Human Migration and the Spread of the Nematode Parasite *Wuchereria bancrofti* Supplementary Material and Methods

Samples

Haiti samples were provided as cryopreserved peripheral blood mononuclear cells (PBMCs). Mali and Kenya samples were provided as cryopreserved whole blood and later filtered using a 2 Nm filter paper to reduce human cells (Erickson *et al.* 2013). Papua New Guinea (PNG) samples were provided as filtered microfilaria preserved in RNAlater (Life Technologies) and stored at -20° C. Further sample information can be found in supplementary table S2.

Improvement of the W. bancrofti (Wb) draft genome sequence and gene annotation

Pac Bio sequencing using chemistry RS II was performed on DNA isolated from the sample(s) described in Small et al. 2016. Following whole genome amplification (as noted in Small 2016), the whole genome amplified DNA was treated according to methods in Zhang et al. 2006 to reduce chimeric errors. DNA was cleaned using a 1.6:1 Agencourt AMPure XP bead concentration and then eluted in 20 µl ddH2O water. DNA was then incubated in a T100(TM) Thermocycler (Bio-Rad) with 1 µl of Phi29 enzyme with 25 µM concentration of dNTPs and 1x BSA for 30 minutes at 30 °C followed by 65 °C for 3 minutes to deactivate the Phi29 enzyme. DNA was once again cleaned with 1.6:1 Agencourt AMPure XP bead concentration and incubated with one unit of S1 Nuclease to cleave junctions of branched DNA molecules. DNA was again cleaned (see above) and nick-repaired using PreCR(R) DNA Repair (New England Biolabs, Inc.) and then quantified by Qubit Flourometric Quantitation (ThermoFisher Scientific). The DNA template was prepared and sequenced by the McGill University and Génome Québec. Ten PacBio SMRT cells were run for an estimated coverage of 20-40X. Whole genomes were aligned using progressiveCactus (https://github.com/glennhickey/progressiveCactus) with a guide tree reconstructed from whole mitochondrial genomes (Small et al. 2014). Ragout (Kolmogorov et al. 2014) was run allowing for repeat resolution with scaffolds named according to B. malayi reference genome. BUSCO v2.3 was used to evaluate genome completeness (Simão et al. 2015).

RNA was isolated from a single PNG sample preserved in RNALater. Template and library preparation followed the standard TruSeq RNA Kit TM protocol (Illumina, Inc.). The RNA library was sequenced at 100 base pairs as paired-end reads at the Case Western Reserve University Genomics Core on an Illumina HiSeq 2500. Resulting reads were mapped to the Human genome reference 19 (Hg19) as well as the Wb genome (PRJNA275548) using HISAT (Kim *et al.* 2015) to separate reads belonging to the human host and then Wb worm. Sequences mapping successfully to Wb and not human were used in Maker3 (Cantarel *et al.* 2008) along with Wb EST libraries (SAW95SjL-WbMf) and protein sequences curated for *B. malayi* (PRJNA10729) and *Loa loa* (PRJNA60051). Maker3 was run for three progressive iterations using initial gene prediction based on single copy orthologs identified using the program BUSCO (Simão *et al.* 2015).

sWGA and Population Sequencing

Primer sets were tested by amplifying DNA isolated from one infected-patient blood sample as well as from two single microfilaria (MF). DNA quality and ploidy were confirmed by amplifying and sequencing the mitochondrial cytochrome oxidase I (CO1) gene (Small *et al.* 2013). Primer sets were nearly indistinguishable using metrics of read depth and percent of the genome covered (Clarke *et al.* 2017; Leichty *et al.* 2014), so the larger primer set was selected to obtain more even coverage for fragmented DNA (supplementary table S5).

