the fourth moment of the causal effect size distribution (which

is related to Me). S-LD4M relies on the following regression

equation:

E
�
a4 j [ ð2Þ; [ ð4Þ�z3

�
[ ð2Þt

�2 þ [ ð4ÞK; (Equation 2)

where a is the marginal effect size of a SNP in per-normalized-

genotype units; [ð2Þ is the LD score (LD second moment) of a

SNP; [ð4Þ is the LD fourth moment, defined as the sum of r4

values over SNPs; t is the S-LDSC regression coefficient;31 and K

is the S-LD4M regression coefficient. K is proportional to the
ber 5, 2019



excess kurtosis of the effect-size distribution, compared with an

infinitesimal model, and it is related to Me:

K ¼ 3E
�
b2
��
Eh2
�
a2
�� E

�
a2
�� ¼ 3h2

M

�
h2

Me

� h2

Mindep

�
; (Equation 3)

where h2 is the heritability tagged by reference-panel SNPs,M is the

number of SNPs, andMindep is the effective number of independent

SNPs.32Under an infinitesimal genetic architecture,Me¼Mindep and

K ¼ 0. Eðb2Þand Eða2Þ are estimated using a slightly modified

version of stratified LD score regression (S-LDSC).31 Thus,

S-LD4M uses Equation 2 to estimate K and Equation 3 to estimate

Me from K. In the case of multiple annotations, [ð2Þ; [ð4Þ; t, and K

are all vectors with one entry per annotation. Standard errors are

computed by jackknifing on contiguous blocks of SNPs, similar to

previous work.5 The runtime of S-LD4M scales linearly with the

number of regression SNPs and quadratically with the number of

annotations. Details are provided in Appendix A (Stratified LD

Fourth Moments Regression). We note that previous studies have

used fourthmomentsof thebivariate effect-sizedistribution (across

two traits) to quantify pleiotropy33 and causality.34

We report results only for well-powered trait-annotation pairs,

defined as having heritability Z-score greater than 2 andMe Z-score

greater than 1/2 . Simulations suggested that log-scale estimates

and estimated standard errors were approximately unbiased at

these thresholds (see below). We report meta-analyzed results

only for functional annotations for which at least 10 out of the

33 traits analyzed had well-powered estimates for that functional

annotation.

In order to aggregate enrichment estimates across traits, we per-

formed meta-analyses on a logarithmic scale, for both heritability

enrichment and polygenicity enrichment. Themeta-analyzed esti-

mate was computed as the unweighted average of the log-enrich-

ment estimates for well-powered traits. Standard errors were

computed by jackknifing on the mean (i.e., without assuming

that each trait has independent standard errors).

Our moment-based approach has some similarities with

S-LDSC, which estimates heritability by regressing c2 statistics

on LD scores (LD second moments).31 We use a slightly modified

version of S-LDSC to estimate heritability enrichment. We run

S-LD4M and S-LDSC using the baseline-LD model,19 which

includes 75 coding, conserved, regulatory, MAF-related, and

LD-related annotations. When estimating the polygenicity and

polygenicity enrichment of a category of SNPs, we restrict to

well-powered traits. Further details are provided in Appendix A

(Stratified LD Fourth Moments Regression). We have released

open-source software implementing S-LD4M (see Web Resources).
Simulations
We simulated summary statistics directly using the asymptotic

sampling distribution,35 rather than by simulating individual-

level data. Specifically, the distribution of the summary statistic

vector, ba, as a function of the true causal effect size vector b, was:

ba � N

�bRb; 1
N
bR	: (Equation 4)

The estimated LD matrix bR was equal to I in simulations with no

LD. In simulations with LD, bR was computed from UK Biobank

data (N ¼ 460k). Sample correlations were computed for all typed

and imputed SNPs (M ¼ 1.0M) within 0.1 M of each other on

chromosome 1. Blocks of 5,000 SNPs were used, and R was set to

zero for pairs of SNPs in different blocks. These choices were neces-
The American
sary for bR to be stored inmemory, due to the large number of SNPs.

To ensure that bR was positive semidefinite, negative eigenvalues

were discarded, as previously described.34

Simulations with No LD

We simulated 50,000 total SNPs, 9,600 small-effect SNPs, and 400

large-effect SNPs. For small- and large-effect SNPs, effect sizes were

drawn from a normal distribution with mean zero and variance s21
and s22, respectively; in the three simulations (corresponding

to the three example architectures in Figure 2A), s21 was equal

to 1/10,000, 1/1,200, and 1/600, respectively. s22 was equal to

ð1� 400s21=9600Þ, resulting in a heritability of 1. (We note that

in all simulations, only Nh2 affects the results; for example, iden-

tical results are obtained at h2 ¼ 1 and N¼ 20k and at h2 ¼ 0.2 and

N ¼ 100k.) We performed simulations at N ¼ 5,000, 25,000,

125,000, and 625,000.

Simulations with LD

We performed two sets of simulations with real LD patterns (see

above). First, we performed simulations with no functional anno-

tations. We specified that a certain percentage of common SNPs

(MAF > 0.05) and a certain percentage of low-frequency SNPs

(0.05 > MAF > 0.005) were causal. Conditional on being causal,

effect sizes were drawn from a mixture of two normal distribu-

tions, with probability p1 ¼ 0.1 and p2 ¼ 0.9, and variance s21 ¼
4s22. The variance parameter was frequency dependent; it was pro-

portional to [p(1 � p)]0.25, where p is the allele frequency. We note

that in simulations where we varied the polygenicity of low-fre-

quency SNPs, we did not change the effect-size variance in order

to fix the average per-SNP heritability. Thus, as we decreased the

low-frequency polygenicity, low-frequency per-SNP heritability

was decreased proportionally.

Second, we performed simulations with five real functional an-

notations (coding, enhancer, promoter, DHS, repressed). We spec-

ified a different probability of being causal for SNPs in each

category: 1/2, 1/4, 3/20, 3/80, and 1/20, for SNPs in each annota-

tion and SNPs in no annotation at all, respectively. When a SNP

was in multiple annotations, the probability of being causal was

the maximum of the respective values. Conditional on being

causal, SNPs had independent and identically distributed effect

sizes; their effects were drawn from a mixture of two normal

distributions, with probability p1 ¼ 0.1 and p2 ¼ 0.9, and variance

s21 ¼ 4s22f½pð1� pÞ�0:25. The variances were scaled so that the total

(expected) heritability was 0.2.

Point-Normal Model Estimator

We implemented a maximum-likelihood estimator of the total

number of SNPs with nonzero effects (Mt) under a point-normal

model with known heritability and no LD. Because there was no

LD, the likelihood was equal to the product over SNPs of the

per-SNP likelihoods, as described in Vilhjálmsson et al.36 We

performed a grid search to estimate the proportion of causal

SNPs, and the estimate ofMtwas equal to the estimated proportion

of causal SNPs times the total number of SNPs. We note that in the

case of LD, the likelihood does not factor, and it is computation-

ally difficult to compute the exact likelihood, motivating the use

of sophisticated estimators and heuristics.12,13 In the much easier

case of no LD, these approaches are expected to have similar per-

formance as the optimal maximum-likelihood estimator.
Evolutionary Modeling
We used evolutionary modeling to investigate the impact of

flattening on the distribution of heritability across genes. In our

evolutionary modeling, each SNP affected one gene and each
Journal of Human Genetics 105, 456–476, September 5, 2019 459



gene affected both the trait and fitness. We specified a distribution

of effect sizes for SNPs on genes (identical for every gene) and a

joint distribution for the effect size and selection coefficient of

each gene. The effect of a SNP on the trait was its effect on its

gene times the gene effect size; its selection coefficient of a SNP

was its effect on its gene times the gene selection coefficient. Using

an analytical formula for the distribution of allele frequencies

conditional on selection coefficients, we obtained the joint

distribution of trait effects and allele frequencies for each gene.

We chose to perform analytical calculations based on the station-

ary distribution of allele frequencies rather than forward simula-

tions because none of the qualitative phenomena we sought to

illustrate are dependent on linkage disequilibrium or background

selection.

We considered two models. Under the first model, 5% of genes

had large effect sizes ðbgeneÞ, and these genes had large selection co-

efficients (sgene). We refer to this model as the ‘‘direct selection

model’’ because it could arise from direct selection acting on the

trait. Under the second model, there were no large-effect genes,

and different genes had different selection coefficients. We refer

to this model as the ‘‘pleiotropic selection’’ model because the

amount of selection acting on a gene is independent of its pheno-

typic effect.

Under the direct selection model, sgene was equal to b2gene, and

bgene followed a mixture of normal distributions; 95% of genes

had variance 10�3, and 5% of genes had variance 10�1 (i.e., 103

larger effect sizes and 1003 larger effect size magnitudes). As a

result of this choice, the de novo effect size distribution is domi-

nated by large-effect genes. In one secondary analysis, we also

added a third mixture component, where 0.5% of genes had vari-

ance 10. In another secondary analysis, we increased the strength

of selection; sgene was equal to 5b2gene.

Under the pleiotropic selection model, sgene was independent of

bgene; bgene followed a normal distribution with variance 10�3 (so

that there were no large-effect genes), and sgene followed a gamma

distribution with parameters k ¼ 5=2 and q ¼ 1=1;250. As a result

of this choice, the de novo effect-size distribution was polygenic.

Under each model, we specified a distribution of effect sizes for

SNPs on each gene, denoted bSNP/gene. Each SNP affected one gene,

and the distribution was identical for every gene. For the direct se-

lection model, we specified an inverse-gamma distribution with

parameters k ¼ 100 and q ¼ 1. This is a heavy-tailed distribution;

it causes the expected heritability explained by a gene to plateau as

a function of the gene effect size, rather than decreasing after

attaining a maximum. For the pleiotropic selection model, we

specified a mixture of normal distributions; 75% of SNPs had vari-

ance 0.2, and 25% of SNPs had variance 0.02. This choice causes

the effect size distribution to be highly polygenic, despite the

lack of flattening in this model; it also leads to an appropriate rela-

tionship between allele frequency and per-SNP heritability.

The effect size of a SNP on the trait, denoted bSNP, was equal to

bSNP/genebgene. The selection coefficient of a SNP, denoted sSNP, was

equal to b2SNP/genesgene. For each gene, we computed the joint distri-

bution of bSNP and allele frequency p, using the formula for the

probability density of p conditional on sSNP:
37

f ðp j sSNPÞ ¼ 1

Z
p4Nm�1

�
1� p4Nm�1

�
expð � 4NsSNPpÞ; (Equation 5)

where Z is a constant, N ¼ 100, and m ¼ 1=200 (so that the expo-

nent 4Nm� 1 is equal to 1).We note that themodel is overparame-

terized; for example, identical results would be obtained with

1003 larger N and 1003 smaller sgene and m.
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We simulated 20,000 genes. For each gene, we computed the

second and fourth moments of bSNP for SNPs at allele frequencies

p ¼ 0.25, 0.05, 0.01, 0.002, 0.004, by multiplying the probability

density function of bSNP by f ðp j sSNPÞ and approximating the inte-

gral using a sum over b2SNP/gene ¼ ð1=5000Þ; ð2=5000Þ;.; 8. Aver-

aging over genes, we computed the variance in per-allele effect

sizes, the per-SNP heritability (variance times heterozygosity),

and the relative polygenicity (inverse of kurtosis). We also

computed the proportion of heritability explained by the 10% of

genes with largest b2gene.

