
GigaScience
 

rnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data
--Manuscript Draft--

 
Manuscript Number: GIGA-D-18-00456R1

Full Title: rnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data

Article Type: Research

Funding Information: Russian Foundation for Basic Research
(19-04-01074)

Mr Andrey D. Prjibelski

St. Petersburg State University
(15.61.951.2015)

Not applicable

Abstract: Possibility to generate large RNA-Seq datasets has led to development of various
reference-based and de novo transcriptome assemblers with their own strengths and
limitations. While reference-based tools are widely used in various transcriptomic
studies, their application is limited to the organisms with finished and well-annotated
genomes. De novo transcriptome reconstruction from short reads remains an open
challenging problem, which is complicated by the varying expression levels across
different genes, alternative splicing and paralogous genes. In this paper we describe a
novel transcriptome assembler called rnaSPAdes, which is developed on top of
SPAdes genome assembler and explores computational parallels between assembly
of transcriptomes and single-cell genomes. We also present quality assessment
reports for rnaSPAdes assemblies, compare it with modern transcriptome assembly
tools using several evaluation approaches on various RNA-Seq datasets, and briefly
highlight strong and weak points of different assemblers.

Corresponding Author: Andrey D. Prjibelski, M.Sc.
SPbU
St. Petersburg, Russia RUSSIAN FEDERATION

Corresponding Author Secondary
Information:

Corresponding Author's Institution: SPbU

Corresponding Author's Secondary
Institution:

First Author: Elena Bushmanova, M.Sc.

First Author Secondary Information:

Order of Authors: Elena Bushmanova, M.Sc.

Dmitry Antipov, M.Sc.

Alla Lapidus, Ph. D.

Andrey D. Prjibelski, M.Sc.

Order of Authors Secondary Information:

Response to Reviewers: Attached as PDF

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://scicrunch.org/resources
https://scicrunch.org/resources
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/editorial_policies_and_reporting_standards#Availability
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist


GigaScience, 2019, 1–12
doi: xx.xxxx/xxxx
Manuscript in Preparation
Paper

PA P ER

rnaSPAdes: a de novo transcriptome assembler and
its application to RNA-Seq data
Elena Bushmanova1, Dmitry Antipov1, Alla Lapidus1 and Andrey D.
Prjibelski1*
1Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, St. Petersburg State University,
St. Petersburg, Russia
*To whom correspondence should be addressed: a.przhibelsky@spbu.ru

Abstract
Possibility to generate large RNA-Seq datasets has led to development of various reference-based and de novo
transcriptome assemblers with their own strengths and limitations. While reference-based tools are widely used in various
transcriptomic studies, their application is limited to the organisms with �nished and well-annotated genomes. De novo
transcriptome reconstruction from short reads remains an open challenging problem, which is complicated by the varying
expression levels across di�erent genes, alternative splicing and paralogous genes. In this paper we describe a novel
transcriptome assembler called rnaSPAdes, which is developed on top of SPAdes genome assembler and explores
computational parallels between assembly of transcriptomes and single-cell genomes. We also present quality assessment
reports for rnaSPAdes assemblies, compare it with modern transcriptome assembly tools using several evaluation
approaches on various RNA-Seq datasets, and brie�y highlight strong and weak points of di�erent assemblers.
Key words: RNA-Seq; de novo assembly; transcriptome assembly

Background

While reference-based methods for RNA-Seq analysis [1, 2, 3,
4, 5, 6] are widely used in transcriptome studies, they are sub-
jected to the following constraints: (i) they are not applicable in
the case when the genome is unknown, (ii) their performance
deteriorates when the genome sequence or annotation are in-
complete, and (iii) they may miss unusual transcripts such
as fusion genes or genes with short unannotated exons. To
address these constraints, de novo transcriptome assemblers
[7, 8, 9, 10, 11] have emerged as a viable complement to the
reference-based tools. Although de novo assemblers typically
generate fewer complete transcripts than the reference-based
methods for the organisms with accurate reference sequences
[12], they may provide additional insights on aberrant tran-
scripts.
While the transcriptome assembly may seem to be a sim-

pler problem than the genome assembly, RNA-Seq assemblers
have to address the complications arising from highly uneven

read coverage depth caused by variations in gene expression
levels. However, this is the same challenge that we have ad-
dressed while developing SPAdes assembler [13, 14], which
originally aimed at single-cell sequencing. Similarly to RNA-
Seq, the Multiple Displacement Ampli�cation (MDA) technique
[15], used for genome ampli�cation of single bacterial cells, re-
sults in a highly uneven read coverage. In the view of similari-
ties between RNA-seq and single-cell genome assemblies, we
decided to test SPAdes without any modi�cations on transcrip-
tomic data. Even though SPAdes is a genome assembler and
was not optimized for RNA-seq data, in some cases it gener-
ated decent assemblies of quality comparable to the state-of-
the-art transcriptome assemblers.
To perform the benchmarking we have used rnaQUAST tool

[16], which was designed for quality evaluation of de novo as-
semblies with the support of reference genome and its gene
database. For the comparison, we selected a few representa-
tive metrics such as (i) total number of assembled transcripts
(contigs), (ii) reference gene database coverage, (iii) number of

Compiled on: April 20, 2019.
Draft manuscript prepared by the author.

1

Main manuscript Click here to access/download;Manuscript;Bushmanova.pdf

Click here to view linked References

https://www.editorialmanager.com/giga/download.aspx?id=64279&guid=45e456c0-ec99-47de-8aa1-3e5a1e4b64cd&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=64279&guid=45e456c0-ec99-47de-8aa1-3e5a1e4b64cd&scheme=1
https://www.editorialmanager.com/giga/viewRCResults.aspx?pdf=1&docID=2534&rev=1&fileID=64279&msid=f29a6e69-768d-4f5a-a482-e615ed72aa2e


2 | GigaScience, 2019, Vol. 00, No. 0

Table 1. Benchmarking of BinPacker, Bridger, IDBA-tran, RNA-Bloom, SOAPdenovo-Trans, SPAdes, Trans-ABySS and Trinity on MouseRNA-seq dataset (accession number SRX648736). The annotated transcriptome of M. musculus GRCm38.75 consists of 38924 genes and94545 isoforms. All contigs shorter than 200 bp were �ltered out prior to the analysis. The best values for each metric are highlighted withbold.
BinPacker Bridger IDBA Bloom SOAP SPAdes ABySS Trinity