Isolated DNA was used directly for whole genome amplification following the protocol in Leichty *et al.* 2014, except with 1.5 µg of each of custom primers. The reaction was incubated for 8 hours at 30 C followed by a 70 °C for 15 min in T100(TM) Thermocycler (BioRad). Reaction time was chosen to maximize DNA yield while minimizing excessive duplication after analyzing reactions of 4, 6, 8, 10, and 12 hours. After 8-hour incubation, amplified samples were cleaned using a 1.6:1 Agencourt AMPure XP bead concentration to remove small fragments. 40 cycles of quantitative PCR (qPCR) using SYBR® (Life Technologies) in a Mastercycler® RealPlex2 (Eppendorf) were used to determine the relative proportions of host (human) and parasite (Wb) DNA. Human DNA was quantified using a custom designed primer pair to amplify a section of chromosome 1: HuQPCR1-F 5'-ACTTTGGGTCATTCCCACTG-3', HuQPCR1-R 5'-GCTCAGCTCCTTGCTGGATA -3'. Wb DNA was quantified using primers to amplify isotype-1 of the β -tubulin gene (Hoti *et al.* 2003). Overall success rate of amplification, measured by final DNA concentration (> 500 ng), from single microfilaria (MF) was ~60%.

1.5-2 μg of amplified DNA was used in the TruSeq DNA PCR-Free kit (Illumina, Inc.) following steps for the 550 bp insert size. Finished libraries were quantified on a 2100 Bioanalyzer Instrument (Agilent). Samples were pooled in equal molarity and then initially sequenced on Illumina MiSeq for 35 bp to rigorously quantify the proportion of Wb and human DNAs in each library as well as library complexity before final sequencing. Resulting sequencing were mapped to the Wb genome using BWA (Li *et al.* 2009) and used to adjust pooling ratios between samples. A total of 12 pooled libraries (each containing 6 sample libraries) were sequenced on 12 lanes of the Illumina HiSeq X for 150 base pairs in paired-end mode at the McGill University and Génome Québec. Sequencing resulted in a total of 1.2 Tb of sequencing data from 42 sample libraries.

Quality control

All sequences were first trimmed for adapter sequences using TrimGalore (*http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/*) and then examined for basequality using fastqc (*https://www.bioinformatics.babraham.ac.uk/projects/fastqc/*) and multiqc (*https://github.com/ewels/MultiQC*). Filtered read data were then mapped to the mitochondrial genome of Wb (Ramesh *et al.* 2012) to verify that each sample contained DNA from only a single genome. We calculated kinship value using the program KING (Manichaikul *et al.* 2010). We started with the full 56 sample data set and ran KING with the –relatedness option. Two related individuals were identified which were also noted in (Small *et al.* 2016). We removed one sample from a pair if the kinship value was > 3rd order within a host.

Variant Calling

GATK v3.1 HaplotypeCaller (McKenna *et al.* 2010) was run with the following parameters: "-newQual --emitRefConfidence GVCF --pcr_indel_model NONE". The resulting gVCF from HaplotypeCaller were converted to VCF format using GATK program GenotypeGVCFs. VCF positions were removed if they failed the following filter criteria: "QD < 5, QUAL < 30, DP < 14, MQ < 30, MQRankSum < -12.5, ReadPosRankSum < -8.0, FS > 60.0, ABHet < .30, ABHet > 0.70, ABHom < 0.90". Positions passing all filters in each individual sample were merged to produce a final set of SNPs across all samples. As combining SNPs among samples can lead to missing data, homozygous or uncalled in original sample, the candidate SNP set was then used in freebayes to fill homozygous positions (Garrison *et al.* 2012). Putatively repetitive and paralogous sequences were identified using RepeatMasker (Tarailo-Graovac *et al.* 2009) and Snpable (*http://lh3lh3.users.sourceforge.net/snpable.shtml*).

Simulations of Multiple Introductions

We used the random-forest in abcrf (Pudlo *et al.* 2015) to test between models of 1 or more introductions into the Wb population of Haiti. We tested 4 models: 1) Single introduction from Mali; 2) Single introduction from Mali + 1 pulse gene flow event from a ghost population; 3) Single introduction from Mali + 2 pulse gene flow events from different ghost population; 4) Single introduction from Mali + 3 pulse gene flow events from different ghost populations. The sampled populations of Haiti, Mali, Kenya, and PNG were simulated under the best fit model as described in Table 1. msmove (*github.com/geneva/msmove*) was used to make 10,000 simulations under each model. We then calculated the following summary statistics: pi, theta, Tajima's D, distSkew, distKurtosis. Confusion matrix and classifications are shown below. The results suggest that we are not able to confidently differentiate between models of a single introduction and multiple introductions based on our currently available data.