Distinct from the 20,000 simulated genes, we analytically

computed the heritability explained by a gene as a function of

b2gene. In the direct selection model, sgene was equal to b2gene; in the

pleiotropic selection model, for the purpose of this specific

analysis, sgene was fixed at 2 3 10�4. The heritability explained

by a gene at a given allele frequency was defined as the variance

of b2SNP at that allele frequency, times the heterozygosity.
Results

Simulations

We performed simple simulations with no LD to evaluate

the S-LD4M estimator of Me (the effective number of inde-

pendently associated SNPs) and a maximum-likelihood

estimator of Mt (the total number of SNPs with nonzero

effects) under a point-normal model (PN) (see Material

and Methods). This estimator is expected to produce

similar results as previous estimators of Mt under the

same point-normal model.3,8,11–14 We simulated 400

large-effect SNPs and 9,600 small-effect SNPs, with M ¼
50k total SNPs. The mixture of different causal effect sizes,

violating the point-normal model, is consistent with evi-

dence for real traits.12,13 When there was a large difference

between the causal effect sizes of large- and small-effect

SNPs, PN produced biased and sample size-dependent esti-

mates of Mt (Figure 2C and Table S1), consistent with

recent work.13 In general, any method that estimates Mt

will detect only SNPs with effect sizes greater than some

threshold, where that threshold depends on modeling

assumptions and power. In contrast, S-LD4M does not

depend on parametric modeling assumptions, and it pro-

duces unbiased estimates of Me (Figure 2D). Power-depen-

dent bias would be especially problematic for comparing

common vs. low-frequency polygenicity, due to lower po-

wer for low-frequency SNPs.

Next, we performed a series of simulations using real LD

patterns to determine whether S-LD4M produces reliable

estimates of polygenicity in realistic settings. We simulated

summary association statistics from the asymptotic sam-

pling distribution35 for UK Biobank imputed SNPs on chro-

mosome 1 (Mz1:0M SNPs). We usedN ¼ 50k samples and

h2 ¼ 0.2, to approximately match Nh2=M (and hence the

expected c2 statistic) for UK Biobank traits. We included

MAF-dependent genetic architectures12,21 and causal effect

size heterogeneity. Details of each simulation are provided

in the Material and Methods.

First, we assessed the ability of S-LD4M to estimate poly-

genicity for the set of all common and low-frequency SNPs.
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A B C Figure 3. Accuracy of S-LD4M Estimates
in Simulations with LD
(A) Estimates of Me for all SNPs (MAF ¼
0.5%–50%).
(B) Estimates of Me for low-frequency SNPs
(MAF¼ 0.5%–5%); common-SNPMe is fixed
at �1,000 in these simulations.
(C) Estimates of polygenicity enrichment
and heritability enrichment in simulations
with four functional categories. Black lines
denotes y¼ x, and colored points denote es-
timates. In (C), 3 denotes true values. Error
bars denote 95% confidence intervals
(based on 1,000 simulations) but are smaller
than the data points in most cases. Numer-
ical results are reported in Table S1.
We determined that median estimates of Me were approxi-

mately unbiased across a wide range of true values,

although slight bias was observed for very low values of

Me (Figure 3A and Table S1). We report medians instead

of means due to noise in the denominator of the estimator,

which leads to instability in the mean. In general, S-LD4M

is expected to produce approximately unbiased median es-

timates except when power is very low.

Second, we fixed the polygenicity of common SNPs

(MAF > 5%) at Mez1;000 and progressively reduced the

polygenicity of low-frequency SNPs (MAF ¼ 0.5%–5%),

decreasing low-frequency heritability proportionally to

fix the average effect size magnitude of causal low-fre-

quency SNPs. Similar to Figure 3A, median estimates of

low-frequency Me were approximately unbiased for most

values of Me (Figure 3B). Some bias was observed at very

low values of low-frequency Me, owing to very low power

(due to very low per-SNP heritability; see Material and

Methods). We restrict our analyses of real traits to well-

powered traits (see below). These estimates indicate that

S-LD4M can be used to compare the polygenicity of com-

mon and low-frequency SNPs.

Third, we performed simulations with four real

functional annotations, simulating equal heritability

enrichment and polygenicity enrichment: coding (�83

enriched), enhancer (�53), DNase I hypersensitivity sites

(DHS, �23), and repressed (�0.753), similar to our results

on real traits (see below). We determined that S-LD4M pro-

duces approximately unbiased estimates of polygenicity

enrichment (Figure 3C). We also considered an alternative

model of heritability enrichment, under which poly-

genicity was approximately constant across functional

categories. Estimates were approximately unbiased for

enriched functional categories but biased for the repressed

annotation (Figure S1). Despite the fact that this genetic

architecture is less realistic (see below), we avoid reporting

estimates of polygenicity for depleted functional annota-

tions on real traits.

Fourth, we performed simulations to assess whether ge-

netic architectures with non-random clustering of causal

SNPs would bias our estimates of polygenicity enrichment

for SNPs in functional categories. Such clustering is ex-

pected in real data (e.g., due to biologically important
The American
genes), and it could potentially lead to bias, as S-LD4M

uses an LD approximation whose accuracy depends on

LD between causal SNPs (however, we do not assume

that linked SNPs have independent true causal effect sizes).

We simulated clusters of either 5 or 50 causal SNPs (on

average) across three genomic length scales (10, 100,

1,000 SNPs; roughly 3 kb, 30 kb, 300 kb on average). We

determined that median enrichment estimates were

approximately unbiased in each case, indicating that our

LD approximation is robust to non-random clustering of

causal SNPs (Figure S2).

Fifth, we performed simulations at different sample sizes

and included a filtering step to exclude trait-annotation

pairs with inadequate power (see Material and Methods).

We performed simulations at N ¼ 10k, N ¼ 50k, and N ¼
250k, estimating both the genome-wide polygenicity and

the polygenicity enrichment of five categories (four func-

tional categories and low-frequency SNPs). At the default

setting of N ¼ 50k, genome-wide polygenicity estimates

were unbiased (Table S2), and there was adequate power

to estimate polygenicity enrichment: 61% of simulated

traits were retained on average across categories, and

polygenicity enrichment estimates were approximately

unbiased (Figure S3 and Table S3). Similar results were

obtained at N ¼ 250k (Figure S3, Tables S2 and S3). At

N ¼ 10k, genome-wide polygenicity estimates remained

unbiased (Table S2), but there was limited power to esti-

mate polygenicity enrichment: only 8% of simulated traits

were retained on average (including �0% of simulated

traits for coding SNPs and for low-frequency SNPs), and

polygenicity enrichment estimates were downward biased

(Figure S3 and Table S3). Our analyses of real traits more

closely correspond to N ¼ 50k both in terms of average

c2 statistic and in terms of the proportion of traits retained

(49% on average across categories). Nonetheless, we avoid

reporting estimates of polygenicity enrichment for anno-

tations having well-powered enrichment estimates for

fewer than 10 out of the 33 traits that we analyzed.

Finally, we tested the calibration of our jackknife-based

standard errors, once again considering different sample

sizes and including a filtering step to exclude trait-annota-

tion pairs with inadequate power. We assessed calibration

using the normalized mean squared error, i.e., the actual
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squared error divided by the estimated squared error. We

determined that our jackknife standard errors for both

genome-wide polygenicity (Table S2) and polygenicity

enrichment (Table S3) were approximately well calibrated

or conservative. In particular, standard errors were moder-

ately conservative when power was low to moderate (e.g.,

at N ¼ 10k for genome-wide polygenicity), and well cali-

brated when power was high (e.g., at N ¼ 50k for

genome-wide polygenicity).

Polygenicity of Common SNPs across 33 Complex Traits

We applied S-LD4M to publicly available summary associ-

ation statistics for 33 diseases and complex traits (average

N ¼ 361k; Table S4), including 29 UK Biobank traits38–40

(see Web Resources) and 4 additional common diseases.

LD scores and LD fourth moments were computed using

LD estimated from UK10K41 (M ¼ 8.5 million SNPs after

QC, MAF > 0.5%) and 75 baseline-LD model annota-

tions.19 As in previous work,18,19,23,31 we excluded the

major histocompatibility complex, which has unusually

large effect sizes and long-range LD due to balancing selec-

tion. (This choice increases Me estimates for immune-

related traits.) Details of our analyses are provided in the

Material and Methods.

For most traits,Me for common SNPs (MAF> 5%) ranged

between 500 and 20,000 (102.7 and 104.3; Table 1). Fecun-

dity- and brain-related traits were remarkably polygenic,

with Me estimates greater than 10,000. For number of chil-

dren, the most polygenic trait, Me was almost as large as

effective number of independent SNPs, corresponding

to an infinitesimal trait (log10 Me ¼ 4.52 (0.13) vs. log10
Mindep ¼ 4.69). This estimate implies that most common

SNPs are associated with this trait (though a much smaller

fraction may be causal). Schizophrenia was also extremely

polygenic (log10Me¼ 4.14 (0.04)), consistent with previous

work.1,4,13 Particularly high polygenicity for fecundity- and

brain-related traits could result from particularly strong

negative selection (see below), if these traits are strongly

impacted by direct or pleiotropic selection; however, it is

also possible that these traits have greater biological

complexity. Red hair pigmentation and sunburn were the

least polygenic traits, consistent with known large-effect

common SNPs for pigmentation traits42,43 (Mt may be

much larger than Me for these traits). We also estimated

Me without including annotations from the baseline-LD

model, either using the 10 common MAF bins only or

using no annotations (Table S5). Estimates using ten MAF

bins were concordant with estimates using the baseline-

LD model (log-scale r ¼ 0.95; mean log10 fold difference

�0.03 (SD ¼ 0.21)), and estimates using no annotations

were approximately concordant but slightly smaller on

average (log-scale r ¼ 0.95; mean log10 fold difference

�0.13 (SD ¼ 0.22)). This suggests that S-LD4M estimates

are not contingent on accurately modeling LD-dependent

architectures, which is critical in other contexts.

We compared our estimates of Me with estimates of the

total number of SNPs with nonzero effects (Mt) from
462 The American Journal of Human Genetics 105, 456–476, Septem
Zeng et al.12 and from Zhang et al.13 The estimates of

Zeng et al.12 were based on a point-normal mixture model,

and the estimates of Zhang et al.13 were based on either a

point-normal model or a 3-component (point-normal-

normal) model, as determined via a model selection step.

Our Me estimates were correlated with both sets of Mt esti-

mates (log-scale r ¼ 0.90 and r ¼ 0.63, respectively; Figures

S4A and S4B and Table S6). The two sets of Mt estimates

were only weakly correlated with each other (log-scale

r¼ 0.20; Figure S4C and Table S6), largely due to discordant

Mt estimates for intelligence and depression (neither of

which was analyzed in this study). The Mt estimates of

Zeng et al.12 were �43 larger than both our Me estimates

and the Mt estimates of Zhang et al.,13 and the estimates

of Zhang et al.13 had much larger standard errors. Consis-

tent with our simulations and with the stated limitations

of these studies, this discordance confirms that estimates

ofMt will vary from study to study based on the parametric

model that is assumed and the sample size of the study.We

also compared our estimates of Me to the values of Me that

would be implied under the model fit by Zhang et al.;13

these estimates were approximately concordant, both in

relative value (log-scale r ¼ 0.85 across 14 traits) and on

average (mean log10 fold difference 0.19 (SD ¼ 0.38))

(Table S6). Finally, we compared the observed vs. expected

distribution of c2 statistics under a point-normal model

(Figure S5 and Table S7), and we determined that a point-

normal model does not fit the observed distribution of c2

statistics.

