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SUPPLEMENTARY METHODS 
 
Identification of keratinocyte stages 
To identify clusters of functionally distinct keratinocytes, we used our previously published 
imputation, dimensionality reduction and spectral clustering techniques (Cheng et al., 2018).  
Imputation mitigates the effect of scRNA-seq dropout by sharing expression information among 
similar cells.  We used the MAGIC imputation algorithm (version 0.0) (van Dijk et al., 2018) 
with cell similarity matrix obtained from ZINB-WaVE dimensionality reduction (Risso et al., 
2018). In this method, ZINB-WaVE fits a model predicting the mean expression and probability 
of dropout for each gene in each cell from cell-level covariates (percent mitochondrial UMI, total 
UMI and batch) and from 20 latent cell-level covariates that are learned from the data, yielding a 
low dimensional, bias-corrected representation of each cell.  The resulting 92889× 20 matrix of 
low dimensional cell representations were used to calculate cell-cell distances needed for 
constructing the affinity matrix for MAGIC’s diffusion-based imputation. Our application of 
MAGIC used default adaptive distance parameters ka=10, k=30 and diffusion time t=10 as 
chosen previously based on recovery of simulated dropout events (Cheng et al., 2018) 
(Supplementary Methods: Calculation of gene correlations). Finally, because the imputed 
expression values output by MAGIC are not normalized to a common cell library size, we 
renormalized MAGIC output for each cell to units of imputed UMI per 10,000. These imputed 
and renormalized expression values were used in downstream cell clustering. 
 Analysis downstream of imputation focused on 22,338 foreskin keratinocytes, identified 
based on anatomic location of samples and membership in expression-based clusters identified as 
keratocytes in Cheng et al. (Cheng et al., 2018). To identify differentiation stages within these 
cells, we performed principal component analysis (PCA) representing each cell by the log2-
transformed (with pseudocount 1) imputed expression of a set of genes robustly expressed in the 
full data set (at least 5 UMI in at least 100 of the 92,889 cells passing quality control). The first 
20 PCs sufficed to capture nearly all the variation in our imputed data (Figure S2), and we 
clustered the foreskin keratinocytes in this 20 dimensional space using an adaptive distance 
implementation (Cheng et al., 2018) of the k-means-based approximate spectral clustering 
(KASP) algorithm (Yan et al., 2009).  KASP clustering with adaptive parameters ka=10, k=30 
was used to identify 8 keratinocyte clusters which were then ordered and named stages 1-8 based 
on mean cluster expression of known marker genes (Figure S3). 
 
Calculation of gene correlations 
Our construction of regulatory networks used co-expression, measured by Pearson correlation, as 
a proxy for gene-TF regulatory relationships. Pearson correlations were calculated between log-
transformed imputed counts per million (cpm) using 

log imputed	cpm = log34(100𝑥 + 1) 
Where 𝑥 denotes the output of our imputation algorithm (units of imputed counts per 10,000).  
We took two steps to prevent introduction of large-magnitude, spurious correlations that could 
lead to false positive regulatory relationships. First, we performed stage-wise filtering of cells 
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with outlier expression. Second, we reduced MAGIC’s diffusion time parameter t to prevent 
over-smoothing of imputed expression values used to calculate correlations. 

Estimates of Pearson correlation are strongly affected by outliers. In our study, these 
outliers were removed by filtering out cells lowly expressing genes expressed by the bulk of 
keratinocytes.  Specifically, for each foreskin keratinocyte, we calculated the sum of imputed 
expression across genes expressed ( ≥ 1 UMI raw data) in at least 1% of all keratinocytes. Stage-
wise distributions of these summed expression values identified outlier cells in each stage 
(Figure S9); by removing cells in the lowest percentiles (see Table S6 for stage-wise thresholds), 
we mitigated a skew in the distribution of gene correlations (Figure S10, top row).  