Transcripts 27234 42029 38313 46440 31878 42949 36488 47746
Misassemblies 947 923 387 732 37 497 194 459
Duplication ratio 1.12 1.09 1.00 1.33 1.00 1.00 1.09 1.15
Database coverage, % 14.4 16.3 16.9 13.8 15.1 17.7 16.2 18.2
50%-assembled genes 6005 6090 6558 4859 6241 6890 6321 6633
95%-assembled genes 1917 1909 1602 1256 1653 2450 1798 2272
50%-assembled isoforms 6360 6451 6790 5591 6376 7053 6931 7386
95%-assembled isoforms 1992 1982 1602 1346 1655 2450 1850 2406

50% / 95%-assembled genes/isoforms, (iv) number of misas-
semblies and (v) duplication ratio. The detailed description for
these metrics can be found in the Supplementary material.
Table 1 demonstrates comparison between di�erent assem-

bly tools on publicly available Mouse RNA-Seq dataset. All tran-
scriptome assemblers were launched with default parameters,
SPAdes was run in single-cell mode due to the uneven cover-
age depth of RNA-Seq data. Table 1 shows that SPAdes gen-
erates more 50% / 95%-assembled genes than any other tool
and has comparable gene database coverage. At the same time,
SPAdes produces rather high number of misassembled tran-
scripts, which can be explained by the fact that algorithms for
genome assembly tend to assemble longer contigs and may in-
correctly join sequences corresponding to di�erent genes when
working with RNA-Seq data. In addition, SPAdes generates the
same number of 95%-assembled genes and isoforms, which
emphasizes the lack of isoform detection step.
Benchmarking on other datasets also showed that SPAdes

successfully deals with non-uniform coverage depth and pro-
duces relatively high number of 50% / 95%-assembled genes
in most cases. However, it also con�rmed the problem of large
amount of erroneous transcripts as well as relatively low num-
ber of fully reconstructed alternative isoforms in SPAdes as-
semblies. Based on the obtained statistics we decided to adapt
current SPAdes algorithms for RNA-Seq data with the goal to
improve quality of generated assemblies and develop a new
transcriptomic assembler called rnaSPAdes. In this manuscript
we describe major pipeline modi�cations as well as several al-
gorithmic improvements introduced in rnaSPAdes that allow
to avoid misassemblies and obtain sequences of alternatively
spliced isoforms.
To perform su�cient benchmarking of rnaSPAdes and other

transcriptome assemblers mentioned above, we assembled sev-
eral simulated and publicly available real RNA-Seq datasets
from the organisms with various splicing complexity. For the
generated assemblies we present quality assessment reports

obtained with di�erent de novo and reference-based evalua-
tion approaches. In addition, based on these results we discuss
strengths and disadvantages of various assembly tools and pro-
vide insights on their performance.

Data Description

To compare rnaSPAdes performance with the state-of-the-art
transcriptome assemblers we selected 2 simulated and 6 real
publicly available RNA-Seq datasets (Table 2) with di�erent
(i) read length, (ii) library size, (iii) strand-speci�city and (iv)
organism splicing complexity. Simulated data was generated
using RSEM simulator [1] based on real Human and Mouse
datasets used in this study (the exact commands are provided
in the Supplementary material section S3).
All downloaded public datasets were analysed using

FastQC [17]. The reports showed that no dataset contains
adapters or overrepresented sequences. Human large dataset
was quality-trimmed using Trimmomatic [18] due to quality
drop towards reads ends. All other datasets were assembled
without additional preprocessing. Although 8 datasets used in
this manuscript may not represent all kinds of transcriptomic
data, they are su�cient for comparing di�erent assembly tools
and detecting their strengths and disadvantages.

Analyses

Selected datasets were assembled with BinPacker [19], Bridger
[20], IDBA-tran [10], RNA-Bloom [21], SOAPdenovo-Trans [11],
Trans-ABySS [7], Trinity [8] and rnaSPAdes using default pa-
rameters, and SPAdes [13] in single-cell mode. For a fair com-
parison the same minimal contig length cuto� was used for
all tools (200 bp). For assemblers that have no such option,
sequences shorter than 200 bp were �ltered out manually. To
evaluate the resulting assemblies we used rnaQUAST [16], Tran-

Table 2. RNA-Seq datasets selected for comparison of di�erent assembly tools. All datasets contain paired-end Illumina reads; # readsstands for number of read pairs.
Dataset name Organism Tissue # reads Strand-speci�c Read length Insert size Accession #
Human H. sapiens Prostate cancer cells 30 M No 150 bp 344 bp SRR5133163
Human large H. sapiens Blood 125 M No 100 bp 176 bp SRR1957703,

SRR1957706
Mouse M. musculus Pancreatic islets 11 M No 101 bp 173 bp SRX648736
Worm C. elegans - 45 M No 90 bp 186 bp SRR1560107
Corn SS Z. mays Endosperm 35 M RF 100 bp 242 bp SRR1588569
Arabidopsis SS A. thaliana - 118 M RF 130 bp 245 bp SRR5344669,

SRR5344670
Human simulated H. sapiens - 30 M No 150 bp 340 bp -
Mouse simulated M. musculus - 11 M No 101 bp 170 bp -
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Table 3. Benchmarking of BinPacker, Bridger, IDBA-tran, RNA-Bloom, rnaSPAdes, SOAPdenovo-Trans, SPAdes, Trans-ABySS and Trinityon Human simulated RNA-seq dataset. The annotated transcriptome of H. sapiens GRCh37.p13 consists of 57820 genes and 196520 isoforms.All contigs shorter than 200 bp were �ltered out prior to the analysis. The best values for each metric are highlighted with bold.
BinPacker Bridger IDBA Bloom rnaSPAdes SOAP SPAdes ABySS Trinity

Transcripts 76736 52151 58466 65968 37730 35096 42264 67511 62831
Misassemblies 7919 3512 174 358 309 198 443 126 1554
Duplication ratio 2.19 1.38 1.01 1.93 1.26 1.08 1.00 1.24 1.74
Database coverage, % 20.9 18.5 21.4 24.6 23.2 19.4 20.5 23.1 24.4
50%-assembled genes 11828 11476 13175 12869 14075 12610 13569 12740 13289
95%-assembled genes 7320 6417 2729 8910 10934 7685 8526 7225 9049
50%-assembled isoforms 17415 15423 18181 21035 19531 15638 16437 19250 20965
95%-assembled isoforms 9091 7298 2744 12108 13387 8151 8638 7662 12301