We performed three secondary analyses. First, for 6 of

the 33 traits, summary association statistics from indepen-

dent cohorts were available. S-LD4M produced concordant

Me estimates for common SNPs on these data sets, despite

the smaller sample size and much smaller number of

regression SNPs (Table S8). (We did not estimate low-

frequency Me for these data sets, because summary statis-

tics were not available for low-frequency SNPs.) Second,

across all 33 traits, our estimates of Me were not signifi-

cantly correlated with effective sample size (Spearman

r ¼ �0.23, p ¼ 0.19). Third, Me provides an upper bound

on the proportion of heritability explained by genome-

wide significant loci for a trait (see Appendix, Properties

of Me). We compared this bound with a direct estimate of

this proportion (which may be upwardly biased by

winner’s curse), and determined that the predicted bound

corresponded fairly well with the estimate (Spearman r2 ¼
0.61; Figure S6A). It also provided a conservative upper

bound on the number of genome-wide significant SNPs

(Figure S6B). Similar results were obtained when we used

Me estimates from an independent cohort (Figure S7).

Unequal Polygenicity of Common and Low-Frequency

SNPs across 33 Complex Traits

We compared per-SNP Me estimates for common and

low-frequency SNPs across 15 well-powered traits

(Figure 4A and Table 1). Polygenicity was 3.93 (95% CI:

2.9–5.23), smaller for low-frequency SNPs than for
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Table 1. Estimates of Polygenicity for Common and Low-Frequency SNPs across 33 Complex Traits

Trait log10Me Common log10Me LF Sample Size ðN or Nef f Þ

Infinitesimal trait 4.69 4.98

Number of children 4.50 (0.13) 3.95 (0.23) 457k

Schizophrenia 4.14 (0.04) 3.10 (0.16) 111k

Smoking status 4.11 (0.02) NA 458k

College 4.08 (0.05) 2.86 (0.20) 389k

Morning person 4.02 (0.02) 2.16 (0.25) 411k

Age at first birth – F 3.99 (0.04) NA 169k

Neuroticism 3.99 (0.23) NA 372k

FVC 3.87 (0.16) NA 372k

CVD including HT 3.81 (0.03) NA 400k

BP – systolic 3.81 (0.02) 2.31 (0.42) 423k

BMI 3.78 (0.12) 2.53 (0.21) 458k

IBD 3.60 (0.04) 3.19 (0.10) 86k

Height 3.56 (0.02) 2.91 (0.05) 458k

WHR 3.50 (0.04) 2.54 (0.09) 458k

Age at menarche 3.47 (0.09) 2.47 (0.26) 242k

FEV1/FVC 3.38 (0.05) 3.01 (0.16) 372k

WBC count 3.30 (0.10) 2.42 (0.18) 445k

Eczema 3.20 (0.05) NA 324k

Asthma 3.12 (0.03) NA 187k

Eosinophil count 3.05 (0.04) NA 440k

RA 3.03 (0.10) NA 85k

Platelet count 2.97 (0.04) 2.51 (0.10) 444k

AID 2.93 (0.05) NA 197k

BMD – heel 2.90 (0.08) NA 446k

Alzheimer’s 2.90 (0.11) NA 47k

Type II diabetes 2.85 (0.14) NA 74k

RBC distribution width 2.70 (0.05) NA 443k

RBC count 2.67 (0.18) NA 445k

Platelet distribution width 2.64 (0.08) 1.36 (0.54) 445k

Balding 2.59 (0.18) 2.16 (0.20) 180k

Age at menopause 2.55 (0.06) NA 143k

Sunburn 1.99 (0.08) NA 343k

Red hair 1.02 (0.22) NA 81k

We report common variant estimates for all traits, and low-frequency estimates for well-powered traits (see Material andMethods). We also report the sample size;
for binary traits we report the effective sample size, defined asNeff¼ 4/(1/Ncaseþ 1/Ncontrol). The first row reports the effective number of independent SNPs.32Me is
close to this value whenmarginal effect sizes approximately follow a normal distribution, which does not imply that every SNP is causal. Abbreviations: FVC, forced
vital capacity; CVD including HT, cardiovascular diseases including hypertension (most cases have HT); BP, blood pressure; BMI, body mass index; IBD, inflam-
matory bowel disease; WHR, waist-hip ratio; FEV1, forced expiratory volume; WBC, white blood cell count; RA, rheumatoid arthritis; AID, autoimmune and in-
flammatory diseases; BMD, bone mineral density; RBC, red blood cell.
common SNPs on average, with substantial variation

across traits. This difference represents a lower bound on

the difference in polygenicity between common SNPs

and de novo mutations. We are not currently aware of any
The American
possible explanation for this difference except for the in-

fluence of negative selection.

The �43 difference in common vs. low-frequency poly-

genicity is the largest that we would expect to observe, as
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Figure 4. Comparison of Common and
Low-Frequency Polygenicity across 15
Complex Traits
(A) Estimates ofMe for common and low-fre-
quency SNPs. Estimates are meta-analyzed
across well-powered traits. Common-
variant polygenicity was �43 greater on
average than low-frequency polygenicity.
Dotted lines denote the effective number
of independent SNPs (Mindep) for common
and low-frequency SNPs, respectively, corre-
sponding to an infinitesimal (Gaussian) ar-
chitecture. The solid line denotes equal
per-SNP Me.

(B) Estimates of polygenicity enrichment and heritability enrichment for low-frequency SNPs (compared to all common and low-fre-
quency SNPs). The solid line denotes equal enrichment. Error bars denote 95% confidence intervals. Numerical results are reported
in Tables 1 and S9.
the per-SNP heritability of common SNPs is also 3.93 (95%

CI: 3.5–4.43) larger than that of low-frequency SNPs

(consistent with previous estimates12,21). This concor-

dance was consistent across traits (Figure 4B). The ratio

h2/Me (i.e., the average unit of heritability; see Material

andMethods) is expected to either decrease or remain con-

stant at decreasing allele frequencies; individual low-fre-

quency SNPs are not expected to explain more heritability

than individual common SNPs. Our estimates indicate that

this ratio remains constant at allele frequencies above

�0.005. This observation suggests three conclusions.

First, negative selection imposes a bound on per-SNP

heritability that is approximately the same for common

and low-frequency SNPs. (In units of per-allele effect size,

the bound is higher for low-frequency SNPs.) This would

occur under a model where selection coefficients scale

with squared per-allele effect sizes, e.g., under the model

of Simons et al.28 and under the evolutionary models we

consider below. We caution that the bound may vary

across the genome, although it does not appear to vary

across functional annotations (see below).

Second, the heritability of both common and low-fre-

quency SNPs is predominantly explained by SNPs with

standardized effect sizes near the effect-size bound, result-

ing in similar values of h2/Me. This suggests that the de novo

effect-size distribution is dominated by mutations with ef-

fect sizes at least as large as per-allele effect size bound for

low-frequency SNPs. If mutations with effect sizes ap-

proaching the common-SNP effect-size bound explained

an equal proportion of variance in the de novo effect-size

distribution as mutations with effect sizes approaching

the low-frequency effect size bound, then they would

also explain an equal proportion of low-frequency herita-

bility. However, these SNPs would contribute little to

Eðb4Þ, and h2/Me would be �23 smaller for low-frequency

SNPs than for common SNPs (note that h2/Me ¼
Eðb4Þ=3Eðb2Þ, ignoring LD; see Material and Methods).

Third, the difference in polygenicity between common

SNPs and new mutations is likely to be much greater

than 43 on average. The only way for this difference to

be only �43 would be for the de novo effect-size distribu-

tion to be abruptly truncated near the per-allele effect-
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size bound for low-frequency SNPs; the variance of this dis-

tribution would need to be driven bymutations with effect

sizes confined to a narrow range. Instead, it is more likely

that this distribution is not abruptly truncated, and muta-

tions with increasingly large effects explain increasing pro-

portions of variance in the de novo effect-size distribution,

up to some point well beyond the low-frequency effect-size

bound. If so, then the de novo effect-size distribution would

be much more sparse than the effect-size distribution of

low-frequency SNPs, and the polygenicity of common

SNPs would be [43 the polygenicity of the de novo ef-

fect-size distribution. Indeed, we observed a R303 differ-

ence in our evolutionary models (see below).
Polygenicity of Functional Categories across 33 Complex

Traits

We compared estimates of polygenicity enrichment with

estimates of heritability enrichment across 25 main func-

tional categories from the baseline-LD model19 and meta-

analyzed results across well-powered traits for 21 categories

with at least 10 well-powered traits (Figure 5, Tables S9 and

S10; 49% of trait-annotation pairs were well powered).

For most annotations, polygenicity enrichment was

approximately equal to heritability enrichment (regression

slope¼ 0.93; r2¼ 0.88). For example, SNPs in conserved re-

gions were 133 enriched for heritability and 143 enriched

for polygenicity, and coding SNPs were 9.43 enriched for

heritability and 6.63 enriched for polygenicity. (These

functional enrichments for the union of common and

low-frequency SNPs are larger than the corresponding en-

richments for common SNPs, due to larger functional

enrichment for low-frequency SNPs.20) Thus, heritability

enrichment in functional categories is predominantly

driven by differences in polygenicity, rather than differ-

ences in effect-size magnitude. In particular, h2/Me (i.e.,

the average unit of heritability) is constant across func-

tional annotations, and the upper effect-size bound

imposed by negative selection (Figure 1A) is approximately

constant across annotations. In contrast, de novo muta-

tions are expected to have much larger effect sizes in

functionally important regions.44 Thus, genetic signals of
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Figure 5. Estimates of Polygenicity Enrichment and Heritability
Enrichment of Functional Categories
We report estimates for 20 functional categories plus low-fre-
quency SNPs. Estimates are meta-analyzed across well-powered
traits. Error bars denote 95% confidence intervals. Complete re-
sults for each trait are reported in Table S9 and meta-analyzed re-
sults are reported in Table S10.
important functional regions are constrained by negative

selection (Figure 1).

We compared functional enrichment between groups of

related traits (8 brain-related, 6 blood-related, and 5 im-

mune-related traits; Figure S8). Brain-related traits had

smaller functional enrichments both for heritability and

for polygenicity, consistent with previous findings.19,20,31

Smaller functional enrichment could be explained by

stronger negative selection for these traits, which may

strongly limit the enrichment of any functional cate-

gory.20 Stronger negative selection would also be consis-

tent with greater genome-wide polygenicity for these traits

(Table 1).

To investigate the relationship between functional

enrichment and genome-wide polygenicity, we quantified

the kurtosis explained by functional annotations (where

kurtosis k is inversely proportional to Me; Equation 1).

The proportion of kurtosis explained by functional anno-

tations from the baseline-LD model ranged between 7%

and 42% on the logarithmic scale (Figure S9A). Traits

with smaller Me (larger kurtosis) had larger kurtosis ex-

plained (r2 ¼ 0.78; Figure S9B).