	M1	M2	M3	M4	Class Error
M1	3680	2156	2126	2007	63%
M2	3525	2128	2218	2108	78%
M3	3540	2196	2116	2118	78%
M4	3486	2150	2167	2177	78%

Best Model	M1	M2	M3	M4	PostProb
M3	128	119	129	124	.494

References

- Cantarel, B. L., Korf, I., Robb, S. M. C., Parra, G., Ross, E., Moore, B., ... Yandell, M. (2008). MAKER: An easy-to-use annotation pipeline designed for emerging model organism genomes. *Genome Research*, 18(1), 188–196. http://doi.org/10.1101/gr.6743907
- Clarke, E. L., Sundararaman, S. A., Seifert, S. N., Bushman, F. D., Hahn, B. H., & Brisson, D. (2017). Swga: A primer design toolkit for selective whole genome amplification. In J. Hancock (Ed.), *Bioinformatics* (Vol. 33, pp. 2071–2077). http://doi.org/10.1093/bioinformatics/btx118
- Erickson, S. M., Thomsen, E. K., Keven, J. B., Vincent, N., Koimbu, G., Siba, P. M., ... Reimer, L. J. (2013). Mosquito-parasite interactions can shape filariasis transmission dynamics and impact elimination programs. *PLoS Neglected Tropical Diseases*, 7(9), e2433. http://doi.org/10.1371/journal.pntd.0002433
- Garrison, E., & Marth, G. (2012). Haplotype-based variant detection from short-read sequencing. *ArXiv:1207.3907*.
- Hoti, S. L., Subramaniyan, K., & Das, P. K. (2003). Detection of codon for amino acid 200 in isotype 1 β-tubulin gene of *Wuchereria bancrofti* isolates, implicated in resistance to benzimidazoles in other nematodes. *Acta Tropica*, 88(1), 77–81. http://doi.org/10.1016/S0001-706X(03)00159-1
- Kim, D., Langmead, B., & Salzberg, S. L. (2015). HISAT: A fast spliced aligner with low memory requirements. *Nature Methods*, *12*(4), 357–360. http://doi.org/10.1038/nmeth.3317
- Kolmogorov, M., Raney, B., Paten, B., & Pham, S. (2014). Ragout A reference-assisted assembly tool for bacterial genomes. *Bioinformatics*, 30(12), i302–i309. http://doi.org/10.1093/bioinformatics/btu280
- Leichty, A., & Brisson, D. (2014). Selective whole genome amplification for re-sequencing target microbial species from complex natural samples. *Genetics*, 1–30. Retrieved from http://www.genetics.org/content/early/2014/08/05/genetics.114.165498.short
- Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics*, 25(14), 1754–1760. http://doi.org/10.1093/bioinformatics/btp324
- McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., ... DePristo,M. A. (2010). The genome analysis toolkit: A MapReduce framework for analyzing next-

generation DNA sequencing data. *Genome Research*, 20(9), 1297–1303. http://doi.org/10.1101/gr.107524.110

- Ramesh, A., Small, S. T., Kloos, Z. A., Kazura, J. W., Nutman, T. B., Serre, D., & Zimmerman,
 P. A. (2012). The complete mitochondrial genome sequence of the filarial nematode *Wuchereria bancrofti* from three geographic isolates provides evidence of complex demographic history. *Molecular Biochemical Parasitology*, 183(1), 32–41.
- Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., & Zdobnov, E. M. (2015). BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. *Bioinformatics*, 31(19), 3210–3212. http://doi.org/10.1093/bioinformatics/btv351
- Small, S. T., Ramesh, A., Bun, K., Reimer, L., Thomsen, E., Baea, M., ... Zimmerman, P. A. (2013). Population genetics of the filarial worm *Wuchereria bancrofti* in a post-treatment region of Papua New Guinea: insights into diversity and life history. *PLoS Neglected Tropical Diseases*, 7(7), e2308. http://doi.org/10.1371/journal.pntd.0002308
- Small, S. T., Tisch, D. J., & Zimmerman, P. a. (2014). Molecular epidemiology, phylogeny and evolution of the filarial nematode *Wuchereria bancrofti*. *Infection, Genetics and Evolution*, 28, 33–43. http://doi.org/10.1016/j.meegid.2014.08.018
- Tarailo-Graovac, M., & Chen, N. (2009). Using RepeatMasker to identify repetitive elements in genomic sequences. *Current Protocols in Bioinformatics / Editoral Board, Andreas D. Baxevanis ... [et Al.], Chapter 4*, Unit 4.10. http://doi.org/10.1002/0471250953.bi0410s25
- Zhang, K., Martiny, A. C., Reppas, N. B., Barry, K. W., Malek, J., Chisholm, S. W., & Church, G. M. (2006). Sequencing genomes from single cells by polymerase cloning. *Nature Biotechnology*, 24(6), 680–686. http://doi.org/10.1038/nbt1214