Figure 1. Cumulative plot showing how fraction of 95%-assembled genes in
each assembly of Human simulated dataset depends on the gene coverage by
reads in TPM (Transcripts Per Kilobase Million) reported by RSEM simulator.

srate [22], BUSCO [23] and DETONATE [24]. From each qual-
ity report we selected a few representative metrics that would
allow to perform complete comparison of di�erent assemblers.
To make the results reproducible, we also provide software ver-
sions and command lines used in this study in the Supplemen-
tary material (section S3).
In addition to statistics provided by di�erent tools, we de-

cided to compute faction of 95%-assembled genes relative to
the number of genes detected by a reference-based method.
For this purpose we used genes assembled by kallisto [25] that
have nucleotide coverage > 5. Coverage values were computed
using estimated fragment counts. While it remains unclear
how to select a proper coverage threshold for this experiment,
number of genes/isoforms with coverage > 5 appeared to be the
best upper bound estimate for most of the datasets (see Sup-
plementary Table S15 for details). Using fraction of assembled
genes instead of raw numbers allows to conveniently visual-
ize the data in the same plot, compute average values across
all datasets and, at the same time, estimate how well de novo
assemblers perform relatively to the reference-based tool.

Evaluating assemblers on simulated data

To simulate RNA-Seq dataset we used RSEM simulator [1],
which allows to generate reads based on the real RNA-Seq
data. For this purpose we selected Human and Mouse datasets
(Table 2). Table 3 shows short quality assessment report for
Human simulated data. Complete evaluation reports for both
simulated dataset are presented in the Supplementary material

(Tables S1 and S2).
Table 3 shows that rnaSPAdes produces the highest number

of 95%-assembled genes and isoforms, with Trinity and RNA-
Bloom being the closest competitors. Trinity and RNA-Bloom
also have the highest gene database coverage, while rnaSPAdes
and Trans-ABySS are just slightly behind (1.5% di�erence at
most). However, both Trinity and RNA-Bloom seem to pro-
duce a lot of excessive sequences resulting in high duplication
ratios (1.74 and 1.93 respectively), and Trinity also appears to
be somewhat inaccurate in terms of misassembled sequences
(5 times more than rnaSPAdes). Among the tools with high
number of assembled genes and isoforms, Trans-ABySS and
SOAPdenovo-Trans are the most accurate (126 and 198 misas-
semblies respectively), rnaSPAdes and RNA-Bloom follow with
309 and 358 of misassembled contigs respectively. Although
IDBA also generates an accurate assembly (174 misassemblies),
it appears to be fragmented (small number of 95%-assembled
genes and isoforms). Although both BinPacker and Bridger
produce comparable amount of assembled genes and isoforms,
they have the largest number of misassemblies (> 3500). Bin-
Packer also has the highest duplication ratio (2.19).
Since RSEM simulator provides read count for each partic-

ular gene, we also computed the number of assembled genes
reported by rnaQUAST depending on their read coverage (Fig.
1). The �gure demonstrates that rnaSPAdes, SPAdes and
Trinity outperform other tools on low-abundant transcripts,
with rnaSPAdes reaching the highest fraction of total 95%-
assembled genes (52.2%).

Evaluating assemblers on real RNA-Seq data

For comparison on real RNA-Seq reads we selected 4 non-
stranded and 2 strand-speci�c datasets (Table 2). Short report
for Human assemblies is shown in Table 4, while complete re-
ports for all data are presented in the Supplementary material
(Tables S3-S8 respectively). In addition, we added BUSCO re-
ports (Supplementary Figure S2) and presented various metrics
as bar plots (Figure 2, Supplementary Figures S3-S5).
Table 4 indicates, that while all assemblies have more

than ten thousand of 50%-assembled genes, amount of 95%-
assembled genes signi�cantly di�ers. RnaSPAdes, RNA-Bloom
and Trinity are the best according to 95%-assembled genes
and isoforms. Among these three assemblers, rnaSPAdes dom-
inates with 16% and 31% more 95%-assembled genes than
RNA-Bloom and Trinity respectively. Although both RNA-
Bloom and Trinity have the highest database coverage, they
also have very high duplication ratio (≥ 2). In addition, Trin-
ity (along with BinPacker and Bridger) generate signi�cant
amount of misassemblies (> 5000). SOAPdenovo-Trans and
Trans-ABySS produce accurate assemblies according to these
parameters, but generate 2043 and 2250 fewer 95%-assembled
genes than rnaSPAdes. IDBA-trans also has rather small num-
ber of misassembled contigs (1015), but outputs a very frag-
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Table 4. Benchmarking of BinPacker, Bridger, IDBA-tran, RNA-Bloom, rnaSPAdes, SOAPdenovo-Trans, SPAdes, Trans-ABySS and Trinityon real Human dataset. The annotated transcriptome of H. sapiens GRCh38.82 consists of 57820 genes and 196520 isoforms. All contigsshorter than 200 bp were �ltered out prior to the analysis. The best values for each metric are highlighted with bold.
BinPacker Bridger IDBA Bloom rnaSPAdes SOAP SPAdes ABySS Trinity

Transcripts 144598 191459 173330 239912 167710 140769 223917 190798 234074
Misassemblies 9898 7487 1015 1643 2111 450 3190 916 5183
Duplication ratio 2.03 1.61 1.02 2.75 1.36 1.12 1.01 1.25 2.00
Database coverage, % 17.2 16.6 19.6 24.8 21.3 18.5 18.4 22.5 24.2
50%-assembled genes 10763 10534 11712 12779 13377 12154 12395 12621 12902
95%-assembled genes 4457 4226 1334 6121 7094 5051 4427 4844 5398
50%-assembled isoforms 15133 14032 16260 22547 18619 15302 15533 19817 21876
95%-assembled isoforms 5080 4680 1338 7976 8026 5259 4455 5046 6753

Figure 2. The fraction of 95%-assembled genes presented as bar plots for all generated assemblies. The values are computed relative to the number of genes
reported by kallisto [25] that have per-base coverage depth > 5. The last columns show average values over all datasets. Note, that Bridger failed to assemble Corn
dataset.

mented assembly with the lowest number of 95%-assembled
genes/isoforms.
Figure 2 demonstrates fraction of 95%-assembled genes in

all generated assemblies and mean values for each assembler
across all datasets. RnaSPAdes, Trinity and RNA-Bloom show
stable performance across di�erent datasets and have the high-
est fraction of 95%-assembled genes on average (0.5, 0.438
and 0.406 respectively). While genomic SPAdes also has high
value on average (0.397), it is mostly achieved by decent per-
formance of simulated data. Figure 2 shows that the fraction
of 95%-assembled genes for simulated datasets is typically
higher comparing to the respective values for real data, most
likely due to the absence of sequencing artifacts. Additionally,
denovo assemblies of complex organisms, such asH. sapiens and
M.musculus, tend to have lower fractions of assembled genes in
comparison to C. elegans and A. thaliana. For example, Human
large dataset has smaller values than the ones for Worm assem-
blies, although the later one have almost 3x lower coverage.