GWAS Signals of Biologically Important Genes Are

Constrained by Negative Selection

Flattening may lead to increased polygenicity not only at

the level of SNPs, but also at the level of genes: as a conse-

quence of negative selection, heritability is spread more

evenly across genes, in comparison with the effect-size dis-

tribution of de novo mutations. GWAS effect sizes may be

similar for SNPs near genes with small effects and for

SNPs near genes with critical effects, and top GWAS SNPs

may often implicate small-effect genes (Figure 1).

In order to investigate the impact of flattening on the

distribution of heritability across genes, we explored two

evolutionary fitness models: a model with both gene-level

and SNP-level flattening, and a model with neither gene-
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level nor SNP-level flattening that is potentially realistic

in other respects. Although these specific models depend

on many unknown parameters, they provide examples of

qualitative phenomena: the first model illustrates that flat-

tening at the level of SNPsmay result from flattening at the

level of genes, and the second model illustrates that it is

possible for negative selection to cause common variants

and rare variants to have different average effect sizes but

the same level of polygenicity (as in the model of Zeng

et al.12). Under both models, SNPs affect genes and genes

affect the trait. Each gene has a trait effect size and a

selection coefficient. In the first model (Figure 6A and Ta-

ble S11), 5% of genes had large effect sizes (103 larger

than small-effect genes), and these genes are always

strongly constrained. We refer to this model as the

‘‘direct selection’’ model because it could arise from

direct selecting acting on the trait (but see below). In the

second model (Figure 6B and Table S11), there are

no large-effect genes and different genes have different

levels of constraint. We refer to this model as the ‘‘pleio-

tropic selection’’ model. We did not consider a pleiotropic

model with unconstrained large-effect genes, which would

lead to an unrealistic non-polygenic architecture. Further

details of the two models are provided in the Material

and Methods.

We analytically inferred the genetic architecture that

arises under eachmodel (seeMaterial andMethods). Under

both models, common variants have smaller per-allele ef-

fect sizes than low-frequency variants (Figures 6C and

6D), concordant with real traits;12,19,21 moreover, both

models produced a highly polygenic common-variant ar-

chitecture (Table S11). However, polygenicity differed for

the two models at lower allele frequencies (Figures 6E

and 6F). SNP-level flattening (i.e., lower polygenicity at

lower allele frequencies) was only observed under the

direct selection model; polygenicity was �303 lower for

de novo SNPs than for common SNPs (vs. �1.13 under

the pleiotropic selection model). Similar our results on

real traits (Figure 4), low-frequency polygenicity was �43

smaller, and low-frequency heritability was also �43

smaller (Figure 6E). Thus, a �43 difference between com-

mon and low-frequency polygenicity is consistent with a

much greater difference between common and de novo

polygenicity (moreover, see below).

The concordance between low-frequency polygenicity

enrichment and heritability enrichment is expected: the

selection coefficient of a SNP scales with its squared per-

allele effect size, and as a result, the bound on per-SNP

heritability is approximately a constant function of allele

frequency. Most heritability is explained by SNPs with

effect sizes near the bound, so h2/Me is similar for common

and low-frequency SNPs. However, in units of per-allele

effect size, the bound is higher for low-frequency SNPs

(Figure 1), so fewer variants approach the bound, leading

to lower heritability and proportionally lower polygenic-

ity. At allele frequencies smaller than 0.002, very few

SNPs have effect sizes near the bound, so the heritability
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Figure 6. Gene-Level Flattening under an Evolutionary Model
In the left column (A, C, E, G, I), there are some large-effect genes, but direct stabilizing selection acting on the phenotype strongly
constrains these genes. In the right column (B, D, F, H, J), there are no large-effect genes; pleiotropic stabilizing selection has varying
effects on each gene, limiting common-SNP effect sizes on average.
(A and B) Joint distribution of gene effect size magnitudes and selection coefficients.
(C and D) Average squared per-allele effect sizes at different allele frequencies. The strength of selection was chosen to produce similar
common-variant effect sizes in both columns.
(E and F) Heritability and polygenicity enrichment at different allele frequencies (relative to MAF ¼ 0.25). Polygenicity at MAF ¼ 0.25 is
approximately equal for the two columns, due to the different distributions of gene effect sizes.
(G and H) Expected heritability explained by a single gene as a function of its effect size, for SNPs at different frequencies. In (G), the
selection coefficient is proportional to the effect size. In (H), the selection coefficient is held constant.
(I and J) Proportion of heritability explained by the top 10% of largest-effect genes for SNPs at different allele frequencies. Numerical
results are reported in Table S11.
is predominantly explained by SNPs with effect sizes well

below the bound, and h2/Me decreases (Figure 6E).

For a real trait, the difference in polygenicity between

common and de novo SNPs could be much larger than

the �303 difference we observed under the direct-selec-
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tion model. For example, when we added a few genes

(0.25%) with extremely large effect sizes (1003 larger

than small-effect genes), the difference was �6003, while

the difference between common and low-frequency SNPs

was still �43 (Table S11). The difference in polygenicity
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between common and de novo SNPs could also be slightly

smaller than �303 if the distribution of gene effect sizes

is abruptly truncated, i.e., if there are no genes with effect

sizes larger than the genes that explain most of the herita-

bility of low-frequency SNPs. However, we observed that

low-frequency SNPs have roughly equal heritability and

polygenicity enrichment (Figure 4B). This concordance

implies that at decreasing minor allele frequency, per-

SNP heritability and polygenicity follow a linear relation-

ship at allele frequencies greater than �0.005, similar to

Figure 6E. While this trend is expected to plateau eventu-

ally, it is unlikely to plateau extremely abruptly, suggesting

that the polygenicity of new mutations is even smaller

than the polygenicity of variants at allele frequency

�0.005, and much smaller than the polygenicity of low-

frequency SNPs overall. Thus, we expect that the difference

between the polygenicity of common and de novo SNPs is

greater than one order of magnitude for most complex

traits; complex traits would be far less polygenic if not

for the influence of negative selection.

We caution that the difference between common vs.

low-frequency polygenicity (and heritability) may be a

poor proxy for the difference between common vs. de

novo polygenicity when selection is sufficiently strong.

When we increased the strength of selection in the direct

selection model, we observed that the effects of flattening

saturated at lower allele frequencies: despite stronger selec-

tion, the difference between common and low-frequency

polygenicity decreased to �23, owing to �2.53 increased

polygenicity for low-frequency SNPs. In contrast, the dif-

ference between common and de novo polygenicity

increased slightly to �403 (Table S11). Thus, the strength

of selection affects both the total amount of flattening and

the range of allele frequencies over which differential

polygenicity is observed. This effect may explain why

number of children, though extremely polygenic (perhaps

due to particularly strong selection), has a small difference

in polygenicity between common and low-frequency SNPs

(Figure 4).

We analytically computed the heritability explained by a

gene (gene-heritability) as a function of its effect size, for

SNPs at different allele frequencies. Under the direct selec-

tionmodel, common variant gene-heritability was approx-

imately constant as a function of gene effect size (except

for genes with near-zero effect), illustrating that flattening

can act at the level of genes (Figure 6G); the effect was

weaker for rare SNPs. Under the pleiotropic selection

model (which has no SNP-level flattening), there was also

no gene-level flattening (Figure 6H).We computed the pro-

portion of heritability explained by the top 10% of genes

(ranked by effect size), at different MAF strata. This propor-

tion was strongly frequency dependent under the direct se-

lection model, but not under the pleiotropic selection

model (Figures 6I–6J).

These results suggest that large-effect disease genes are

always constrained, and that one way that this constraint

could arise is direct selection acting on the disease itself.
The American
However, some forms of pleiotropic selection may produce

similar effects as direct selection; for example, in the case of

schizophrenia, pleiotropic selection on neurodevelopment

broadly may mimic the effects of direct selection on

schizophrenia specifically. Therefore, our results do not

imply that direct selection is more important than pleio-

tropic selection and do not contradict models of selection

that are primarily pleiotropic.24,28

If flattening occurs at the level of genes, then polygenic-

ity should be increased near strongly constrained genes.

We estimated the heritability and polygenicity of SNPs

within 50 kb of 2,990 loss of function-intolerant genes

from ExAC (‘‘ExAC genic SNPs’’).45,46 These SNPs were

more strongly enriched for polygenicity (�2.93) than for

heritability (�1.73) (Table S12). Compared with all genic

SNPs (550 kb), ExAC genic SNPs had 1.93 (95% CI:

1.7–2.03) larger polygenicity enrichment but only

1.33 (95% CI: 1.3–1.43) larger heritability enrichment,

implying 0.713 (95% CI: 0.66–0.763) smaller

average effect sizes (Table S12). These estimates suggest

that ExAC genes are more likely to be causal but also are

more strongly constrained relative to their effect sizes

when mutated. Moreover, they confirm that negative se-

lection at the level of genes affects polygenicity at the level

of SNPs.

If the GWAS signal of critical disease genes is constrained,

then top GWAS loci should include a mixture of weak per-

turbations to critical, strongly constrained disease genes

(like a ‘‘canary in a coal mine’’47) and strong perturbations

to less critical, weakly constrained genes. In particular, com-

moncodingvariants—usually representing strongperturba-

tions—are more likely to harbor top associations for any

gene, leading to increased polygenicity among coding vari-

ants (Figure 4); therefore, theymaybe less likely to implicate

critical, strongly constrained disease genes. We tested this

prediction for 37 fine-mapped IBDGWAS loci,48 comparing

the probability of loss-of-function intolerance (pLI)45 be-

tween genes harboring coding or noncoding causal risk

SNPs. Indeed, 0/8 candidate genes containing fine-mapped

coding variants had high pLI (R0.9), compared to 12/29

candidate genes near fine-mapped noncoding variants

(rank-sum test p¼ 0.006 for difference; Figure S10 andTable

S13). Although pLI is different from gene effect size, this

difference suggests that critical disease genes canbedetected

by prioritizing SNPs with subtle, context-dependent regula-

tory effects on their target gene49,50 over SNPs with overt

coding effects.51
Discussion

Our flattening hypothesis makes directly testable predic-

tions about complex trait polygenicity. Using a new

mathematical definition of polygenicity, we compared

the polygenicity of 33 complex traits across allele fre-

quencies and functional categories. We determined that

low-frequency variants have lower polygenicity than
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common variants and that biologically important func-

tional categories have higher polygenicity in proportion

to their higher heritability, consistent with the flattening

hypothesis. Our results demonstrate that negative selec-

tion not only constrains common-variant effect sizes on

average but flattens their distribution across the genome,

explaining the extreme polygenicity of complex traits.

The effect-size distribution of new mutations (not yet

affected by negative selection) is far less polygenic, prob-

ably by orders of magnitude. Thus, the genes and loci

with the most critical effects when mutated may not har-

bor the strongest common-variant associations.

Recent studies17,52 proposed an ‘‘omnigenic model’’

of complex traits: a limited number of ‘‘core genes’’

have direct effects on a trait, but due to densely connected

cellular networks, thousands of other ‘‘peripheral genes’’—

perhaps including every gene expressed in a relevant cell

type—also contribute to heritability. Our results support

the distinction between core and peripheral genes, suggest-

ing that only a limited number of genes have critical

phenotypic effects if mutated, and that these genes explain

little heritability. (An alternative would be that many genes

have direct phenotypic effects,53 e.g., if a common disease

is actually the union of multiple phenotypically similar but

mechanistically distinct diseases or subtypes.54) One might

expect that core genes, even if they explain a minority of

heritability due to the larger number of peripheral genes,

would usually harbor the strongest common-variant associ-

ations; however, our results suggest that they may not, due

to being strongly constrained by selection.