MAGIC’s diffusion-based imputation algorithm mitigates dropout effects by replacing 
raw expression values with a weighted average of expression values of cells with similar low 
dimensional representation. The extent of local averaging increases with diffusion time t, and 
large t can over-smooth expression values, thereby averaging out true biological variation and 
thus strengthening spurious correlations. We observed this effect in the broadening of 
distributions of Pearson correlations calculated using t=10, compared to the same distribution 
calculated using t=4 (Figure S10, middle row). The diffusion time parameter t=10 was 
previously selected for this dataset based on recovery of simulated dropout events (Cheng et al., 
2018), a useful metric for assuring that key expression values are not lost at the single cell level. 
Recognizing that the optimal value of the t parameter may depend on the type of downstream 
analysis and wishing to reduce spurious correlations, we used the expression values obtained 
from our imputation pipeline with t=4 and filtered for outliers using the above summed 
expression criteria (Figure S10, bottom row and Table S6) as imputed expression values in all 
analyses downstream of keratinocyte stage identification. 

Clustering transcription factor expression trajectories and super-enhancer differential 
motif enrichment. 
We performed hierarchical clustering of stage-wise mean expression values to identify dynamic 
TFs showing similar differentiation trajectories.  Keratinocyte TFs (Methods: Identification of 
keratinocyte-specific genes and transcription factors) were filtered to include only those whose 
maximum value of mean imputed expression across stages 1-7 was at least 1.75-fold higher than 
the minimum across the same set; to discard lowly expressed TFs, the minimum was set to 5 
counts per million (cpm) when it was less than this threshold. The stage-wise mean expression 
values of these dynamic TFs were converted to log cpm with pseudocount 1 and then clustered 
using Pearson correlation distance and average linkage.   

To relate regulatory activity measured by TF expression to regulatory activity measured 
by abundance of functional TF binding sites, we performed differential motif enrichment 
analysis in super-enhancers (SEs) characterizing BK vs. DK states. We obtained hg19 
coordinates of BK and DK SEs from the authors of Klein et al. (2017) (referred to as NHEK-P 
SE and NHEK-D SE in that publication) and used Bedtools (Quinlan and Hall, 2010) to define 
BK-specific SEs not overlapping any DK SEs and DK-specific SEs not overlapping BK SEs. 
Next, we collected position-specific scoring matrices associated with our Keratinocyte TFs from 
the JASPAR  (Mathelier et al., 2016), TRANSFAC (Matys et al., 2006), and Hocomoco 
(Kulakovskiy et al., 2018) databases, as well as those published in Jolma et al. (2013).  FIMO 
(version 5.0.1) (Grant et al., 2011) was used to scan BK- and DK-specific SEs with each motif 
using default parameters plus the max-strand option and a 0th order Markov background model 
given by the background frequencies of single nucleotides in the union of BK- and DK-specific 
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SEs.  This produced a table of motif hit counts for each TF motif in each BK- or DK-specific SE. 
Motifs were tested for differential enrichment of hit counts per unit length between BK-specific 
and DK-specific SEs using the Mann-Whitney U test followed by Benjamini-Hochberg multiple 
hypothesis correction.  We accepted motifs with adjusted p-values less than 10;< as 
differentially enriched and used the asymptotic normality of the U statistic under the null 
hypothesis to measure the magnitude and direction of enrichment as the z-score of the U statistic: 

𝑧 =
𝑈 − 𝜇
𝜎 , 

where 𝜇 and 𝜎 are the mean and standard deviation of U under the null (Mann and Whitney, 
1947). Specifically, letting 𝑛3 and 𝑛D denote the number of BK- and DK-specific SEs,  

𝜇 =
𝑛3𝑛D
2 , 

and 

𝜎 = E𝑛3𝑛D(𝑛3 + 𝑛D + 1)
12 .	 

