Supporting Information High performance UV-assisted NO_2 sensor based on CVD graphene at room temperature Xin Yan,[†] Yanan Wu,[†] Rui Li,[†] Chengqian Shi,[†] Ramiro Moro,[†] Yanqing Ma,*,[†],[‡] and Lei Ma*,[†] †Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin 300072, China ‡State Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China **Figure S1** The response and recovery curves of graphene-based sensor exposed to 100 ppm NO₂ under the different light wavelengths. Figure S2 (a) The response and recovery curves of graphene-based sensor exposed to 100 ppm NO_2 under UV light ($\lambda = 265$ nm) with different irradiance. (b) The effects of light irradiance in the range of 0.5 - 1.7 mW/cm² on the response and recovery of the sensor for NO_2 .