Computational performance

To compare selected assemblers in terms of computational
performance, we measured their running time and RAM con-
sumption on two largest datasets using system utilities rather
than using log �les. As Table 5 indicates, SOAPdenovo-Trans
is at least 3 times faster than any other assembler and have
one of the lowest memory requirements (less than 30 GB for
both datasets). Trans-ABySS and rnaSPAdes have comparable
performance, with rnaSPAdes being slightly faster and more
greedy regarding RAM consumption. Other assemblers typi-
cally have longer running time (at least 2 times more than
rnaSPAdes in most cases) and higher memory requirements.
Among all tools, BinPacker, Bridger and Trinity have the the
highest peak RAM, e.g. more than 100 GB of Arabidopsis
dataset.

Table 5. Running time and peak RAM usage for BinPacker, Bridger,
IDBA-tran, RNA-Bloom, rnaSPAdes, SOAPdenovo-Trans, SPAdes,Trans-ABySS and Trinity on Human large and Arabidopsis datasets(125 and 118 million read-pairs respectively). All assemblers welaunched in 16 threads on a server with 128 GB of RAM and 56 IntelXeon 2.0 GHz cores. BinPacker, which has no options for settingthe number of threads, was launched with default parameters. Thebest values for time and RAM are highlighted with bold.

Human large Arabidopsis
Assembler Time RAM Time RAM
BinPacker 46 h 59 m 91 GB 88 h 25 m 131 GB
Bridger 65 h 54 m 88 GB 49 h 58 m 126 GB
IDBA 9 h 35 m 35 GB 26 h 24 m 42 GB
Bloom 37 h 52 m 38 GB 34 h 42 m 40 GB
rnaSPAdes 5 h 4 m 32 GB 7 h 24 m 40 GB
SOAP 1 h 21 m 28 GB 1 h 58 m 20 GB
SPAdes 11 h 39 m 39 GB 14 h 58 m 52 GB
ABySS 6 h 49 m 25 GB 8 h 9 m 35 GB
Trinity 18 h 8 m 50 GB 8 h 30 m 123 GB

Discussion

Quality reports provided in this manuscript (Tables 3 and 4)
and Supplementary material (Tables S1-S8, Figures S1-S5) con-
tain large variety of metrics that re�ect completely di�erent
assembly properties, importance of which may vary depending
on the further analysis and the entire pipeline being used. We
believe that one of the key features of the de novo transcrip-
tome assembler is the ability to correctly capture the entire
transcript into a single contig (e.g. re�ected by the number of
95%-assembled genes/isoforms, contig recall). On the other
hand, such metrics as gene database coverage, number of cov-
ered reference proteins and nucleotide recall do not re�ect this
signi�cant property, since they account all contigs mapped to
a speci�c gene or protein and do not include assembly contigu-
ity. For example, high database coverage or nucleotide recall
can be achieved by a very fragmented assembly (or even raw
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reads), which, indeed, does not suit well for further reference-
free analysis.
Below we attempt to summarize these results and highlight

strong and weak points of di�erent assemblers.

Comparison between SPAdes and rnaSPAdes

In comparison to the original version of SPAdes, rnaSPAdes
dominates by the majority of metrics. More precisely, it
has signi�cantly better assembly completeness metrics: 26%
higher average fraction of 95%-assembled genes, 18% larger
database coverage, 30% higher contig recall reported by REF-
EVAL and 18%more detected BUSCOs. It also shows 18% higher
contig precision on average, better reference coverage metrics
reported by Transrate (50% / 95%-covered reference proteins,
reference coverage) and typically fewer misassemblies (except
for Corn SS and Human large datasets). Due to aggressive over-
lap removal stage, SPAdes always has smaller mean duplication
ratio (2% vs 32% for rnaSPAdes), fewer duplicated BUSCOs (1%
vs 16% on average), percentage of uncovered bases (2% vs 19%)
and higher nucleotide precision (0.66 vs 0.56).
Simulated Mouse dataset is the only one where original

SPAdes generates more assembled genes and isoforms than
rnaSPAdes. Detailed investigation showed that the key rea-
sons are the low coverage of this data (11 million reads) and
its arti�cial nature (rnaSPAdes assembles more genes on real
Mouse data). By using small k = 21 during the �rst iteration
SPAdes manages to assemble extremely low-covered genes,
where overlaps between reads are short. Pitfalls of using small
k-mer sizes in transcriptome assembly are discussed in the
Methods section.
Finally, due to the exclusion of BayesHammer error correc-

tion module [26] and using only two k-mer sizes, rnaSPAdes
pipeline appears to be about twice faster and consumes less
RAM than usual SPAdes.

Assembly completeness

In comparison to other assemblers, rnaSPAdes shows the high-
est fraction of 95%-assembled genes and isoforms (0.5 and
0.32 respectively). Trinity (0.44 and 0.3) and RNA-Bloom (0.41
and 0.28) are ranked the second and the third according to
these metrics (Supplementary Figure S3). These numbers cor-
relate with the percentage of detected BUSCOs, for which rnaS-
PAdes also has the best average value across all datasets (74%),
followed by Trinity (72%), Trans-ABySS (71%) and RNA-Bloom
(68%).
The same assemblers typically form the top four accord-

ing to various coverage metrics, such as database coverage
provided by rnaQUAST, reference coverage, number of 50% /
95%-covered reference proteins and number of reference se-
quences with CBBR hits reported by Transrate (Supplemen-
tary Figures S3 and S5). For example, according to mean
gene database coverage computed by rnaQUAST, Trinity has the
highest value of 30.2%, with other assemblies having some-
what lower values: 29.6% for RNA-Bloom, 28.7% for rnaS-
PAdes and 24.2% for Trans-ABySS. Exactly the same ranking
is de�ned by Transrate reference coverage: Trinity (27.8%),
RNA-Bloom (26.9%), rnaSPAdes (24.4%) and Trans-ABySS
(23.4%). Other assemblers typically show smaller values for
completeness-related metrics, generating fragmented assem-
blies, like IDBA-tran, or having lower database coverage, e.g.
BinPacker.
Nucleotide and contig recall metrics reported by Detonate