When motifs from multiple databases yielded differential enrichment for the same TF or TF 
dimer, we selected the strongest motif, by calling the length of the shortest candidate motif ℓ and 
then ranking the motifs by the sum of Kullback-Leibler divergence from the 0th-order 
background across ℓ most divergent bases.  Finally, some TFs, such as JUN, FOS and FOSL1, 
were associated with several different motifs either as monomers or components of heterodimers; 
in the case of differential enrichment for these functionally distinct motifs, we assigned to the TF 
the mean of the U statistic z-scores for these enriched motifs. 

Prioritization of knockdown targets 
We prioritized Candidate Keratinocyte TFs according to log-fold change, during differentiation, 
of putative targets selected from the set of Keratinocyte Genes (Methods: Identification of 
keratinocyte specific genes and transcription factors).  To identify regulatory targets, we first 
partitioned Candidate Keratinocyte TFs, denoted here by the set 𝑇, according to their pattern of 
differential expression between the BK and DK states (Methods: Differential expression).  The 
set 𝑇(IJ) contained TFs differentially upregulated in the BK state; the set 𝑇(KJ) contained TFs 
differentially upregulated in the DK state; and, the set 𝑇(LKM) contained TFs not differentially 
expressed between the two states. 

Next, we considered as potential targets the set G of Keratinocyte Genes differentially 
expressed between the BK and DK state. Activating and inhibiting relationships between 
elements of T and G were assigned based on the strength of correlation calculated across cells 
specific to each partition of 𝑇.  More precisely, for TFs in the partitions 𝑇(IJ), 𝑇(KJ)	and	𝑇(LKM), 
we computed correlations across cells in stages 1-4, 4-7 and 1-7, respectively, leading to the 
Pearson correlation coefficients 𝑟Q,R

(IJ) , 𝑟Q,R
(KJ), 𝑟Q,R

(LKM) between the log-transformed imputed 
expression of TF 𝑖 and gene 𝑗 (Supplementary Methods: Calculation of gene correlations).  Next, 
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for each partition 𝑘 ∈ {𝐵𝐾, 𝐷𝐾, 𝑛𝐷𝐸}, we constructed thresholds, 𝑟]
(^) and 𝑟;(^), on correlation 

strength using 

𝑟]
(^) = max(0	, percentile(95	, {𝑟Q,R

(^): 𝑖 ∈ 𝑇	and	𝑗 ∈ (𝐺 ∪ 𝑇) − {𝑖}	}		)	) 

𝑟;(^) = min(0	, percentile(5	, {𝑟Q,R
(^): 𝑖 ∈ 𝑇	and	𝑗 ∈ (𝐺 ∪ 𝑇) − {𝑖}	}		)	) 

where percentile(𝑥, 𝐴) denotes the 𝑥fg percentile of the set A.  Finally, each TF 𝑖  in each 
partition	𝑇(^) was assigned a differentiation-promoting score, score(𝑖), by summing log2 
expression fold-changes between DK and BK states for all elements of G passing the thresholds 
𝑟]
(^) and 𝑟;(^): 

score(𝑖) = i signj𝑟Q,R
(^)k

R∈l;{Q}

𝐿(𝑗) n𝐼j	𝑟Q,R
(^) ≥ 𝑟]

(^)k + 𝐼j	𝑟Q,R
(^) ≤ 𝑟;(^)kq.		 

In this equation, I denotes the indicator function, 𝐿(𝑗) is the log2 fold-change of expression for 
gene 𝑗 between the DK and BK states (Methods: Differential Expression) and signj𝑟Q,R

(^)k 
accounts for the activating or inhibiting effect of TF 𝑖 on gene 𝑗.  Figure S4 shows the resulting 
differentiation-promoting scores along with log2-fold expression changes between imputed 
single-cell data averaged over the DK and BK states and between keratinocytes cultured in high 
(1.2 mM Ca) and low (0.07 mM Ca) calcium conditions.  RNAi knockdown experiments tested 
the basal promoting function of four TFs with top five negative differentiation-promoting scores, 
after removing HOXA1 which was lowly expressed (less than 5 FPKM) in the keratinocytes 
cultured in in-vitro basal/proliferative conditions. 
 