A key question is how many genes and loci have critical

effects, and how this number varies among traits. Our

evolutionary modeling indicated that for a trait whose

low-frequency polygenicity is 43 smaller than its com-

mon-variant polygenicity, its de novo polygenicity may be

30–6003 smaller, and the two extremes would have

completely different biological implications. A difference

of only 303 would imply that more than 100 genes (de-

pending on common-variant polygenicity) have critical

effects, possibly spanning many pathways, cell types,

and stages of disease progression. On the other hand, a dif-

ference of 6003 would suggest a much smaller number of

critical genes and pathways, with many other genes and

pathways having auxiliary effects. In autism, a study of

parent-child trios55 estimated that a few hundred genes

harbor penetrant coding mutations, with considerable

uncertainty. Other traits may have completely different

de novo effect size distributions; for example, schizophrenia

has much weaker total de novo enrichment, and de novo

point mutations have unclear penetrance and poly-

genicity.56,57 This question could be addressed by esti-

mating polygenicity for increasingly rare variants. We

only analyzed SNPs at allele frequencies greater than

0.005, due to poor imputation accuracy at lower fre-

quencies. Given well-powered exome-sequencing data, it

may be possible to apply S-LD4M to rare coding SNPs,

probably aggregating association signals across genes.
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Polygenicity has not precluded GWASs from producing

biological insights,10 and our results suggest guidelines to

accelerate their progress. First, GWAS follow-up studies

should prioritize genes with evidence of constraint, as

most critical disease genes are constrained. Loss-of-

function variants provide a useful metric of constraint;45

for GWASs, a maximally informative constraint metric

might incorporate noncoding variation,58 gene expression

data,59 and functional predictions.60 Second, counter-intu-

itively, follow-up studies should prioritize associations that

do not map to coding regions or large-effect regulatory

elements—instead having weak or context-dependent

regulatory effects—since SNPs with strongly deleterious

effects on their target gene are less likely to implicate

strongly pathogenic genes. As our ability to interrogate

the gene-regulatory effects of GWAS SNPs improves,60–62

a potential pitfall would be to prioritize GWAS SNPs with

the largest regulatory effects. Third, rare-variant based

evidence from exome-sequencing studies, even if under-

powered, can be used to prioritize GWAS genes. Indeed,

exome-sequencing studies63–65 have been viewed as an

attractive complement to GWASs,17 and our results

support this perspective. However, moderately rare coding

variants may suffer the same limitations as common regu-

latory variants.

Finally, this study has several limitations. First, the

nonparametric approach that we used to define and esti-

mate polygenicity may not be optimal for every applica-

tion. A recent study13 fit a parametric model involving a

mixture of normal distributions; this approach may pro-

vide more accurate estimates of missing heritability as a

function of sample size, and it maymore accurately predict

the performance of risk prediction methods that make

similar parametric assumptions.36 Second, S-LD4M can

produce biased estimates for depleted functional annota-

tions, albeit in unrealistic settings (Figure S1). However,

this bias does not affect enriched annotations or low-fre-

quency variants, which are not in strong LD with common

variants, and we have avoided reporting polygenicity esti-

mates for depleted functional annotations. Third, S-LD4M

produces noisy estimates for some annotations and traits,

making it necessary to perform meta-analyses across well-

powered traits, which may not be representative of all

traits. Comparisons of heritability enrichment and polyge-

nicity enrichment are not biased by this filtering process,

as the same traits are used to estimate both types of enrich-

ment. Fourth, S-LD4M can potentially be biased due to

population stratification, and it should be applied only to

data sets where stratification is well controlled. In partic-

ular, S-LD4M assumes that any stratification leads to

approximately uniform inflation of c2 statistics; this

assumption could be violated at loci under positive selec-

tion, such as at the LCT locus for height.66 However, we

have applied S-LD4M only to datasets that were corrected

for population stratification (including UK Biobank, a rela-

tively homogenous study). Fifth, although our evolu-

tionary modeling supports the hypothesis that flattening
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affects the distribution of heritability across genes, an alter-

native is that SNP-level flattening results from increased

allelic heterogeneity for common variants near large-effect

genes. However, this explanation would require that there

be many independent associations per gene. Despite

evidence of allelic heterogeneity, it is not a common

phenomenon that multiple independent, similarly strong

associations implicate the same gene.30 Sixth, we have

not analyzed any rare diseases, whichmay differ from com-

plex traits both in their biological complexity and in their

relationship with fitness; our findings do not have

implications for their genetic architectures.67 Seventh, in-

ferences about components of heritability can potentially

be biased by failure to account for LD-dependent architec-

tures.6,19,68,69 All of our primary analyses used the base-

line-LD model, which includes six LD-related annota-

tions.19 The baseline-LD model is supported by formal

model comparisons using likelihood and polygenic predic-

tion methods, as well as analyses using a combined model

incorporating alternative approaches.71 There can be no

guarantee that the baseline-LD model perfectly captures

LD-dependent architectures; however, our estimates of Me

were similar with or without including annotations from

the baseline-LD model (Table S5), suggesting that our esti-

mates are unlikely to be affected by imperfect modeling of

LD-dependent architectures. Despite these limitations,

this study advances our understanding of genetic architec-

ture and the evolutionary processes that shape it.
Appendix A

The Effective Number of Independently Associated SNPs

Here, we provide three definitions of the effective number

of independent causal SNPs (Me). First, we define Me in

terms of the mixed fourth moments of the distribution

of causal and marginal effect sizes. This generalizes the

definition in Equation 1, which corresponds to the special

case of no LD between causal SNPs. Second, we provide an

alternative definition (under a random effects model) that

formalizes the illustration in Figure 2A, involving the

average unit of heritability explained by a causal SNP (see

Material and Methods). Third, we provide a concise

definition that provides less intuition. We show that these

definitions are equivalent below (see Equivalence of Me

Definitions).

First, let b denote the random vector of causal effect sizes

for common and low-frequency SNPs. Let R be the fixed LD

matrix, and let a ¼ Rb denote the random vector of

marginal effect sizes. We use the notation a; b to denote

randomly chosen entries of a; b. The heritability is

h2 ¼ EðbTRbÞ ¼ MEðabÞ:Me is defined as:

Me ¼ 3M

ke
; ke ¼

3E
�
a2b2

�� 2E
�
b4
�

EðabÞ2 : (Equation A1)

Another possible definition of polygenicity is the effec-

tive number of causal SNPs, denoted Me
0:
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M
0
e ¼

3M

ke
0 ; k

0
e ¼

E
�
b4
�

E
�
b2
�2: (Equation A2)

The difference between Me and Me
0 is analogous to the dif-

ference between the heritability EðbTRbÞ and an alterna-

tive definition of heritability that does not account for

LD between variants, EðbTbÞ. In the presence of perfect

LD, Me
0 and EðbTbÞ are unidentifiable without making a

strong assumption (roughly, that linked SNPs have inde-

pendent causal effect sizes; see below). The two definitions

of polygenicity are equivalent in the special case of no LD

between causal SNPs (because a ¼ b whenever bs0), as in

Equation 1.Me
0 is different from the total number of causal

SNPs, except when causal effect sizes follow a point-

normal distribution. Because it is unlikely that causal effect

sizes follow a normal distribution, we view the distinction

between Me and Mt as having greater importance than the

distinction between Me and Me
0.

Second, we consider a non-i.i.d. normal model:

b � Nð0;SÞ (Equation A3)

where S is a diagonal matrix with diagonal entries s21;.;

s2M . This flexible model generalizes the point-normal

model. h2 is equal to TrðSÞ. Note that if SfI, then k
0
e is

equal to 3 and Me
0 is equal to M. Above, we used the nota-

tion Eð:Þ to denote a uniform average across SNPs. We use

the notation Eh2ð:Þ to denote an average across compo-

nents of heritability, i.e., a weighted average where the

probability of choosing SNP i is equal to s2i =h
2. Using

this notation, we refer to Eh2ða2Þ as the average unit of her-
itability, and Me is equal to:

Me ¼ h2

Eh2

�
a2
�: (Equation A4)

Me
0 can be defined in a similar manner:

M
0
e ¼

h2

Eh2
�
b2
�: (Equation A5)

Third,Me can also be defined without specifying that S is

a diagonal matrix. (The assumption that S is diagonal is

similar to the common assumption that EðbTRbÞ ¼
EðbTbÞ.2,31) Let S ¼ S1=2RS1=2. In the diagonal case, S is a

weighted LD matrix, where the rows and columns are

weighted by the expected effect size of each SNP. The her-

itability is equal to Tr(S) (in the diagonal case, TrðSÞ ¼
TrðSÞ). Me is equal to:

Me ¼ TrðSÞ2
TrðS2Þ: (Equation A6)

This definition, though concise and natural, provides lit-

tle intuition.
Properties of Me

Me has notable mathematical properties.
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d Identifiability. If there are two SNPs in perfect LD, there

is no way to tell based on GWAS data whether one or

both of them are causal. If a definition of polygenicity

differs depending on whether one or both are causal,

then it is unidentifiable. Indeed, Me
0 is larger if both

SNPs are causal than if only one SNP is causal. How-

ever, because both SNPs have identical values of

Eða2Þ, the value of Eh2ða2Þ (and therefore MeÞ is unaf-
fected.

d Missing Heritability. Me gives an upper bound on the

proportion of heritability explained by SNPs whose

effect sizes exceed a specified threshold T, such as

the genome-wide significance threshold. This propor-

tion can be denoted Ph2ða2 > TÞ. Because a2 is

nonnegative,

Ph2

�
a2 > T

�
%
Eh2

�
a2
�

T
: (Equation A7)

This bound is relatively tight when T[Eh2ða2Þ. When T is

a significance threshold (for example, T ¼ ð30=NÞ corre-

sponds to genome-wide significance), this bound is most

relevant at low sample size.

d Polygenic Prediction Accuracy. Intuitively, increased

polygenicity makes prediction more difficult. If S is

given, there is a simple expression for the optimal

risk prediction accuracy; this expression provides an

upper bound on prediction accuracy in the case that

S is not given:

E
�
r2
� ¼ h2Eh2ð a2

a2 þ 1

N
Þ: (Equation A8)

(see Polygenic Prediction Accuracy below for derivation).

At large N, prediction accuracy converges to h2. At small

N, it is approximately a linear function of sample size

with slope inversely proportional to Me:

E
�
r2
�
zNh2Eh2

�
a2
� ¼ Nh4



Me: (Equation A9)

In practice, polygenic prediction is usually performed us-

ing large datasets for which this approximation is not

appropriate.

d Effective Number of Independent SNPs. Under an infini-

tesimal model, where every SNP is causal with a nor-

mally distributed causal effect size, Me is equal to the

effective number of independent SNPs32 (Mindep).Mindep

is defined as the number of SNPs divided by the average

LD score, or in notation similar to Equation A6, as

Mindep ¼ TrðRÞ2
TrðR2Þ: (Equation A10)

We note that Me might be close to Mindep even when Me
0 is

much smaller than M. For example, if the genome com-

prises perfect LD blocks of 100 SNPs each, then Me can
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be equal toMindep even if only 1 SNP per LD block is causal.

