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Supplemental Figures 

 

Figure S1. Construction of a disease’s DAG. Related to Figure 1. 

Transparent Methods 

Data Collection 

Known lncRNA-disease associations were downloaded from the LncRNADisease database 

(v2017) (Geng Chen et al., 2012). which contained 2947 experimentally validated lncRNA–

disease associations between 914 lncRNAs and 329 diseases. After deleting duplicate data 

caused by multiple experiment validations, we selected 1765 associations involving 881 

lncRNAs and 328 diseases. The lncRNA–disease associations can be visualized as a network, 

the nodes represent specific lncRNA or disease, the edges connect a lncRNA to a disease. To 

extract positive and negative samples from this network, all experimentally validated lncRNA-

disease pairs (i.e. 1765 lncRNA-disease pairs) constitute the golden standard positive dataset. 

The remaining edges of this network can be considered as nonassociation, and the 

corresponding lncRNA and disease can be collected as negative samples. In this paper, we 

followed previous method collect negative samples with the same size as positive samples 

using random selection (Ben-Hur and Noble, 2005). Although false negative samples may be 

included in the negative dataset, considering that the size of data collected only accounts for a 

small part of the whole network, the impact can be neglected. This can be treated as an issue 

with unbalanced data set processing, i.e. the process of down-sampling from negative sample 

(unlabeled sample). The picked negative samples are a very small percentage which only 

accounts for 0.61% (1765/ (881*328)-1765) and then a total of 3530 lncRNA–disease pairs 

were collected.  

LncRNADisease v2017 and LncRNADisease v2012 are 2 different versions of the same 

database, of which v2012 is a true subset of v2017. The previous proposed by Chen et al. is to 

train and test based on lncRNADisease v2012, in order to ensure the fairness of the experiment, 

the 293 lncRNA–disease associations in version 2012 involving 118 lncRNAs and 167 diseases 

were also collected to constitute positive set. The negative set was constituted by the method 

mentioned above. As a result, the entire dataset consists of 586 lncRNA–disease pairs, of 

which half is from the positive samples and the other is from the negative samples. 

Disease MeSH Descriptors And Directed Acyclic Graph 

Medical Subject Headings (MeSH) is an authoritative subject vocabulary compiled by the National 

Library of Medicine, which provide a hierarchically-organized terminology for indexing and 

cataloging of various diseases. Each disease can be represented as a Directed Acyclic Graph 

(DAG) by the information provided by MeSH, which is described as follows: DAG(D)= (D, 𝑁𝐷, 

𝐸𝐷). Here, D represents specific diseases, 𝑁𝐷 is node set that contains all disease in D’s DAG. 

𝐸𝐷 represents the relationship between the nodes in D’s DAG. Specific examples are shown in 

Figure S1. 



Disease Semantic Similarity Matrix 1 

We computed disease semantic similarity based on DAG. the contribution of disease t to the 

semantic value of disease D is defined as: 

{
𝐷1𝐷(𝑡) = 1                                                                      𝑖𝑓 𝑡 = 𝐷

𝐷1𝐷(𝑡) = max{∆ ∗ 𝐷1𝐷(𝑡′)|𝑡′ ∈ 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑜𝑓 𝑡}  𝑖𝑓 𝑡 ≠ 𝐷
             (1) 

Where ∆ denotes the semantic contribution decay factor and equals to 0.5. In the DAG on 

disease D, disease D is at the top, and its contribution to its semantic value is defined as 1. The 

semantic contribution of the next layer to disease D is equal to the contribution of the layer 

disease to itself multiplied by the semantic contribution attenuation factor. Therefore, the 

semantic value of disease A can be defined as follows: 

𝐷1(𝐷) = 𝛴𝑡∈𝑁𝐷
𝐷1𝐷(𝑡)                                (2) 

The measure of disease similarity can be derived from set theory. The similarity between two 

diseases is calculated by the following： 

𝐷𝑆1(𝑖, 𝑗) =
∑ (𝐷1𝑖(𝑡)+𝐷1𝑗(𝑡))𝑡∈𝑁𝑖∩𝑁𝑗

𝐷𝑉1(𝑖)+𝐷𝑉1(𝑗)
                            (3)  

Disease Semantic Similarity Matrix 2 

The above disease similarity measure only considers local information and the intersection 

between two sets. Some scholars considered that it was one-sided and incomplete. Another 

semantic similarity measure method is used to complement the previous one. Inspired by 

information theory, the method suggests that diseases that often occur in DAGs should have a 

higher status and contribute more to other diseases (Xing Chen et al., 2015, Xuan et al., 2013). 