Regulatory network construction 
Regulatory networks were constructed for the BK and DK states as follows. For the BK state, we 
considered Keratinocyte TFs with motifs enriched in BK SEs compared to DK SEs as putative 
BK regulators. Similarly, we took Keratinocyte Genes not downregulated in the BK state 
compared to the DK state as putative BK targets. Signed similarity scores 𝑆Q,R between genes 𝑖 
and 𝑗 were calculated using the soft thresholding method of Zhang and Horvath (2005): 

𝑆Q,R 	= signj𝑟Q,R
(IJ)ks𝑟Q,R

(IJ)s
t

 

where 𝑟Q,R
(IJ) denotes the Pearson correlation of log-transformed imputed expression for genes i 

and j across single cells in stages 1-4, and 𝛽 = 4. Putative BK regulators were organized by 
hierarchical agglomerative clustering using the distance  

𝑑(𝑖, 𝑗) = 1 − 𝑆Q,R 

and average linkage. TF modules were called using the “inconsistent” criteria in SciPy’s fcluster 
function with parameters depth=2 and threshold=0.75 (Jones et al., 2001-). Putative BK target 
genes were also organized by hierarchical agglomerative clustering. Each target gene was 
represented by a vector of similarity scores between the gene and all putative BK regulators. 
These vectors were clustered using Euclidean distance and average linkage. Like TF modules, 
gene modules were called using the “inconsistent” criteria of the fcluster function with 
parameters depth=4 and threshold=2.15 (Figure S5A).  We identified regulatory relationships 
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between pairs of identified Gene and TF Modules by applying thresholding to the distribution of 
magnitude of mean similarity scores between all pairs: 

	xy mean
Q∈z	,R∈I

𝑆Q,R	y ∶ 		𝐴 ∈ TF	Modules, B ∈ Gene	Modules		�, 

(Figure S5B). TF-Gene Module pairs with mean signed similarly score magnitude exceeding the 
threshold of Figure S5C were identified as having activating or inhibiting regulatory 
relationships (Figure S5D) and were the focus of further investigation.  

The DK state network was constructed in the same manner as the BK state subject to the 
following changes: putative DK regulators were selected for motif enrichment in DK SEs 
compared to BK SEs; putative DK targets were Keratinocyte Genes not downregulated in the 
DK state compared to the BK state; calculation of Pearson correlations used single cells in stages 
4-7; identification of TF modules used the fcluster function with parameters depth=2 and 
threshold=0.75; and identification of target gene modules used the fcluster function with 
parameters depth=16 and threshold=3.2 (Figure S8A-D).  
 
Antioxidant analysis 
Genes annotated for antioxidant function were downloaded from the AmiGO2 database (version 
2.5.12) (Carbon et al., 2009) and filtered to include only those genes expressed in more than 1% 
of all keratinocytes in scRNAseq data (Table S2).  Genes with dynamic expression in foreskin 
keratinocytes (log2 fold-change between minimum and maximum stage-wise mean expression 
for stages 1-7 greater than 1, with the minimum set to 5 imputed cpm when it was less than this 
threshold) were selected for hierarchical agglomerative clustering. We clustered genes 
represented as vectors of log2 stage-wise mean imputed cpm with pseudocount 1 using Pearson 
correlation distance and average linkage. 

To test the significance of size enrichment of the cluster showing peak expression in 
stages 1-3, we generated a null distribution of maximum cluster sizes using a permutation 
approach.  For each of 10,000 iterations, we independently permuted the elements of each log2 
stage-wise mean expression vector and repeated the hierarchical clustering procedure identifying 
four clusters. The p-value was calculated from the percentile of the observed cluster size in the 
distribution of simulated maximum cluster sizes. 
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