Fig. S1. A circos plot visualizing the alignment between the new *W. bancrofti* genome assembly (SAMN10411877) and chromosome scale assembly of *Brugia malayi*.

Fig. S2. Population genetic statistics for each *W. bancrofti* population. A) pairwise nucleotide diversity; B) distribution of Tajima's D; C) scaled site-frequency spectrum; D) decay in genotype correlation with distance.

Fig. S3. Coancestry matrix (a summary of nearest neighbor haplotype relationships in the data set) of *W. bancrofti* populations using fineSTRUCTURE with added labels denoting sample IDs. Dendrograms relating individuals to the co-ancestry matrix are along the vertical axis with populations denoted by colors corresponding to the principal component analysis (PCA; Figure 1). Cooler colors represent higher co-ancestry. Fused boxes of similar color denote worms sampled from the same host infection.

Fig. S4-1. Principal component analysis (PCA) for all scaffolds after removing sites in high linkage disequilibrium (LD). Scaffold names are listed at top center of each panel. Scaffold PCAs are split between two figures for readability.

Fig. S4-2. Principal component analysis (PCA) for all scaffolds after removing sites in high linkage disequilibrium (LD). Scaffold names are listed at top center of each panel. Scaffold PCAs are split between two figures for readability.

Fig. S5. ADMIXTURE results. Three panels represent results from running the program ADMIXTURE to investigate population structure and admixture. Top panel includes all sampled populations, while the right and left panels are specific to Haiti-Africa and Papua New Guinea (PNG).

Fig. S6. ADMIXTURE results from simulations under best fit model for *W. bancrofti* population history. PNG: Papua New Guinea.

Fig. S7. Illustration of tested models for describing *W. bancrofti* population history. PNG: Papua New Guinea.

Fig. S8. Plots representing relatedness and inbreeding in *W. bancrofti* samples. **A)** Pairwise comparison of Identity by descent (IBD) tracts within *W. bancrofti* populations; **B)** Count of runs of homozygosity (ROH) > 100kb in the *W. bancrofti* samples. PNG: Papua New Guinea.

Fig. S9. Cross validation of ADMIXTURE results (± standard error; SE).

Chromosome	Scaffold ID	Size	Ns	Genes	Gene density
1	Wb_Chr1_0	12,368,652	81,951	1,633	0.000132
1	Wb_Chr1_1	2,119,897	98,244	182	0.000086
	Wb_Chr2_0	10,841,590	87,666	1,143	0.000105
2	Wb_Chr2_1	1,918,629	415	253	0.000132
2	Wb_Chr2_2	750,293	0	106	0.000141
	Wb_Chr2_3	490,737	2,531	58	0.000118
2	Wb_Chr3_0	6,490,679	17,498	917	0.000141
3	Wb_Chr3_1	5,401,749	67,144	569	0.000105
	Wb_Chr4_0	12,704,880	207,068	1,369	0.000108
4	Wb_Chr4_1	1,128,067	610	98	0.000087
	Wb_Chr4_2	813,737	109,849	45	0.000055
	Wb_ChrX_0	24,139,319	571,287	2,710	0.000112
	Wb_ChrX_1	2,355,808	45,023	210	0.000089
Х	Wb_ChrX_2	2,085,878	19,869	137	0.000066
	Wb_ChrX_3	662,921	28,893	66	0.000100
	Wb_ChrX_4	204,088	0	5	0.000024
	Wb_ChrX_5	173,113	0	16	0.000092

 Table S1. Assembly statistics for W. bancrofti genome.

