
Supplementary materials 

Classification analyses using SVM  

SVMs are an established, supervised machine learning technique and widely used across 

various disciplines. They have been used successfully to determine the diagnostic and 

prognostic potential of structural MRI in a range of neurological and psychiatric 

disorders(Davatzikos et al. 2008; Fan et al. 2008; Kawasaki et al. 2007; Teipel et al. 2007a; 

Teipel et al. 2007b; Marzelli et al. 2011; Koutsouleris et al. 2011; Kloppel et al. 2009), 

including MS(Weygandt et al. 2011; Bendfeldt et al. 2012). 

What makes SVMs particularly attractive is their generally good performance in comparison 

to other classifiers as well as their relatively easy extension to non-linear problems using 

kernels. In addition, careful tuning of regularisation and kernel parameters make them less 

prone to overfitting.(Cawley and Talbot 2007) 

Linear SVMs are well suited for classification problems where the number of input features is 

very large, potentially much larger than the number of samples in the data set. However, as 

the number of features decreases non-linear SVM approaches often perform better due to an 

increased flexibility in fitting the data. This comes at the cost of having to estimate an 

additional parameter. Thus, our approach of employing both linear and non-linear SVMs for 

two separate analyses of the same data is driven by the markedly different sizes of the 

respective feature sets.  For a comprehensive overview of support vector machines, see 

e.g.(Bishop 2006; Vapnik 1999; Campbell 2002; Ivanciuc 2007).  

Details on the classification analysis using geometric features and 

non-linear SVMs 



Lesion-based geometric measures 

Individual lesions were identified on binary lesion masks via lesion clustering using FSL’s 

cluster command, i.e. a cluster is defined as contiguous, lesion-marked voxels based on an 

order-26 neighbourhood. We then used Minkowski functionals(Legland et al. 2011) to extract 

and describe the geometry of each lesion. In 3D-Eucledian space, Minkowski functionals  are 

directly related to the following geometric quantities: volume, surface area, mean breadth and 

Euler-Poincare (EP) characteristic. The measure of mean breadth is related to the integral of 

mean curvature(Hawkes 1988) and represents the mean extension of the lesion taken over all 

possible rotations in three dimensions(C. H. Arns et al. 2001; Lang et al. 2001), and gives a 

pose-independent measure of breadth. Finally, for a single cluster of voxels the EP number is 

the most basic Minkowski functional and provides a connectivity parameter of the object(C. 

Arns et al. 2010). It is equivalent to 1 minus the number of holes plus the number of handles 

in the geometric object. Furthermore, the whole-brain sum of EP numbers of single lesions is 

closely related to the total lesion count. A general discussion of high dimensional Minkowski 

functionals can be found, for example, in(Legland et al. 2007). 

 

 

Preprocessing and feature reduction 

Affine rigid-body co-registration of the images and lesion masks was used to preserve 

volumetric information. The linear part of the transformation matrix from a DARTEL 

registration of the images to standard space was then used to affine register the lesion masks 

to the MNI template brain. Based on these binary images, geometric measures for each 

individual lesion were extracted (using Minkowski functionals) and whole-brain as well as 



ROI-based summary features were computed. From the SPM/VBM8 pipeline given in Figure 

1, grey matter volume (whole-brain and ROI proportions) were included in the feature set. A 

schematic summary of the preprocessing pipeline is given in Figure 2. After extracting the 

geometric measures for all lesions from the MRI data, we transformed volume and area 

measures by taking their cubic and square roots, respectively(Sormani and Filippi 2007). This 

leads to all geometric features being comparable in scale. Even after power-transformation of 

volume and surface area, the three geometric measures are highly correlated as they are all 

influenced by the gross size of the lesion. To reduce redundancy and to gain greater 

sensitivity to (size-independent) lesion shape, square-root surface area and mean breadth were 

divided by their respective value assuming the lesion was a sphere. These adjusted measures 

thus reflect the topological information contained in 1D (mean breadth), 2D (surface area) and 

3D (volume) measures and indicate how far the shape of a lesion deviates from a perfect 

sphere.   