generally support the conclusions stated above (Supplementary
Figure S4). Thus, Trinity and rnaSPAdes have the best average
nucleotide recall values (0.86 and 0.84 respectively). The max-

imal mean contig recall, however, is reported for RNA-Bloom
(0.097), followed by Trinity (0.089), Trans-ABySS (0.087) and
rnaSPAdes (0.079). To compute contig metrics Detonate keeps
only the most reliable alignments with mapped fraction more
than 99% (for both assembled and reference sequence). In con-
trast, rnaQUAST assigns contigs to known genes/isoforms and
then counts ones that have at least X% covered by a single as-
sembled contig. However, no cuto� is applied for mapped frac-
tion of the assembled sequences in rnaQUAST. This di�erence
between algorithms might explain the absence of perfect cor-
relation between contig recall and number of 95%-assembled
isoforms.

Assembly correctness

According to the number of misassembled contigs, the most
accurate contigs are typically produced by SOAPdenovo-Trans,
Trans-ABySS and IDBA-tran (see Supplementary �gure S3d).
Among these three, IDBA-tran, however, produces the most
fragmented assemblies with the lowest average fraction of
95%-assembled genes equal to 0.18. Supplementary �gure S3d
also suggests that the highest numbers of misassemblies often
belong to BinPacker, Bridger, RNA-Bloom and Trinity.
IDBA-tran, usual SPAdes and SOAPdenovo-Trans tend to

provide assemblies with the smallest amount of duplicated se-
quences, which is con�rmed by rnaQUAST duplication ratio
(average values are 1.02, 1.02 and 1.07 respectively), percentage
of duplicated BUSCOs (0.8%, 1% and 4.7%), fraction of uncov-
ered bases reported by Transrate (0.018, 0.019 and 0.076) and
Detonate’s nucleotide precision (0.68, 0.66 and 0.66). High-
est contig precision equal to 0.133, however, belongs to rnaS-
PAdes, followed by 0.129 for SOAPdenovo-Trans. The most du-
plicated assemblies according to these metrics are produced by
RNA-Bloom, Trinity and BinPacker. In comparison to other
assemblers, they have signi�cantly higher mean duplication
ratio (2.5, 1.77 and 1.71 respectively) and fraction of duplicated
BUSCOs (40.6%, 31.4% and 29.7%), as well as lowest average
nucleotide precision (0.37, 0.46 and 0.46). As to rnaSPAdes,
according to duplication metrics and misassemblies, it neither
fails, nor dominates, showingmoderate average duplication ra-
tio of 1.32 and fraction of duplicated BUSCOs equal 16.7%.
Indeed, beside completeness-related metrics, such as num-

ber of assembled genes and isoforms, metrics discussed above
should be also considered during transcriptome quality evalua-
tion, since erroneous and duplicated sequences may negatively
a�ect further transcriptome analysis, such as gene annotation.

Read-based scores

According to the read-based scores reported by Transrate and
Detonate RSEM EVAL which represent how well the assembly
corresponds to the initial reads, rnaSPAdes also shows good
results. Regarding the average Transrate contig score, conven-
tional SPAdes has the highest average score equal to 0.31, fol-
lowed by IDBA-trans and SOAPdenovo-Trans both having 0.17,
and rnaSPAdes with 0.16. As to Detonate score, rnaSPAdes has
the best average (–3.45 · 109) with RNA-Bloom (–3.46 · 109)
and Trinity (–3.84 · 109) being slightly behind. RNA-Bloom
and Trinity, however, have the lowest Transrate average scores
among all tools (0.026 and 0.084 respectively). Vice versa,
SPAdes, IDBA and SOAPdenovo-Trans, which are the top three
assemblers according to mean Transrate score, have the low-
est three RSEM EVAL scores. Based on the complete quality
reports presented in the Supplementary material, it appears
that Transrate scoremostly correlates with correctness-related
metrics and is negatively a�ected by the presence of duplicated
sequences, which explains highest average score for standard
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SPAdes. In contrast, RSEM-EVAL score seems to correlate with
assembly completeness metrics.

Conclusion

Although every transcriptome assembler presented in this
study has its own bene�ts and drawbacks, the trade-o� be-
tween assembly completeness and correctness can be signi�-
cantly shifted by modifying the algorithms’ parameters. For
example, various thresholds for transcripts �ltration in rnaS-
PAdes (Table S14 in the Supplementary material) result in as-
semblies with di�erent properties. Also, varying k-mer size
or incorporating iterative de Bruijn graph construction in rnaS-
PAdes may signi�cantly a�ect the assembly quality (Tables S9-
S11 in the Supplementary material). Thus, the parameters of
the assembly algorithms can be varied in order to achieve the
desired completeness or correctness characteristics and make
the method to dominate by a certain group of metrics.
While the developed algorithm, rnaSPAdes, typically shows

stable results across analyzed RNA-Seq datasets and often al-
lows to capture more genes and isoforms than any other tool,
there is no clear winner according to all metrics. Thus, the se-
lection of the assembler may be varied depending on the goals
of the particular research project and the sample preparation
protocols being used, as well as secondary parameters, such
as usability and computational performance. Even with the
aid of specially developed tools, such as Transrate, DETONATE,
BUSCO and rnaQUAST, the choice of a suitable assembly tool re-
mains a non-trivial problem andmay require additional bench-
marks in each particular case.

Potential implications

Although the developed approach was initially designed for
RNA-Seq data obtained from a single organism, it can be poten-
tially applied for metatranscriptome assembly of samples col-
lected from bacterial communities. Indeed, metatranscriptome
assembly does not require reconstructing complex alternatively
spliced isoforms, but implies other computational challenges,
such as repetitive patterns in di�erent genes (including homol-
ogous genes from various strains) and extreme di�erences in
mRNA quantities [27, 28], which are caused by both — vary-
ing expression levels and abundances of di�erent species. Im-
proving the assembly algorithms, as well as designing an ap-
propriate pipeline for quality evaluation of metatranscriptomic
assemblies, are the possible further implications of this work.
Recently emerged long read protocols for mRNA sequencing

allow to capture full-length transcripts without the assembly
[29]. However, high error rate of Oxford Nanopore and PacBio
sequencers prevents using output reads directly as complete
transcripts. Typically, mapping to the reference genome, ad-
ditional error-correction by short accurate Illumina reads or
consensus construction is performed to obtain and further an-
alyze high-quality sequences [30, 31, 32, 33, 34]. Combining
rnaSPAdes with previously developed hybridSPAdes approach
for joint assembly of short and long reads [35] may result into
a viable alternative to the existing methods for processing long
error-prone RNA reads.
In addition, benchmarking reports presented in this work

can be used by the researchers for selecting the appropriate as-
sembly method that meets their speci�c criteria and for better
understanding of transcriptome assembly quality evaluation,
such as, for example, correlation of di�erent metrics.