Population	Sample ID	Bleed code	Worm ID	Sex	Source material	Collection date	Hom ref	Hom alt	Het	Average genotype coverage	% genome > 10x	Ref
	Haiti1007-1	1007	1	F	MF	1991	343,434	42,596	20,500	53	0.62	This study
	Haiti1007-3	1007	3	F	MF	1991	373,040	44,294	28,002	201	0.76	This study
	Haiti1007-4	1007	4	М	MF	1991	369,214	46,034	25,736	225	0.73	This study
	Haiti1814-4	1814	4	М	MF	1991	373,049	44,704	33,048	253	0.88	This study
Haiti	Haiti1814-5	1814	5	М	MF	1991	331,504	31,221	7,490	138	0.32	This study
	Haiti1899-3	1899	3	F	MF	1991	369,653	37,121	54,958	286	0.81	This study
	Haiti1899-6	1899	6	М	MF	1991	323,252	31,506	6,499	103	0.28	This study
	Haiti1938-1	1938	1	F	MF	1991	350,786	35,012	8,923	124	0.38	This study
	Haiti2070-1	2070	1	F	MF	1991	377,830	35,454	48,457	305	0.89	This study
	Kenya0013-1	1040013	1	F	MF	2003	384,379	41,748	33,082	235	0.77	This study
	Kenya0013-2	1040013	2	F	MF	2003	385,515	43,893	28,757	257	0.75	This study
	Kenya0013-3	1040013	3	F	MF	2003	376,318	43,242	14,446	143	0.65	This study
	Kenya0013-4	1040013	4	F	MF	2003	384,945	45,191	25,914	199	0.95	This study
V	Kenya0084-1	1100084	1	F	MF	2003	381,843	44,678	19,093	190	0.78	This study
Kellya	Kenya0084-4	1100084	4	F	MF	2003	353,115	41,483	14,448	126	0.49	This study
	Kenya0084-5	1100084	5	F	MF	2003	381,235	45,005	20,447	173	0.78	This study
	Kenya0243-1	1110243	1	F	MF	2003	384,003	44,720	21,371	202	0.83	This study
	Kenya01258-1	11201258	1	F	MF	2003	384,659	44,984	25,547	219	0.96	This study
	Kenya0339-2	10802339	2	F	MF	2003	382,986	40,991	25,799	147	0.77	This study
	Mali0012-1	12A	1	М	MF	2007	356,831	39,895	14,340	109	0.40	This study
	Mali0132-18	132A	18	F	MF	2007	364,937	42,789	19,537	161	0.56	This study
	Mali0132-27	132A	27	F	MF	2007	350,090	37,913	11,159	101	0.36	This study
	Mali0132-28	132A	28	Μ	MF	2007	336,995	36,090	9,463	106	0.31	This study
	Mali0132-29	132A	29	М	MF	2007	374,723	41,724	13,885	119	0.55	This study
Mali	Mali0132-30	132A	30	М	MF	2007	370,633	41,266	11,877	115	0.52	This study
Man	Mali0145-3	145A	3	М	MF	2007	324,778	21,889	6,578	54	0.19	This study
	Mali0159-11	159A	11	М	MF	2007	364,535	40,545	9,743	111	0.48	This study
	Mali0159-12	159A	12	F	MF	2007	375,014	49,828	30,760	233	0.91	This study
	Mali0159-2	159A	2	F	MF	2007	374,456	46,680	31,718	207	0.81	This study
	Mali0187-2	187A	2	М	MF	2007	368,885	42,283	20,738	132	0.53	This study
	WbMali	-	_	F	L4	2007	380,855	43,366	18,769	12	0.32	Desjardins et al. 2013

 Table S2-1. Sample Information for W. bancrofti worms included in this study. Table is splitted in two tables for readability.