We also note that the value of Mindep is strongly dependent

on the range of allele frequencies that is specified, as rare

SNPs (which have less LD) contribute strongly to Mindep.

In contrast, Me will not diverge if many rare SNPs are

included, as these SNPs explain little heritability.

d Symmetry. Me is symmetric with respect to the two

fixed parameters in the random effects model, R and

S: Me(R, S) ¼ Me(S,R). This property is shared by the

LD-dependent definition of heritability, EðbTRbÞ ¼
TrðRSÞ ¼ TrðSRÞ. It is not shared by Me

0 or by the

LD-independent definition of heritability, EðbTbÞ ¼
TrðSÞ.
Stratified LD Fourth Moments Regression

S-LD4M is justified by an approximate regression equation,

which states that the expected value of a4 for SNP i is

approximately proportional to the LD fourth moment of

SNP i, with a proportionality constant that can be used

to estimate Me.

Let [ð2Þ; [ð4Þ denote the LD second moment (LD score5)

and LD fourth moment, respectively, for a randomly cho-

sen SNP:

[
ðpÞ
i ¼

X
j

rpij (Equation A11)

The regression equation is:

E
�
a4 j [ ð2Þ; [ ð4Þ�z3E

�
a2 j [ ð2Þ; [ ð4Þ�2 þ [ ð4ÞK:

(Equation A12)

In the first term, Eða2
�� [ð2Þ;[ð4ÞÞ ¼ [ð2Þt, where the coeffi-

cient t is the variance of causal effect sizes.5,31 In the sec-

ond term, K is related to Me:

K ¼ 3E
�
b2
��
Eh2
�
a2
�� E

�
a2
��
: (Equation A13)

Note that there are three kinds of expectations in Equa-

tions A12 and A13. First, Eða2
�� [ð2Þ; [ð4ÞÞ and

Eða4
�� [ð2Þ; [ð4ÞÞ are conditioned on LD. Second, Eða2Þ and

Eðb2Þ are not conditioned on LD; rather, they represent un-

weighted averages over all reference SNPs. Third, Eh2ða2Þ is
the average across components of heritability (not uni-

formly across SNPs).

In the case that there are P functional annotations, [
ð4Þ
i

and K are vectors of size 1 3 P and P 3 1, respectively

(see below). Similar to S-LDSC, we make an additivity

assumption for the fourth moments of SNPs in the inter-

section of annotations. Our simulations violate this

assumption, but it does not appear to result in bias.

This regression equation relies on an LD approximation.

Roughly, the LD approximation states that if SNP i is in LD

with causal SNP j, then the expected marginal effect size of

SNP i is proportional to the marginal effect size of SNP j.

This approximation is exact in important special cases,

suggesting that it will be robust in practice. First, we
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consider the stronger assumption that would be needed to

estimate Me
0, which is roughly that linked SNPs have inde-

pendent causal effect sizes. More precisely, we would need

to assume that the contribution of causal SNP j to the mar-

ginal effect size of SNP i, not conditional on other SNPs, is

proportional to the causal effect size of SNP j:

cov
�
a2
i ; b

2
j


zr2ij var

�
b2
j


: (Equation A14)

Note that the expectations are not conditioned on other

SNPs; if causal SNPs tend to cluster together, then the

approximation will be poor, because the presence of causal

SNP j would suggest additional nearby causal SNPs,

inflating the left side but not the right side. We weaken

Equation A14 to obtain our LD approximation:

cov
�
a2
i ; b

2
j


zr2ij cov

�
a2
j ; b

2
j


: (Equation A15)

Now, we are assuming that the contribution of causal

SNP j to the marginal effect size of SNP i is proportional

to the marginal effect size of SNP j. Note that Equation

A14 implies Equation A15 by applying Equation A14 to

the case i ¼ j. We show that Equation A15 implies Equa-

tion A12 below (Derivation of Regression Equation).

Equation A15 is not violated when other causal SNPs k

are in strong LD with SNP j ðr2jkz1Þ, since they would

contribute to a2
i in proportion to their contribution to

a2
j (because r2ikzr2ij r

2
jk). However, it could be violated if

there were other causal SNPs in weak LD with SNPs i

and j (violating r2ikzr2ij r
2
jk). Thus, Equation A15 is exact

both in the case that there is no clustering of causal

SNPs and in the case that there is very tight clustering;

this type of approximation is expected to be robust in in-

termediate cases as well, and our simulations support this

intuition (Figure S2).

Equations A14 and A15 have second-moment ana-

logues that can be used to justify LD score regression.5,31

LDSC has been justified by assuming that correlated

SNPs have uncorrelated effect sizes; this assumption can

be stated as:

E
�
aibj

� ¼ rijE
�
b2
j


; (Equation A16)

which is analogous to Equation A14. This assumption al-

lows LDSC to estimate a non-LD-dependent definition of

heritability, MEðb2Þ. However, a weaker assumption is

also possible, analogous to Equation A15:

E
�
aibj

�
zrijE

�
ajbj

�
: (Equation A17)

This weaker assumption still holds when positively corre-

lated SNPs tend to have positively (or negatively) corre-

lated causal effect sizes. It allows LDSC to estimate EðabÞ,
which is proportional to bTRb, as follows:

E
�
a2
i

� ¼ X
j

rijE
�
aibj

�
z
X
j

r2ijE
�
ajbj

� ¼ [ ð2Þ
i EðabÞ:

(Equation A18)
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Thus, although LDSC has previously been justified using

the assumption that correlated SNPs have uncorrelated

effect sizes, only this weaker assumption is strictly neces-

sary in order to estimate the LD-dependent definition of

heritability.

Equation A12 relates Eða4ÞwithMe. However, in practice,

we do not observe a, but rather a noisy estimate ba. We can

correct for sampling noise using:

E
�ba2 j a� ¼ a2 þ 1

N
; E

�ba4 j a� ¼ a4 þ 6a2


N þ 3



N2;

(Equation A19)

where in practice we use the LD score regression intercept

divided by N, denoted 1= bN , instead of 1=N. We caution

that this equation assumes that sampling error follows a

normal distribution, which may be false for rare SNPs. In

the presence of population stratification, it may approxi-

mately hold if stratification is relatively even across the

genome, but it would be violated if some regions of the

genome have been under population-specific positive

selection.

We perform a two-step inference procedure. First, we use

a slightly modified version of S-LDSC31 (see below) to esti-

mate Eða2
i Þ and Eðb2i Þ for each SNP, conditional on their

respective LD scores and annotation values. Second, we

regress the M31 vector

ba4 � 6ba2

N
þ 3

N2
� 3

�
[ ð2Þt

�2
; (Equation A20)

whose expectation is a4 � 3Eða2
�� [ð2ÞÞ2, on theM3Pmatrix

lð4Þ to obtain an estimate of the 13P vector K. (xk

denotes element-wise exponentiation.) The regression is

weighted: the weight of SNP i is 1 divided by the LD fourth

moment of SNP i (to all common and low-frequency SNPs).

This choice prevents over-counting of high-LD regions (see

below). For each annotation Ap, we add 3EðEða2ÞEðb2Þ ��ApÞ
to Kp and estimate Me for each category.

Our modified version of S-LDSC uses a slightly modified

weighting scheme and does not exclude large-effect SNPs.

The regression weight of each SNP is 1 divided by the LD

score for that SNP to all common and low-frequency

SNPs; this choice is similar to the original version of

S-LDSC,31 but slightly modified for consistency with the

weights used in S-LD4M. We do not exclude large-effect

SNPs because these SNPs are important for estimating

fourth moments; their exclusion would lead to upwardly

biased estimates of Me.
Equivalence of Me Definitions

Me can be defined in three equivalent ways. First, it can be

defined in terms of fourth moments of the effect size

distribution:

Me ¼ 3M

ke
; ke ¼

3E
�
a2b2

�� 2E
�
b4
�

EðabÞ2 : (Equation A21)
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:

Second, it can be defined in terms of the average unit of

heritability. Suppose that b � Nð0;SÞ;where Ʃ is a diagonal

matrix with entries s21; :::;s
2
M . The average unit of heritabil-

ity is defined as:

Eh2

�
a2
� ¼ 1

h2

X
i

s2
i E
�
a2
i j R;S�: (Equation A22)

Eh2ða2Þ is proportional to ke :

3E
�
a2b2

�¼ 3

M

X
i

E
�
b2
i a

2
i j S�

¼ 3

M

X
i;j

r2ij E
�
b2
i b

2
j j S


¼ 3

M

X
i

"
E
�
b4
i j S�þX

jsi

r2ij E
�
b2
i S
�
E
�
b2
j j S

#

¼ 3

M

X
i

"
2s4

i þ
X
i;j

r2ijs
2
i s

2
j

#

¼ 2E
�
b4
�þ 3

M

X
i

s2
i E
�
a2
i j �O


; (Equation A23)

where we have used the fact that Eðb4i
��SÞ ¼ 3s4i .

Rearranging,

ke ¼
3E
�
a2b2

�� 2E
�
b4
�

EðabÞ2

¼ 3

M

X
i

s2
i E
�
a2
i j S�EðabÞ2

¼ 3

EðabÞEh2

�
a2
�
:

(Equation A24)

Substituting h2 ¼ MEðabÞ; we have a second definition

of Me:

Me ¼ h2Eh2

�
a2
�
: (Equation A25)

Third, define S ¼ S1=2RS1=2. Then:

Tr
�
S2
� ¼X

i;j

r2ijs
2
i s

2
j ¼

X
i

s2
i

X
j

r2ijs
2
j

¼ h2Eh2
�
a2
�
: (Equation A26)

Thus, we obtain another equivalent definition:

Me ¼ TrðSÞ2
TrðS2Þ; (Equation A27)

where TrðSÞ ¼ h2. This definition is slightly more general

than Equation A25, since it does not require that S is a

diagonal matrix. (Note that in the diagonal case,

TrðSÞ ¼ TrðSÞ; more generally, these definitions are

different, corresponding to the difference between Eðb2Þ
and EðabÞ.)
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If S is given, then it is clear what the optimal risk predic-

tion scheme is. Given an estimate ba of the marginal ef-

fect-size vector a, the expected phenotypic value of an in-

dividual with genotype X is:

EðXb j ba;S;XÞ ¼ XEðb j ba;SÞ: (Equation A28)

The expected prediction r2 is:

r2 ¼ EððXbÞðXEðb j ba;SÞÞ j SÞ
¼ E

�
bTREðb j ba;SÞ�

¼ E
�
bTEða j ba;SÞ�: (Equation A29)

Conveniently, we have eliminated Eðb j ,Þ from the expres-

sion, so the optimal risk prediction accuracy does not

depend on R�1 (although the optimal risk predictor

may). Now, ba � Nða; ð1=NÞRÞ, so:

Eða j ba;SÞ ¼ baEða2 j SÞ
1

N
þ E

�
a2 j S�: (Equation A30)

Taking an expectation over SNPs,
r2 ¼ ME

 
ab

Eða2 j SÞ
1
N
þ Eða2 j SÞ j S

!