The new disease contribution values are measured as follows: 

𝐷2𝐷(𝑡) = −log (
𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝐴𝐺𝑠 𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑡

𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑠𝑒𝑎𝑠𝑒
)                        (4) 

The sum of the contributions of all nodes in the DAG of disease D is as follows: 

𝐷𝑉2(D) = 𝛴𝑡∈𝑁𝐷
𝐷2𝐷(𝑡)                                  (5) 

The semantic similarity value could be calculated just like DS1: 

𝐷𝑆2(𝑖, 𝑗) =
∑ (𝐷2𝑖(𝑡)+𝐷2𝑗(𝑡))𝑡∈𝑁𝑖∩𝑁𝑗

𝐷𝑉2(𝑖)+𝐷𝑉2(𝑗)
                              (6) 

Gaussian Interaction Profile Kernel Similarity For Diseases And LncRNA 

In order to overcome the gap caused by the lack of MeSH information, the idea of collaborative 

filtering is employed to construct the third similarity matrix. In this paper, we first construct an 

adjacency matrix using the association data of lncRNA and disease. The columns of the matrix 

represent lncRNA and the rows represent diseases. Then, the Radial Basis Function (RBF) 

Gaussian kernel function was applied to adjacency matrix to obtain similarity matrix of disease 

(van Laarhoven,Nabuurs and Marchiori, 2011, Xing Chen et al., 2018). The similarity defined 

by the Gaussian interaction profile kernel is as follows: 

𝐷𝐺(𝑖, 𝑗) = 𝑒𝑥𝑝 (−𝛼𝑑‖𝑑𝑖 − 𝑑𝑗‖
2

)                           (7) 

Where 𝑑𝑖 and 𝑑𝑗 are i-th row and the j-th row of the adjacency matrix, respectively. 𝛼𝑑 that is 

the weight factor used to regulate the kernel bandwidth, can be defined as follows: 

𝛼𝑑 = 𝛼𝑑
′ (

1

𝑛𝑑
∑ ‖𝑑𝑖‖

2𝑛𝑑
𝑖=1 )                                  (8) 



Here, nd is the number of the diseases, the parameter 𝛼𝑑
′  is set to 0.5 empirically. 

Analogous to the Gaussian similarity calculation method of disease, the Gaussian similarity of 

RNA is calculated by the same method. Formula 7 is replaced by Formula 9: 

𝑅𝑆(𝑖, 𝑗) = 𝑅𝐺(𝑖, 𝑗) = 𝑒𝑥𝑝 (−𝛼𝑟‖𝑟𝑖 − 𝑟𝑗‖
2

)                        (9) 

Where 𝑟𝑖 and 𝑟𝑗 are i-th column and the j-th column of the adjacency matrix, respectively. 𝛼𝑟 

is the weight factor used to regulate the kernel bandwidth, defined by Formula (10): 

𝛼𝑟 = 𝛼𝑟
′ (

1

𝑛𝑟
∑ ‖𝑟𝑖‖

2𝑛𝑟
𝑖=1 )                                 (10) 

Here, nr is the number of the diseases, the parameter 𝛼𝑟
′  is set to 0.5 empirically. After 

constructing the similarity matrix based on adjacency matric A, the representation vector of 

each lncRNA or disease will not change with cross-validation. The impact of this on the results 

will be discussed in a follow-up work. 

Construction of Feature Vectors for Disease and lncRNA 

Disease Semantic Similarity Matrix and Disease Gaussian Interaction Profile Kernel Similarity 

are two different types of information so neither is redundant. One of the above is often 

imperfect, to get a complete disease similarity matrix DS, we integrated disease semantic 

similarity matrix 1, disease semantic similarity matrix 2 and disease Gaussian interaction profile 

kernel similarity matrix by formula 11.  

𝐷𝑆(𝑖, 𝑗) = {
𝐷𝑆1(𝑖,𝑗)+𝐷𝑆2(𝑖,𝑗)

2
       𝑖𝑓 𝑖 𝑎𝑛𝑑 𝑗 ℎ𝑎𝑣𝑒 𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 

𝐷𝐺(𝑖, 𝑗)                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                     
            (11) 

The row or column of matrix DS is regarded as the feature vectors of disease. Similarly, the 

row or column of matrix 𝑅𝑆 is regarded as the feature vectors of lncRNA. It's remarkable that 

all similarity matrices are symmetric matrices. 

The i-th disease can be represented by the i-th row of the matrix DS: 

𝐷𝑆𝑖∗ = (𝐷𝑆𝑖1, 𝐷𝑆𝑖2, … , 𝐷𝑆𝑖328)                          (12) 

The j-th disease can be represented by the j-th row of the similarity matrix 𝑅𝑆: 

𝑅𝑆𝑗∗ = (𝐷𝑆𝑗1, 𝐷𝑆𝑗2, … , 𝐷𝑆𝑗881)                          (13) 

The association consists of the i-th disease and the j-th lncRNA can be represented by the 

following vector: 

𝑃𝑎𝑖𝑟𝑖𝑗 = (𝐷𝑆𝑖∗, 𝑅𝑆𝑗∗) = (𝐷𝑆𝑖1, 𝐷𝑆𝑖2, … , 𝐷𝑆𝑖328, 𝑅𝑆𝑗1, 𝑅𝑆𝑗2, … , 𝑅𝑆𝑗881)        (14) 

Each positive sample is given a label 1 and each negative sample is given a label 0.  