Population	Sample ID	Bleed code	Worm ID	Sex	Source material	Collection date	Hom ref	Hom alt	Het	Average genotype coverage	% genome > 10x	Ref
	PNG00003-3	ZXT0003	3	М	MF	2014	329,959	17,403	7,015	92	0.19	This study
	PNG00003-6	ZXT0003	6	М	MF	2014	389,143	30,702	25,022	255	0.80	This study
	PNG00004-2	ZXT0004	2	F	MF	2014	354,084	25,444	9,451	127	0.33	This study
	PNG00009-3	ZXT0009	3	М	MF	2014	315,878	14,037	5,793	99	0.17	This study
	PNG0018-1	ZXT0018	1	М	MF	2014	379,265	17,502	67,569	293	0.96	This study
	PNG0018-7	ZXT0018	7	F	MF	2014	396,366	20,088	44,767	198	0.92	This study
	PNG0019-3	ZXT0019	3	М	MF	2014	399,479	24,374	30,578	247	0.87	This study
	PNG0019-5	ZXT0019	5	F	MF	2014	399,967	27,095	24,057	238	0.81	This study
	PNG0114-4	ZXT0114	4	F	MF	2014	396,615	27,583	37,298	351	0.83	This study
	PNG0286-5	ZXT0286	5	F	MF	2014	361,395	21,915	9,072	141	0.36	This study
	PNG0286-6	ZXT0286	6	F	MF	2014	336,546	19,297	15,569	57	0.34	This study
Papua	PNG0292-3	ZXT0292	3	М	MF	2014	370,779	25,067	8,985	130	0.49	This study
New	WbL3-17B	ZE40A	-	F	L3	2012	375,407	17,692	42,218	17	0.62	Small et al. 2016
Guinea	WbL3-17D	ZE40A	-	F	L3	2012	376,409	17,908	52,590	42	0.89	Small et al. 2016
	WbL3-17E	ZE40A	-	F	L3	2012	377,978	17,714	56,342	43	0.85	Small et al. 2016
	WbL3-36	YUA086	-	F	L3	2012	368,560	10,385	60,733	32	0.55	Small et al. 2016
	WbL3-48_51	ZE39A	-	U	L3	2012	407,757	22,533	22,635	17	0.71	Small et al. 2016
	WbL3-48_53	ZE39A	-	М	L3	2012	402,251	22,426	33,381	80	0.86	Small et al. 2016
	WbL3-48_73	ZE39A	-	F	L3	2012	404,774	23,215	30,625	48	0.97	Small et al. 2016
	WbL3-48A	ZE39A	-	М	L3	2012	394,697	20,929	45,184	14	0.63	Small et al. 2016
	WbL3-48B	ZE39A	-	М	L3	2012	383,842	18,187	57,940	30	0.80	Small et al. 2016
	WbL3-17A	ZE40A	-	F	L3	2012	379,768	17,631	54,829	36	0.82	Small et al. 2016
	WbL3-74A	YUA086	-	М	L3	2012	380,714	18,969	15,209	13	0.62	Small et al. 2016
	WbL3-74E	YUA086	-	М	L3	2012	390,560	20,537	22,181	22	0.80	Small et al. 2016
	WbL3-17C	ZE40A	_	F	L3	2012	381,567	17,767	41,283	13	0.62	Small et al. 2016

Table S2-2. Sample Information for *W. bancrofti* worms included in this study. Table is splitted in two tables for readability.

Population	SNPs	Singletons	Doubletons	Private
Haiti	165,412	43,168	33,663	24,776
Mali	152,458	31,910	27,479	23,201
Kenya	149,685	33,863	28,585	23,564
PNG	204,138	51,289	31,812	78,091

 Table S3. Distribution of SNPs for each W. bancrofti population.

PNG: Papua New Guinea.