Methods

Most of the modern de novo genome assembly algorithms for
short reads rely on the concept of the de Bruijn graph [36].
While the initial study proposed to look for an Eulerian path
traversing the de Bruijn graph in order to reconstruct genomic
sequences, it appeared to be rather impractical due to the pres-
ence of complex genomic repeats and sequencing artifacts,
such as errors and coverage gaps. Instead, genome assem-
blers implement various heuristic approaches, most of which
are based on coverage depth, graph topology and the fact that
the genome corresponds to one or more long paths traversing
through the graph [37, 14]. Indeed, the later observation is not
correct for the case of transcriptome assembly, in which RNA
sequences correspond to numerous shorter path in the graph.
Thus, to enable high-quality assemblies from RNA-Seq data
the majority of procedures in the SPAdes pipeline have to un-
dergo major alterations.
SPAdes genome assembler consists of the following major

steps: (i) construction of the condensed de Bruijn graph, (ii)
graph simpli�cation, which implies removing chimeric and er-
roneous edges, (iii) mapping read pairs to the assembly graph,
and (iv) repeat resolution and sca�olding using aligned paired
reads with exSPAnder algorithm [38, 39]. While graph con-
struction and mapping paired reads do not depend on the
dataset type and requires no change for RNA-Seq data, graph
simpli�cation and repeat resolution procedures strongly rely
on the properties of genomic sequences and thus require sig-
ni�cant modi�cations and novel functionality for de novo tran-
scriptome assembly. Below we describe the key changes intro-
duced in rnaSPAdes.

Simpli�cation of the de Bruijn graph in rnaSPAdes

During the graph simpli�cation stage erroneous edges are re-
moved from the de Bruijn graph based on various criteria in
order to obtain clean graph containing only correct sequences
(further referred to as an assembly graph). In the SPAdes
pipeline the simpli�cation process includes multiple various
procedures that can be classi�ed into three types: (i) trimming
tips (dead-end or dead-start edges), (ii) collapsing bulges (alter-
native paths) and (iii) removing erroneous connections (chimeric
and other false edges). In this section we present alterations
introduced in rnaSPAdes simpli�cation pipeline. We also pro-
vide comparison between initial and improved simpli�cation
procedures on several RNA-Seq datasets in the Supplementary
material (Table S10).
Trimming tips
In the de Bruijn graph constructed from DNA reads the major
fraction of tips (edges starting or ending at a vertex without
other adjacent edges) typically correspond to sequencing errors
and thus have to be removed. Since only a few tips are correct
and either represent chromosome ends or formed by coverage
gaps, the existing genome assemblers implement rather ag-
gressive tip clipping procedures [37, 13] assuming that cover-
age gaps appear rather rarely. However, in the de Bruijn graph
built from RNA-Seq data a signi�cant amount of tips corre-
spond to transcripts’ ends and thus have to be preserved. In
order to keep correct tips and obtain full-length transcripts,
rnaSPAdes uses lower coverage and length thresholds for tip
trimming procedure than SPAdes (see details below).
In some cases, tips originate from sequencing errors in mul-

tiple reads from highly-expressed isoforms and thus may have
coverage above the threshold. While genome assemblers may
also exploit relative coverage cuto� to remove such tips, in
transcriptome assembly this approach may result in trimming
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correct tips corresponding to the ends of low-expressed iso-
forms. However, erroneous tips typically have a small di�er-
ence from the correct sequence without errors (e.g. 1-2 mis-
matches). To address this issue, we align tips to the alter-
native (correct) edges of the graph (Fig. 3a) and trim them if
the identity exceeds a certain threshold (similar procedure is
implemented in truSPAdes, which was designed for True Syn-
thetic Long Reads assembly [40]). In case when two tips corre-
spond to the starts/ends of an alternatively spliced isoforms, it
is highly unlikely for them to have similar nucleotide sequences
(Fig. 3b). Such tips are preserved during graph simpli�cation
procedure thus allowing to restore isoforms that di�er only by
starting or terminating exons.
Another speci�cs of RNA-seq datasets is the large number

of low-complexity regions that originate from poly-A tails re-
sulting from polyadenylation at the ends of mRNAs. In order
to avoid chimeric connections and non-informative sequences,
we also remove low-complexity edges from the de Bruijn graph
(see exact criterion below).

e0
e1

e2
e0

e1

e2

a b

e1 e2
e

e′

e1 e2e

e′

c d

Figure 3. Examples of tips and bulges in the condensed de Bruijn graph. Edges
with similar colors have similar sequences; line width represents the coverage
depth. (a) Correct transcript (blue dashed line) traverses through edges e0 and
e1. Edge e2 is originated from the reads with the same sequencing error and
thus has coverage depth high enough not to be trimmed. However, since the
sequence of edge e2 is very similar to the sequence of the alternative edge e1
(detected by alignment), e2 is eventually removed as erroneous. (b) In this
case both paths (e0, e1) and (e0, e2) correspond to correct isoforms (blue and
red dashed lines). Since the sequences of e1 and e2 are likely to be di�erent,
none of the correct tips is removed. (c) Correct sequence (red dashed line) tra-
verses through edges e1, e and e2. Edge e′ is originated from reads containing
sequencing errors, and thus has sequence similar to e, but signi�cantly lower
coverage. (d) Both paths (e1, e, e2) and (e1, e′, e2) correspond to di�erent iso-
forms of the same gene (red and purple dashed lines); edges e and e′ typically
have di�erent length, coverage depth and sequence.