¼ h2Eh2ð doublehyphen;10pt
a2

1

N
þ a2Þ doublehyphen;10pt

(Equation 31)

When N is large, r2 converges to h2; when N is small, r2 is

approximately Nh2Eh2ða2Þ ¼ Nh4=Me:

Derivation of Regression Equation

We assume that:

cov
�
a2
i ; b

2
j j [ ð2Þ

i ; [
ð4Þ
i


zr2ij cov

�
a2
j ; b

2
j j [ ð2Þ

i ; [
ð4Þ
i


(Equation A32)

We use this approximation as follows. First, we split up

Eða4
i Þ:

E
�
a4
i j [ ð2Þ

i ; [ ð4Þ
i


¼ E

 
a2
i

"X
j

r2ijb
2
j þ

X
ksj

rikrijbkbj

#
j [ ð2Þ

i ; [ ð4Þ
i

!
:

Next, we use the fact that
E

 
a2
i

"X
j

r2ijb
2
j

#!
¼ E

 "X
j

r2ijb
2
j

#2!

and that

E

 
a2
i

"X
ksj

rikrijbkbj

#!
¼ E

 
2
X
ksj

r2ikr
2
ijb

2
kb

2
j

!
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to obtain:

E
�
a4
i j [ ð2Þ

i ; [ ð4Þ
i


¼ E

 "X
j

r2ijb
2
j

#2
þ 2

X
jsk

r2ij r
2
ikb

2
j b

2
k j [ ð2Þ

i ; [ ð4Þ
i

!

¼ 3
X
j

r2ij

�
E
�
a2
i b

2
j j [ ð2Þ

i ; [ ð4Þ
i


� 2

3
r2ij E
�
b4
j j [ ð2Þ

i ; [ ð4Þ
i

�
:

(Equation A33)

Now, we are ready to use Equation A32 to break down

Eða2
i b

2
j Þ ¼ covða2

i ;b
2
j Þþ Eða2

i ÞEðb2j Þ:

E
�
a4
i j [ ð2Þ

i ; [ ð4Þ
i ¼ 3

X
j

r2ij

�
cov
�
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2
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i ; [ ð4Þ
i


þ E
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i ; [
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i
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i


� 2

3
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� 2

3
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�

¼3E
�
a2
i j [ ð2Þ

i ; [ ð4Þ
i

2
þ
X
j

r4ij

h
3E
�
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j b

2
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i


�3E

�
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j j [ ð2Þ
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i
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�
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j j [ ð2Þ
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i


� 2E

�
b4
j j [ ð2Þ
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i
:

(Equation 34)

Similar to LD score regression, we assume that SNPs in

LD with regression SNPs (i.e., SNPs j which are in LD

with SNP i) are representative of a larger population of

SNPs (e.g., all common SNPs), allowing us to replace

Eð,j
�� [ð2Þi ; [

ð4Þ
i Þ with Eð,jÞ:

E
�
a4
i j [ ð2Þ

i ; [ ð4Þ
i


¼ 3E

�
a2
i j [ ð2Þ

i ; [ ð4Þ
i

2
þ �3E�a2b2

�
�2E

�
b4
�� 3E

�
a2
�
E
�
b2
��
[ ð4Þ
i :

(Equation A35)

We restate this equation for a randomly chosen SNP

(rather than for a particular SNP i):

E
�
a4 j [ ð2Þ; [ ð4Þ� ¼ 3E

�
a2 j [ ð2Þ�2 þ [ ð4ÞK; (Equation A36)

where

K ¼ 3E
�
b2
��
Eh2

�
a2
�� E

�
a2
��
: (Equation A37)

Supplemental Data

Supplemental Data can be found online at https://doi.org/10.

1016/j.ajhg.2019.07.003.
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Supplementary Figures 
 

 
Figure S1 Simulations with heritability enrichment and no proportional polygenicity 
enrichment. Due to some sparsity being driven by differences in heritability enrichment across 
categories, there is lower sparsity (polygenicity enrichment) within each individual category than 
within their union. We observed strong downward bias for the repressed category, which is 
depleted for heritability; we hypothesize that this bias is the result of imperfect resolution to 
distinguish LD to this category from LD to nearby SNPs, which leads to inflated estimated fourth 
moments because the nearby SNPs have larger causal effect sizes. This bias has little effect on 
our estimates for categories depleted for heritability because the nearby SNPs have smaller 
causal effect sizes than the SNPs in the category, and therefore very little effect on fourth 
moments; it also has little effect on our estimates for low-frequency SNPs because these SNPs 
are never in strong LD with common SNPs. In analyses of real traits, we do not report 
polygenicity enrichment estimates for categories that are depleted for heritability. Based on 
1,000 simulations. Error bars indicate 95% confidence intervals. Numerical results are reported 
in Table S1. 

  



 

 
Figure S2 Simulations with clustering of causal SNPs. The probability for a SNP to be causal 
was zero for most of the genome, and nonzero for contiguous blocks of SNPs of different sizes. 
(A) Blocks of 10 SNPs with a 50% chance of being causal. (B) Blocks of 100 SNPs with a 5% 
chance of being causal. (C) Blocks of 1,000 SNPs with a 0.5% chance of being causal. (D) 
Blocks of 100 SNPs with a 25% chance of being causal. Based on 1,000 simulations. Error bars 
indicate 95% confidence intervals. Numerical results are reported in Table S1. 
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Figure S3 Simulations with ascertainment based on power. For each annotation, simulation 
runs were discarded if heritability for that annotation was not significantly different from zero 
(𝑍 > 2) or if the standard error of the 𝑀% estimate for the annotation was larger than two times 
the median 𝑀% point estimate. Results are not shown for annotations where the fraction of 
retained simulations was less than 1%, and confidence intervals are large for annotations where 
the fraction of retained simulations is low. See Table S3 for the fraction of simulations that were 
retained in each case. Based on 1,000 simulations (before filtering). Error bars indicate 95% 
confidence intervals. Numerical results are reported in Table S1. 
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Figure S4 Comparison of estimates of 𝑴𝒆 and 𝑴𝒕. We compared our estimates of 𝑀%, 
estimates of 𝑀) from Zeng et al.11, and estimates of 𝑀)	from Zhang et al.12. (A) Our estimates of 
𝑀% were highly correlated with estimates of 𝑀) from Zeng et al. (𝑟 = 0.90), but ∼ 4 × smaller. 
This difference could be due to the different definition of polygenicity, or due to LD-related 
upwards bias in 𝑀) estimates11. (B) Our estimates of 𝑀% were correlated with estimates of 𝑀) 
from Zhang et al. (𝑟 = 0.62). These estimates were derived under either a point-normal or a 
point-normal-model model (depending on a model selection step). (C) Estimates of 𝑀) were only 
modestly correlated between Zeng et al. and Zhang et al. (𝑟 = 0.20). The Zeng et al. estimates 
were about 4 × larger, and the Zhang et al. estimates had much larger standard errors. These 
differences may result from the different models used by the two studies (point-normal vs. point-
normal-normal for most traits, respectively), from different sample sizes, or from the different 
statistical heuristics used to account for LD. (D) We computed the 𝑀% values that would be 
implied under the estimated models of Zhang et al. (assuming no LD between causal SNPs), and 
we compared these implied values with our 𝑀% estimates. These estimates were mostly 
concordant in magnitude and highly correlated (𝑟 = 0.85). We note that the 𝑀% values that 
would be implied by the estimates of Zeng et al. are similar to their 𝑀) estimates (because 𝑀% =
𝑀) under a point-normal model), except for the effect of their allele frequency dependent 
variance parameter; we did not attempt to calculate this because it depends on the site frequency 
spectrum of the set of SNPs that was used in their study. Numerical results are reported in Table 
S5. 
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Figure S5 QQ plots comparing the observed distribution of 𝝌𝟐 statistics vs. the expected 
distribution under a marginal point-normal model. The point-normal model was fit by 
matching the mean and variance of the model to the sample mean and variance for each trait. We 
assume that sampling noise follows a normal distribution with variance equal to the LD score 
regression intercept (model 1 in Table S7). We did not perform any LD pruning or weighting. 
For most traits, the largest-effect SNPs consistently have larger effects than expected under the 
model, consistent with the observation that a point-normal-normal model usually fits better12.  
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Figure S6 Heritability explained by genome-wide significant SNPs. 𝑀% gives a predicted 
upper bound on the proportion of heritability explained by significant SNPs, as well as on the 
number of significant SNPs (see Appendix, Properties of 𝑀%). Significant SNPs  (𝜒9 > 30) were 
chosen using a greedy pruning procedure, iteratively selecting the most significant SNP that is at 
least 0.5cM from any previously-selected SNP. We estimated the proportion of heritability 
explained by these SNPs as the sum of their estimated marginal effect size magnitudes. We 
caution that this estimate may be upwardly biased due to winner’s curse and due to subtle LD 
between selected SNPs. 

  



 

 
Figure S7 Heritability explained by genome-wide significant SNPs, predicted using 
polygenicity estimates from independent cohorts. 𝑀% gives a predicted upper bound on the 
proportion of heritability explained by significant SNPs, as well as on the number of significant 
SNPs (see Figure S6 caption and Appendix). For phenotypes with summary statistics from 
independent cohorts (see Table S8), we computed this bound based on the polygenicity estimated 
from the older study, the observed-scale heritability estimated from the newer study, and the 
sample size of the newer study. (We note that if the heritability of the older study were used 
instead, then unequal observed-scale heritability between the studies would lead to poor 
estimates).  
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Figure S8 Heritability and polygenicity enrichment meta-analyzed across related traits. 
There were 6 blood-related phenotypes (eosinophil count, platelet count, platelet distribution 
width, RBC count, RBS distribution width, and WBC count); 8 brain-related phenotypes 
(Alzheimer’s, BMI, college, morning person, neuroticism, smoking status, number of children 
and schizophrenia); and 5 immune-related phenotypes (all autoimmune, asthma, eczema, IBD, 
and RA). Results for each annotation are meta-analyzed across well-powered traits within each 
group, and each annotation is plotted if at least three traits had a well-powered polygenicity 
estimates for that annotation. 
 



 
Figure S9 Common-variant excess kurtosis explained by baseline-LD model. Excess kurtosis 
is defined as 𝑀%;;/𝑀%; in the case of no LD, this is equal to one-third the kurtosis of the causal 
effect size distribution, which is one when causal effects follow a normal distribution). Some 
excess kurtosis is expected due to differences in per-SNP heritability across categories; S-LDSC 
was used to estimate the causal effect size of each regression SNP, and these estimates were 
multiplied by the observed 𝜒9 statistics to estimate the sparsity explained by the model. (A) The 
proportion of excess kurtosis explained was defined as the ratio of logs (log-excess kurtosis 
explained divided by log-total excess kurtosis). It ranged between 20% and 50% for most traits, 
and there was no clear tendency for traits with greater polygenicity to have greater or smaller 
percent sparsity explained. (B) The amount of excess kurtosis explained was strongly negatively 
correlated with polygenicity (and positively correlated with total excess kurtosis). 
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Figure S10 Distribution of pLI values for IBD genes with fine-mapped coding and 
noncoding variants. Causal variants for Crohn’s disease and ulcerative colitis were fine mapped 
in ref. 48. 47 fine-mapped variants with >50% posterior probability and 1-2 annotated protein-
coding genes were selected. We caution that pLI values are computed based on allele frequencies 
of loss of function variants, so high-pLI genes will never have common LoF variants (although 
they may have common missense variants). There were 7 SNPs (all noncoding) with 2 annotated 
genes; pLI values were averaged for these loci. There were 3 genes with multiple causal variants 
(ranging from 2-6), including both coding and noncoding variants; these were counted only once, 
as coding genes. pLI values were significantly smaller for genes with coding variants than for 
genes with noncoding variants (single-tailed rank-sum test 𝑝 = 0.006). Results for each SNP are 
reported in Table S13.  