Parameter	Population	Model1-1	Model1-2	Model1-3	Model2-1	Model3-1
	Haiti	282	282	282	282	282
N	Mali	313	313	313	313	313
Ne	Kenya	642	642	642	642	642
	Papua New Guinea	2,834	2,834	2,834	2,834	2,834
Т3	Haiti, Mali	289	289	289	429	3,875
T2	(Haiti, Mali), Kenya	2,477	2,477	2,477	1,456	3,946
T1	(Haiti, Mali, Kenya), Papua New Guinea	17,304	5,000	50,000	50,000	19,733
	Haiti, Mali	16,669	16,669	16,669	21,444	42,866
NA	(Haiti, Mali), Kenya	987	987	987	2,765	987
	(Haiti, Mali, Kenya), Papua New Guinea	107,255	107,255	107,255	98,317	215,517
Admixture time	(Haiti, Mali, Kenya), Papua New Guinea	_	-	-	4,558	_
Admixture proportion	(Haiti, Mali, Kenya), Papua New Guinea	_	_	_	0.001	_
	Time Mali – Haiti	_	-	-	_	3,458
	Rate Mali – Haiti	_	_	_	_	5
	Time Kenya – Haiti	_	-	-	_	39
Microtica	Rate Kenya – Haiti	_	_	_	_	5
wiigrauon	Time Mali – Kenya	_	_	_	_	39
	Rate Mali – Kenya	_	_	_	_	5
	Time Kenya – Mali	_	-	-	-	39
	Rate Kenya – Mali	_	_	_	_	5
Log Ln	_	-13.126	-12.998	-13.583	-9.601	-25.334
AIC	_	40.251	39.995	41.166	37.203	78.668
Delta AIC	_	3.048	2.792	3.963	0.000	41.465
Probability of model	_	0.218	0.248	0.138	1.000	0.000

Table S4. Model selection summary and statistics.

Primer	Sequence
swga01	AATCGATA*A*T
swga02	ACGAATAA*T*T
swga03	CGACGA*A*T
swga04	CGATAC*G*A
swga05	CGCGAA*A*A
swga06	CGTAAA*C*G
swga07	GACGAAAA*A*A
swga08	TCGAAC*G*A
swga09	TCGCGA*A*A

Table S5. Primers used in the selective whole genome amplification (sWGA).

Table S6. Pairwise population F_{ST} with standard error (SE; upper diagonal).

	Haiti	Mali	Kenya	PNG
Haiti		0.0107	0.0163	0.0176
Mali	0.103		0.0073	0.0106
Kenya	0.112	0.098		0.0047
PNG	0.198	0.255	0.241	

PNG: Papua New Guinea.

Annotation	Panther	WBGene	UniProtK B	Gene	Function	Ortholog
snap_masked-Wb_Chr1_0-processed-gene-74.21- mRNA-1	PTHR12243:SF1 7	WBGene000115 75	G5EGG9	Madf-4	Alcohol dehydrogenase transcription factor Myb/SANT-like	C. elegans
maker-Wb_Chr1_0-snap-gene-74.10-mRNA-1	PTHR13554:SF1 0	WBGene000094 45	Q20058	CELE_F35G12. 12	26S Proteasome Non-atpase Regulatory subunit 5	C. elegans
snap_masked-Wb_Chr4_0-processed-gene-101.20- mRNA-1	PTHR28599:SF1	WBGene001025 23	H3ET47	SMIM-1	Small Integral Membrane Protein 12	P. pacificus
maker-Wb_Chr4_1-snap-gene-8.18-mRNA-1	PTHR23128:SF1 36	WBGene000081 26	O45306	Sre-1	Serpentine receptor class epsilon-21	C. elegans
maker-Wb_Chr4_2-snap-gene-3.8-mRNA-1	PTHR12411:SF3 16	WBGene000070 55	O16454	Tag-196	Cathepsin F;cysteine protease	C. elegans
maker-Wb_Chr2_1-snap-gene-1.20-mRNA-1	PTHR45975:SF2	WBGene000091 80	Q6BER5	Nurf-1	Nucleocome-remodeling factor subunit BPTF	C. elegans
maker-Wb_Chr2_1-snap-gene-1.21-mRNA-1	NA	NA	NA	НҮР	NA	C. elegans
augustus_masked-Wb_Chr2_1-processed-gene-1.2- mRNA-1	PTHR36562:SF1	WBGene000132 60	Q9U213	Rsr-2	Serine/Arginine Repetitive Matrix 2	C. elegans
maker-Wb_Chr2_1-augustus-gene-1.9-mRNA-1	PTHR45975:SF2	WBGene000091 80	Q6BER5	Nurf-1	Nucleocome-remodeling factor subunit BPTF	C. elegans
maker-Wb_Chr2_1-snap-gene-1.23-mRNA-1	PTHR45975:SF2	WBGene000091 80	Q6BER5	Nurf-1	Nucleocome-remodeling factor subunit BPTF	C. elegans
maker-Wb_Chr2_1-augustus-gene-1.14-mRNA-1	PTHR11616:SF2 0	WBGene000049 02	G5EBN9	Snf-3	Sodium- and chloride-dependent betaine transporter	C. elegans
maker-Wb_Chr4_0-augustus-gene-1.51-mRNA-1	PTHR11550	WBGene000123 16	G5EC98	Ctps-1	CTP Synthase	C. elegans
augustus_masked-Wb_ChrX_0-processed-gene-85.63- mRNA-1	PTHR45624:SF4	WBGene000009 96	Q27257	Dif-1	Congested-like trachea protein-related	C. elegans
maker-Wb_ChrX_0-snap-gene-85.5-mRNA-1	PTHR13773	WBGene000163 84	P53439	Cdgs-1	Phosphatidate Cytidylyltransferase	C. elegans
augustus_masked-Wb_ChrX_0-processed-gene-85.69- mRNA-1	PTHR21723	WBGene000043 63	Q22472	Ric-3	Resistance to inhibitors of cholinesterase protein 3	C. elegans
snap_masked-Wb_ChrX_0-processed-gene-86.16- mRNA-1	PTHR12322:SF5 7	WBGene000195 21	O01582	Dmd-7	Doublesex/MAB-3	C. elegans
snap_masked-Wb_ChrX_0-processed-gene-86.14- mRNA-1	PTHR10844:SF2 1	WBGene000003 01	Q94051	Cav-1	Caveolin-1	C. elegans
snap_masked-Wb_ChrX_0-processed-gene-86.31- mRNA-1	NA	NA	NA	НҮР	NA	C. elegans
augustus_masked-Wb_Chr2_0-processed-gene-73.1- mRNA-1	NA	NA	NA	НҮР	NA	C. elegans
maker-Wb_ChrX_0-augustus-gene-91.50-mRNA-1	PTHR10027:SF2 8	WBGene000048 30		Slo-1	Large-conductance calcium-activated potassium channel	C. elegans