Below we summarize all conditions used in tip clipping pro-
cedure, parameters for which were optimized based on our
analysis of various RNA-seq datasets. We de�ne lT as thelength of the tip that is being analyzed and cT as its mean k-mer coverage, and cA as the k-mer coverage of the alternativeedge (which is presumably correct) A tip is removed if any of
the following conditions is true:
• l < 2 · k and cT ≤ 1 (short tips with very low coverage);• l < 4 · k, cT < cA/2 and the Hamming distance between thetip and the alternative edge does not exceed 3 (the tip con-
taining sequencing errors);

• the tip contains more than 80% of A/T nucleotides (low
complexity tip).

Collapsing bulges
A simple bulge (two edges sharing starting and terminal ver-
tices) in the de Burijn graph may correspond to one of the fol-
lowing events: (i) a sequencing error, (ii) a heterozygous muta-
tion or another allele di�erence, or (iii) an alternative splicing

event (typical for transcriptomic data). The �rst two cases are
characterized by the bulge edges having similar lengths and
sequences. However, edges formed by sequencing errors are
typically short and have signi�cantly di�erent coverage depth,
since it is unlikely for the same error to occur numerous times
at the same position (Fig. 3c). Vice versa, in the case of al-
lele di�erence bulge edges usually have similar coverage. Thus,
genome assembly algorithms for bulge removal typically rely
on the coverage depth [37, 13]. Since themost typical di�erence
between two alternatively spliced isoforms of the same gene is
the inclusion/exclusion of a an exon (usually short), edges of
the bulge originated from these isoforms have di�erent lengths
(Fig. 3d). At the same time, since the expression levels may
vary for such isoforms, the coverage depth may signi�cantly
di�er. To avoid missing alternatively spliced isoforms in the
assembly, rnaSPAdes does not use any coverage threshold for
bulge removal and collapses only bulges consisting of edges
with the similar lengths (less than 10% di�erence in length).
Removing chimeric connections
While undetected tips and bulges formed by sequencing er-
rors result in mismatches and indels in the assembled contigs,
chimeric reads (typically corresponding to a concatenation of
sequences from distant regions of the original molecules) may
trigger more serious errors, such as incorrect junctions in the
resulting contigs (often referred to as misassemblies). In con-
ventional genome assembly chimeric edges usually have low
coverage and thus can be easily identi�ed [37]. Single-cell
datasets, however, feature multiple low-covered genomic re-
gions and elevated number of chimeric reads, which result in
numerous erroneous connections having higher coverage depth
than correct genomic edges. Similarly, since true edges repre-
senting low-expressed isoforms in the transcriptome assem-
bly also have relatively low coverage depth, cleaning the graph
using coverage threshold will result in multiple missing tran-
scripts in the assembly.
To detect chimeric connections in single-cell assemblies

SPAdes implements various algorithms, which mostly rely on
the assumption that each chromosome corresponds to a long
contiguous path traversing through the de Bruijn graph [14].
Since this assumption does not hold for transcriptomes consist-
ing of thousands isoforms, we had to disable most procedures
for the chimeric edge detection in SPAdes and implement a new
erroneous edge removal algorithm that addresses the speci�cs
of chimeric reads in RNA-seq data sets.
Our analysis revealed that most of the chimeric connections

in RNA-seq data can be divided into two groups: single-strand
chimeric loops and double-strand hairpins. In the �rst case, a
chimeric junctions connects the end of a transcript sequence
with itself (Fig. 4a). The erroneous hairpin connects correct
edge with its reverse-complement copy (Fig. 4b) and poten-
tially may result in chimeric palindromic sequence in the as-
sembly. To avoid misassemblies, rnaSPAdes detects chimeric
loops and hairpins by analyzing the graph topology rather than
nucleotide sequences or coverage.
While it remains unclear whether these chimeric reads are

formed during transcription, RNA-seq sample preparation or
sequencing, similar chimeric connections have been observed
in the context of single-cell MDA. E.g., when a DNA fragment
is ampli�ed by MDA, the DNA polymerase moves along DNA
molecule and copies it, but sometimes (as described in [15]),
the polymerase may jump to a close position (usually on the
opposite DNA strand) and proceed to copy from the new posi-
tion.
Removing isolated edges
Another type of excessive edges that appear in the assembly
graph are isolated edges, i.e. that have no adjacent edges. They
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Figure 4. Examples of chimeric connections in the de Bruijn graph typical
for transcriptome assembly. Red and green indicate erroneous and correct
sequences respectively. (a) A chimeric loop (edge e2) connecting end of the
correct transcriptomic edge e1 with itself. (b) An example of chimeric hair-
pin, where erroneous edge e2 connects a correct edge e1 with its reverse-
complement copy ẽ1. Since e2 connects a vertex and its reverse-complement,
ẽ2 (the reverse-complement of e2) also connects these two vertices.

typically appear in the regions of extremely low-coverage (in-
cluding DNA contamination), where overlaps between neigh-
boring reads are smaller than k-mer size, or originate from
reads containing zero correct k-mers due to multiple sequenc-
ing errors. The �rst type of isolated edges can possibly be con-
nected with other edges by gap closing procedure (described
below). The second type, on the other hand, may result in ex-
cessive erroneous sequences in the assembly or even create am-
biguities during gap closing. Thus, during graph simpli�cation
we additionally remove isolated edges that have low coverage
(< 2) and have length smaller or equal to read length.
Selecting optimal k-mer sizes
One of the key techniques that allows SPAdes to assemble con-
tiguous genomic sequences from the data with non-uniform
coverage depth is the iterative de Bruijn graph construction.
During each next iteration, SPAdes builds the graph from the
input reads and sequences obtained at the previous iteration,
simpli�es the graph and provides its edges as an input to the
next iteration that uses larger k-mer size. Assembly graph
obtained at the �nal iteration is used for repeat resolution
and sca�olding procedures, which exploit read-pairs and long
reads [38, 35]. In this approach small k-mer sizes help to as-
semble low-covered regions where reads have short overlaps,
and large k values are useful for resolving repeats and therefore
obtaining less tangled graph. Although this method seems to
be useful for restoring low-expressed isoforms from RNA-Seq
data, our analysis revealed that it appears to be themain reason
of the high number of misassembled contigs in SPAdes assem-
blies. Below we describe how these false junctions are formed.
When two transcripts (possibly from di�erent genes) have

a common sequence in the middle, they form a typical repeat
structure in the de Bruijn graph (Fig. 5a), which may further
be resolved, e.g. using paired reads. However, if a common
sequence appears close to the ends of the transcripts (Fig. 5b),
edges e2 and e3 appear to be rather short and may be trimmedas tips (since coverage depth often drops near the transcripts
ends), or may not be present at all. In this case, the remaining
edges e1, e and e4 will be condensed into a single edge corre-sponding to chimeric sequence.
Indeed, since small k-mer size results in a higher chance of

creating such kind of chimeric junction, we decided to modify
the parameters for the iterative graph construction. In rnaS-
PAdes we decided to use only two k values: smaller one for
restoring low-covered regions with insu�cient overlaps be-
tween reads and larger one for obtaining less tangled graph.
To estimate the optimal k values, we ran rnaSPAdes on sev-

eral RNA-Seq datasets with various read lengths sequenced
from organisms with di�erent gene complexity. Since it re-
quires tremendous amount of time to try all possible pairs of
k-mer sizes on multiple datasets, we �rst estimated upper k
value used for the main iteration, and then selected lower k
with the �xed upper one.