Based on lesion specific values, whole-brain summaries were computed to be used as input 

features. The full geometric feature set thus included the sum total, mean, median, maximum, 

minimum and standard deviation for each measure, i.e. lesion volume, surface area and mean 

breadth, as well as the EP characteristic. Additionally, grey matter volume measurements 

were included as ratio of grey matter volume to whole brain volume.  

In order to encode spatial information about the location of individual lesions, we also split 

the whole brain measures according to 13 regions of interest (ROI) based on white matter 

(WM) track segmentations derived from the Johns-Hopkins brain atlas 

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases). The 13 ROIs include anterior thalamic radiation, 

corticospinal tract, cingulum (cingulate gyrus), cingulum (hippocampus), posterior forceps, 

anterior forceps, inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, superior 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases


longitudinal fasciculus, uncinate fasciculus, superior longitudinal fasciculus (temporal), other 

cerebrum, other cerebellum. 

We used principal component analysis (PCA) to transform the high dimensional feature sets 

and reduce the number of potentially redundant features. The number of principal components 

was optimised during the training stage of the classifier.  

All features were standardized to have zero mean and unit variance. This not only makes the 

features comparable but ensures that the PCA components correspond to directions of 

maximum variance. 

Evaluation and Interpretation  

For model evaluation we carried out nested, stratified k-fold (k=10) cross-validation (CV). 

The stratification ensured that the number of subjects from both classes was balanced. Within 

each CV fold, a three-dimensional parameter optimization via grid search was performed on 

the SVM box-constraint (soft margin parameter), the RBF kernel parameter and the number 

of principal components. To ensure independence of the test fold, the training data consisting 

of k-1 folds was once again split into a training (k-2 folds) and a test set (1 fold) to perform 

the parameter optimization. The overall classification accuracy was estimated at the end by 

using the so far unseen data from the initially held out fold. 

Finally, predictive performance of the models was evaluated by computing a confusion 

matrix. We report average classification accuracies, as they are more informative than total 

accuracies in cases where the two classes are of different size. Average accuracy (also called 

balanced accuracy(Combrisson and Jerbi 2015)) is given by the mean of correctly classified 

samples in each class, whereas total accuracy is given as the ratio of overall correctly 

predicted outcomes to total number of test samples.  



For both the linear and non-linear SVM analyses we determined statistical significance 

classification accuracy by permutation testing(Nichols and Holmes 2002; Golland and Fischl 

2003). This involved repeating the classification procedure with training group labels 

randomly allocated multiple – in our case 1000 – times in order to generate an empirical 

estimate of the null distribution of accuracies. The p-value is computed as the proportion of 

permutations in this null distribution achieving an accuracy as large or larger than the 

observed accuracy. Statistical inferences were made at a significance level of p < 0.05. 

 

Details on the classification analysis using cortical grey matter 

segmentations and linear SVMs 

Leave-one-out cross-validation 

As above, the SVM was trained to predict conversion to CDMS.  

Unbalanced group sizes can lead to a bias of the hyperplane weighting towards the larger 

group. Here we took a different approach and carefully balanced the two groups to avoid any 

possible bias in sensitivity and specificity. 500 random (bootstrapped) samples were selected 

from the larger group with size equal to the smaller group.   

In the case of the placebo group this means that 25 converters were randomly selected from 

the whole set of 44 converters in order to match the group size of the non-converters. This 

procedure was repeated 500 times to give a better idea of how the results will generalise to the 

whole cohort. The resulting cohorts of 50 (25 converters and 25 non-converters) and 98 (49 

non-converters and 49 converters) for placebo and interferon beta-1b, respectively, were then 

used to train and test an SVM using the common leave-one-out cross-validation(Young et al. 

2013). 



Within the whole dataset, we further focused on a subgroup of placebo-treated patients 

optimally matched according to clinical/demographic data, scanner and image quality 

(n=2*25 placebo). Weight vector maps were created to show the brain regions that best 

discriminated between groups.  
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