 Table S7. mRNA ontology for gene identified during selection scan.

Table S8. Results of enrichment test for genes from selection scan using Panther DB.

PANTHER GO-Slim Biological process	Caenorhabd itis elegans REFLIST (19921)	Wb.panther. out (17)	Wb.panther. out (expected)	Wb.panther. out (over/under)	Wb.panther. out (fold Enrichment)	Wb.panther. out (raw <i>P</i> - value)
Ribonucleoside triphosphate metabolic process (GO:0009199)	2	1	0	+	> 100	0.00256
Ribonucleoside triphosphate biosynthetic process (GO:0009201)	2	1	0	+	> 100	0.00256
Membrane assembly (GO:0071709)	3	1	0	+	> 100	0.00341
Ribonucleotide biosynthetic process (GO:0009260)	4	1	0	+	> 100	0.00426
Ribonucleotide metabolic process (GO:0009259)	5	1	0	+	> 100	0.00511
Pyrimidine nucleotide metabolic process (GO:0006220)	6	1	0.01	+	> 100	0.00595
Nucleobase-containing small molecule biosynthetic process (GO:0034404)	7	1	0.01	+	> 100	0.0068
Nucleoside triphosphate metabolic process (GO:0009141)	8	1	0.01	+	> 100	0.00765
Endomembrane system organization (GO:0010256)	13	1	0.01	+	90.14	0.0119
Pyrimidine nucleobase metabolic process (GO:0006206)	13	1	0.01	+	90.14	0.0119
Heterocycle metabolic process (GO:0046483)	16	1	0.01	+	73.24	0.0144
Pyrimidine-containing compound metabolic process (GO:0072527)	16	1	0.01	+	73.24	0.0144
Nucleobase-containing small molecule metabolic process (GO:0055086)	18	1	0.02	+	65.1	0.0161
Organonitrogen compound biosynthetic process (GO:1901566)	47	1	0.04	+	24.93	0.0402

Population	IBD IN	IBD BETWEEN
Haiti	6,163,370	5,068,997
Mali	5,281,618	5,188,573
Kenya**	11,721,362	5,511,120
PNG**	6,788,868	1,340,033

 Table S9. Distribution of mean identity by descent (IBD) lengths within W. bancrofti

 populations.

** significantly different.

PNG: Papua New Guinea.