 
 
 
 
  



Supplementary Tables 
 
Table S1 (See Excel file) Numerical results of simulations. Sheets (A)-(F) correspond to 
Figure 3A-C and Supplementary Figures 1-3, respectively.  

 
 
 
 𝐓𝐫𝐮𝐞	𝐥𝐨𝐠𝟏𝟎𝑴𝒆 Median estimated 

𝐥𝐨𝐠𝟏𝟎𝑴𝒆 
Normalized errors 

N=10k 3.22 3.30 0.53 
N=50k 3.22 3.26 0.92 
N=250k 3.22 3.26 1.01 

Table S2 Polygenicity estimates and jackknife standard errors in simulations at different 
sample sizes. We report true and estimated polygenicity for all common SNPs, as well as the 
standard deviation of the normalized errors. The normalized errors are defined as 𝑙𝑜𝑔𝑀% 	−
𝑙𝑜𝑔𝑀%K  divided by the jackknife standard error. Their standard deviation is equal to one if the 
jackknife standard errors are perfectly calibrated, and less than 1 when the jackknife standard 
errors are conservative. 

  



 

 

Table S3 Ascertainment and standard errors of polygenicity enrichment in simulations at 
different sample sizes. For each annotation, simulation runs were discarded if heritability for 
that annotation was not significantly different from zero (𝑍 < 2) or if the standard error of the 
𝑀% estimate for the annotation was larger than two times the median 𝑀% point estimate. For each 
annotation, the fraction of simulation runs that were ascertained is reported, as well as the 
standard deviation of the normalized errors for the ascertained simulations (see Table S2 
caption). Jackknife standard errors for polygenicity enrichment are nearly proportional to 
standard errors for 𝑀%, since there is relatively little noise in the denominator (the estimate of 𝑀% 
for all common and LF SNPs). 

  

Category Fraction retained Normalized errors  
N=10k N=50k N=250k N=10k N=50k N=250k 

Coding 0.007 0.39 0.5 NA 0.66 0.66 
Enhancer 0.02 0.36 0.57 0.5 0.5 0.68 
DHS 0.11 0.72 0.77 0.36 0.59 0.65 
Repressed 0.24 0.69 0.81 0.43 0.61 0.64 
Low-frequency 0.01 0.88 0.97 NA 0.7 0.81 



 
Table S4 (see Excel file) Datasets analyzed.  29 UK Biobank traits were selected to have low 
pairwise genetic correlations and high power, as measured by the significance of the S-LDSC 
heritability estimate; 28 of these were analyzed in ref.20, and red hair pigmentation was added. 
Four additional diseases were selected on the basis of availability of summary statistics for low-
frequency SNPs. Seven additional datasets were used for replication.  

 
Table S5 (see Excel file) Comparison of 𝐌𝐞 estimates with and without the baseline-LD 
model. We used either the full baseline-LD model (as in Table 1), only the 10 common MAF 
bins, or no annotations (except the base annotation containing all common SNPs).  



 
Table S6 (see Excel file) Comparison of estimates of 𝐌𝐞 and 𝐌𝐭. We report estimates of MP, 
estimates of MR from Zeng et al.11 and estimates of MR	from Zhang et al.12 We also report implied 
values of MP based on the model (point-normal or point-normal-normal) fit by Zhang et al. 
 
Table S7 (see Excel file) Comparison of the observed distribution of 𝝌𝟐 statistics with the 
expected distribution under a marginal point-normal model. We report the observed vs. 
expected normalized variance (variance divided by mean squared) and skewness of the 𝜒9 
distribution for 33 traits (Table S4). Two point-normal models are considered: first, we matched 
the mean and variance of the model to the sample mean and variance for each trait; second, we 
set the proportion of non-null SNPs equal to 𝑀%/𝑀%;;. Under both models, we assume that 
sampling noise follows a normal distribution with variance equal to the LD score regression 
intercept. We did not perform any LD pruning or weighting. Under the first model, the variance 
matches perfectly, but the skewness of the observed distribution is greater than expected under 
the model for most traits. This suggests that the largest-effect SNPs consistently have larger 
effects than expected under a marginal point normal model (see Figure S5 for QQ plots); a more 
complex model, e.g. the point-normal-normal model of ref.12, may fit better. The trait with the 
greatest difference between observed and expected skewness was BMI (49 observed vs 6.7 
expected). This may explain why initial BMI GWAS found more associations than initial height 
GWAS (20 observed vs 8.7 expected for height), despite the fact that their overall polygenicity is 
similar (Table 1). Under the second model, the variance does not match perfectly; it was slightly 
smaller than expected for most traits (mean logVW fold difference -0.21). This difference is 
expected: a large LD block is more likely to be associated and represents a larger fraction of all 
SNPs than a small LD block, increasing the apparent polygenicity of the distribution of 𝜒9 
statistics; in contrast, 𝑀% does not count large LD blocks more heavily than small LD blocks. 
  



 
 
 
Trait Reference 𝑁)Y)  𝑀ZP[ZP\\]^_  logVW𝑀P 𝑀`YaaYb𝐸[𝛽9] 
Height UKBB 458k 10M 3.56(0.02) 0.38(0.01) 
Height Lango Allen et al. 2010 131k 1.0M 3.49(0.11) 0.27(0.01) 
BMI UKBB 458k 10M 3.78(0.12) 0.23(0.01) 
BMI Speloites et al. 2010 122k 1.0M 3.51(0.33) 0.17(0.01) 
College UKBB 455k 10M 4.08(0.05) 0.026(0.001) 
Years of education Rietveld et al. 2013  127k 1.0M 4.26(0.18) 0.12(0.01) 
Years of education Okbay et al. 2016 329k 1.0M 4.23(0.09) 0.16(0.01) 
Type II Diabetes UKBB 459k 10M 2.85(0.14) 0.0014(0.0001) 
Type II Diabetes Morris et al. 2012  61k 1.0M 2.85(0.38) 0.065(0.013) 
Neuroticism UKBB 372k 10M 3.99(0.23) 0.97(0.03) 
Neuroticism Okbay et al. 2016  171k 1.0M 4.26(0.10) 0.13(0.01) 
Rheumatoid arthritis Okada et al. 2014  104k 4.6M 3.03(0.10) 0.10(0.01) 
Rheumatoid arthritis UKBB 459k 10M 3.08(0.20) 0.16(0.03) 

 

Table S8 Comparison of common-SNP 𝑴𝒆 estimates for traits with multiple available 
datasets. Standard errors are also reported. No 𝑀% estimates were significantly different (𝑝 <
0.05 assuming independent errors) for any pair of datasets. 𝑁)Y): total number of samples. 
𝑀g%hg%iijYb: number of regression SNPs. We also report the number of common SNPs times the 
estimated effect-size variance estimated by S-LDSC30 (slightly modified; see Appendix, 
Stratified LD fourth moments regression). While this quantity is equivalent to heritability under 
some scenarios, it is subject to biases that do not affect our estimates of 𝑀% (or heritability 
enrichment or polygenicity enrichment), such as differences in prevalence or trait definition 
among data sets (particularly between the binary college attendance trait and the continuous 
years of education trait) and possible genomic control correction. 

Table S9 (See Excel file) Complete results of S-LD4M and S-LDSC on 33 traits. Results are 
reported for well-powered trait-annotation pairs (see Material and Methods). 

  



 

Category Heritability 
enrichment 

Polygenicity 
enrichment 

Number 
of traits 

Proportion 
of SNPs 

Conserved (LindbladToh) 13.29(0.51) 14.23(1.28) 21 0.03 
TSS (Hoffman) 9.61(1.00) 10.70(2.33) 10 0.02 
Coding (UCSC) 9.38(0.64) 6.63(0.97) 16 0.02 
Weak Enhancer (Hoffman) 8.56(1.21) 4.86(0.62) 9 0.02 
Super Enhancer (Vahedi) 7.03(0.33) 8.32(0.83) 18 0.02 
Typical Enhancer (Vahedi) 6.40(0.60) 4.20(0.40) 13 0.02 
Enhancer (Andersson) 5.56(2.06) 1.39(1.12) 2 0 
Promoter Flanking (Hoffman) 5.46(1.50) 0.98(0.54) 2 0.01 
DGF (ENCODE) 5.27(0.42) 4.28(0.61) 18 0.15 
Enhancer (Hoffman) 4.94(0.34) 3.22(0.30) 19 0.04 
UTR 3 (UCSC) 4.89(0.41) 2.87(0.51) 11 0.01 
Promoter (UCSC) 4.71(0.48) 2.57(0.50) 12 0.05 
CTCF (Hoffman) 4.59(1.25) 0.61(0.27) 1 0.02 
TFBS (ENCODE) 4.56(0.35) 3.23(0.30) 18 0.14 
H3K9ac (Trynka) 4.02(0.15) 4.44(0.42) 21 0.14 
H3K4me3 (Trynka) 3.62(0.16) 4.29(0.47) 23 0.14 
Fetal DHS (Trynka) 3.42(0.24) 3.27(0.44) 14 0.09 
DHS (Trynka) 3.31(0.22) 2.36(0.29) 15 0.18 
Super Enhancer (Hnisz) 2.79(0.08) 3.47(0.26) 27 0.17 
H3K27ac (PGC2) 2.53(0.09) 3.57(0.33) 26 0.28 
H3K27ac (Hnisz) 2.06(0.04) 2.58(0.26) 28 0.4 
Transcribed (Hoffman) 1.33(0.05) 1.06(0.14) 23 0.36 
Intron (UCSC) 1.12(0.03) 1.53(0.22) 23 0.4 
Low-frequency (UK10K) 0.40(0.02) 0.44(0.06) 15 0.3 

Table S10 Polygenicity and heritability enrichment for functional annotations, meta-
analyzed across well-powered traits. The number of traits used in the meta-analysis is 
indicated; traits were excluded if the heritability estimate for a trait-annotation pair was not 
significantly different from zero, or if the standard error on the 𝑀% estimate was greater than 4 
times the median point estimate for that annotation across traits. Annotations were excluded if 
the number of remaining traits was less than 10 or if the meta-analyzed heritability enrichment 
estimate was less than 1 (except for the low-frequency category). Standard errors are also 
reported.  

  



 

 
Table S11 (see Excel file) Numerical results from Figure 6.  
 
 Enrichment logVWEnrichment 
Polygenicity  1.82 0.27 (0.02) 
Heritability  1.35 0.13(0.007) 
Average unit of 
heritability 

0.71 -0.15 (0.02) 

Table S12 Polygenicity and heritability enrichment of ExAC genes. Enrichments are reported 
for SNPs in and near ExAC LoF-intolerant genes32 compared with SNPs near any gene (in and 
near is defined as the gene body plus or minus 50kb). The average unit of heritability is equal to 
the heritability divided by the polygenicity (Figure 2; see Material and Methods). Standard errors 
are also reported. 

Table S13 (see Excel file) Fine-mapped IBD genes from ref.35 harboring coding and 
noncoding variants. Coding and noncoding SNPs with > 50% posterior probability and 1-2 
nearby genes are listed. pLI values are averaged for SNPs with 2 genes. Genes with both coding 
and noncoding variants are included in Figure S10A and not in panel B. 
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