AutoEncoder 

Each association can be abstracted into a 1209-dimensional vector through the above step. 

Training set and test set consisting of thousands of such vectors take up a lot of storage space, 

which is not conducive to the training of classifiers. In order to reduce noise and improve feature 

quality, the autoencoder was used to obtain the optimal feature space from the original feature 

(Yi et al., 2018). The autoencoder consists of an encoder and decoder. The coding part is 

responsible for compressing input data and the decoding part is responsible for restoring initial 

input. The main steps are as follows: 

𝑓(𝑥) is the activation function of the encoder, 𝑔(ℎ) is the activation function of the decoder. It 

will generally do this using a sigmoid function: 

ℎ = 𝑓(𝑥) ≔ 𝑆𝑓(𝑊𝑥 + 𝑝)                              (15) 

𝑦 = 𝑔(ℎ) ≔ 𝑆𝑔(𝑊′𝑥 + 𝑞)                             (16) 



Here, we choose the sigmoid function as the activation function: 

𝑆𝑓(𝑡) = 𝑆𝑔(𝑡) =
1

1+𝑒−𝑡
                                 (17) 

The difference between x and y can be described by a reconstruction error function which is 

defined as follows: 

𝐿(𝑥, 𝑦) = − ∑ [𝑥𝑖 𝑙𝑜𝑔(𝑦𝑖) + (1 − 𝑥𝑖)𝑙𝑜𝑔 (1 − 𝑦𝑖)]𝑛
𝑖=1                    (18) 

Through the above the loss function can be defined as follows: 

𝐿𝑜𝑠𝑠 = ∑ 𝐿(𝑥𝑖 , 𝑔(𝑓(𝑥𝑖)))𝑛
𝑖=1                             (19) 

Therefore, the most suitable argument was obtained by minimizing the loss function. We can 

use h instead of x to represent the original vector. In this study, we used the keras library to 

implement the autoencoder and set the parameters batch size and epoch to 128 and 100, 

respectively. 

RotationForest 

Building an integrated learning algorithm by merging multiple models helps to achieve better 

prediction effects (Wang et al., 2017, Li et al., 2017). The idea of ensemble learning is to solve 

the defects and limitations inherent in the model of a single model by integrating more models. 

In 1990, Schapire analyzed and proved the equivalence between the weak learning algorithm 

and the strong learning algorithm based on the PAC (Probably Approximately Correct) learning 

model (Schapire, 1990). Since then, it has gradually attracted the focus of a wide range of 

scholars and shown outstanding effects on many classification or regression tasks. Assemble 

learning classifiers have stronger generalization capabilities and simpler parameter 

adjustments than traditional single models. Rotation Forest here was chosen to carry out the 

prediction. The Rotation Forest algorithm is based on the idea of feature transformation and 

focuses on improving the variability and accuracy of the base classifier (Rodriguez,Kuncheva 

and Alonso, 2006). Suppose 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛]𝑇  represents the sample with n features. A 

matrix X of N*n to represent a training sample set with N data records. 𝑦 = [𝑦1 , 𝑦2, … , 𝑦𝑛]𝑇 

represents the corresponding sample class label in the training sample set X. F represents the 

attribute set, and D1, D2, …, DL represent L base classifiers. The main steps are as follows: 

(1) The attribute set F is randomly divided into K sub-attribute sets, and each sub-attribute set 

contains about M = n/K attributes. 

(2) Denote by 𝐹𝑖,𝑗 the j-th subset of features for the training set of classifier Di. Then a bootstrap 

subset of objects is drawn with the size of 75% of the dataset to form a new training set, which 

is denoted by 𝑋𝑖𝑗
′ . Using the selected subset of samples to transform the sub-attribute set in 

𝐹𝑖,𝑗 , the principal component analysis (PCA) is used to obtain Mj principal components: 

𝑎𝑖𝑗
1 , 𝑎𝑖𝑗

2 , … , 𝑎𝑖𝑗

𝑀𝑗. 

(3) Repeat step 2 to store the obtained K principal component coefficients into a coefficient 

matrix Ri. According to the order of the original data attribute set, rearrange the matrix Ri to 

obtain 𝑅𝑖
′, then the training set will be transformed into 𝑋𝑅𝑖

′. The base classifier Di will be 

trained on the new training set. 

𝑅𝑖 = [

[𝑎𝑖𝑗
1 ,𝑎𝑖𝑗

2 ,…,𝑎
𝑖𝑗
𝑀1]                             [0]                    …              [0]              

                [0]                           [𝑎𝑖𝑗
1 ,𝑎𝑖𝑗

2 ,…,𝑎
𝑖𝑗
𝑀2]        …              [0]                

 
                ⋮                                             ⋮                         ⋮                ⋮                  

             [0]                                        [0]                      … [𝑎𝑖𝑗
1 ,𝑎𝑖𝑗

2 ,…,𝑎
𝑖𝑗
𝑀𝐾]

]                       (20) 

(4) After the above steps, L base classifiers can be obtained. The final prediction category is 

determined with maximum confidence.  
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