Transcript 1

Transcript 2

e1 e2

e3 e4

e

Contig 1

Contig 2

Transcript 1

Transcript 2

e1
e2

e3
e4

e
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Figure 5. Examples of two transcripts having a common sequence (a) in the
middle of the transcripts and (b) close to the start of one transcript and the
end of another. While in the �rst case the isoforms can be resolved using read-
pairs, the latter one may potentially result in a chimeric contig.

We assembled a number of datasets using only a single k-
mer size and selected the best assemblies according to num-
ber of assembled genes, database coverage and number of mis-
assemblies. Although it may be not possible to choose a sin-
gle best k value simultaneously for multiple datasets, nearly
optimal k-mer size was estimated as half of the read length
(more precisely, the largest odd number that does not exceed
read_length/2– 1). The smaller k value was estimated in a sim-
ilar manner with the �xed upper k-mer size. Optimal lower k
was considered based on number of additional assembled genes
and misassemblies. Experiments showed that small k values
(e.g. below 29) tend to dramatically increase the number of
erroneous contigs due to the higher probability of two tran-
scripts sharing the same k-mer. Thus, the lower k-mer size
was estimated approximately as read_length/3 with the mini-
mal possible value set to 29. Although estimated k values may
not provide the best assembly for every dataset, they typically
appear to be a good trade-o� between the number of recovered
genes and generated errors (see Supplementary Tables S7-S9).
In this work rnaSPAdes was launched with the default k val-

ues. Indeed, rnaSPAdes keeps the possibility to set the k-mer
sizes manually. In addition, we introduced the ––fast option,
which forces the assembler to use only a single k value (the op-
timal upper k). Typically, assemblies obtained with a single k
capture fewer genes and isoforms (especially low-covered), but
also have smaller number of misassembled contigs (see Supple-
mentary material for comparison).
In order to preserve correct connections that could be re-

stored using only small k-mer sizes, we carefully examined
low-expressed transcripts that were not completely assembled
using default k-mer sizes. The analysis revealed that the ma-
jority of such fragments can be joined by the small overlap,
which is often con�rmed by the read-pairs. To perform the
gap closing procedure rnaSPAdes glues two tips if one of the
following conditions is true:
• tips have an exact overlap of length at least Lov and are con-nected by at least Nov read pairs;• tips are connected by at least Nmin read pairs.
where the default parameters are Lov = 8 bp, Nov = 1 and
Nmin = 5. Although these parameters seem to be slightly ad-
hoc, such gap closing procedure appears to be a viable alter-
native to using small k values and allows to restore more low-
expressed transcripts without increasing the number of misas-
semblies. Using smaller thresholds for gap closing often create
false connections and increase the amount of erroneous tran-
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scripts, while larger values for these parameters result in a
smaller increase of reconstructed sequences.

Isoform reconstruction

Adapting repeat resolution algorithms
Genomic repeats present one of the key challenges in the de
novo genome assembly problem. Although mRNA sequences
typically do not contain complex repeats, transcriptome assem-
bly has a somewhat similar problem of resolving alternatively
spliced isoforms and transcripts from paralogous genes. Re-
peat resolution and sca�olding steps in SPAdes genome assem-
bler are implemented in the exSPAnder module [38], which
is based on simple path-extension framework. Similar to
other modules of SPAdes, exSPAnder was designed to deal with
highly uneven coverage and thus can be adapted for isoform de-
tection procedure when assembling RNA-Seq data.
The key idea of the path-extension framework is to itera-

tively construct paths in the assembly graph by selecting the
best-supported extension edge at every step until no extension
can be chosen. The extension is selected based on the scoring
function that may exploit various kinds of linkage information
between edges of the assembly graph (di�erent scoring func-
tions are implemented for di�erent types of sequencing data).
A situation when a path cannot be extended further is usually
caused by the presence of long genomic repeat or a large cover-
age gap. The extension procedure starts from the longest edge
that is not yet included in any path and is repeated until all
edges are covered.
More formally, a path extension step can be de�ned as fol-

lows. For a path P and its extension edges e1, . . . , en (typically,edges that start at the terminal vertex of P) the procedure se-
lects ei as a best-supported extension if
i. ScoreP(ei) > C · ScoreP(ej) for all j 6= iii. ScoreP(ei) > Θ

where C and Θ are the algorithm parameters, and ScoreP(ei) isa score of edge ei relative to path P (described in [38]).
In contrast to genome assembly, in which there is usually

only one true extension edge, in transcriptome assembly mul-
tiple correct extensions are possible due to the presence of al-
ternatively spliced isoforms. Thus, the modi�ed procedure is
capable of selecting several edges ek1 , . . . ekm among all possibleextensions e1, . . . , en, which satisfy the following conditions:
i. ScoreP(eki ) > ScoreP(eM)/C for all i = 1 . . .m,
M = argmaxj=1..nScoreP(ej)ii. ScoreP(eki ) > Θ for all i = 1 . . .m

Namely, all correct extension edges must have a score close to
the maximal one (C = 1.5 by default), and the second condition
remains the same. Afterwards, the algorithm extends path P
by creating new paths (P, ek1 ), . . . , (P, ekm ), which are then ex-tended independently. Since the scoring function implemented
in exSPAnder does not strongly depend on the coverage depth,
there is no danger that highly-expressed isoforms will be pre-
ferred over the low-expressed ones.
Finally, to avoid duplicating sequences in the genome as-

semblies, exSPAnder performs rather aggressive overlap re-
moval procedure. However, since alternatively spliced iso-
formsmay di�er only by a short exon, in order to avoid missing
similar transcripts themodi�ed overlap detection procedure re-
moves only exact duplicates and sub-paths.

Exploiting coverage depth

Varying coverage depth may seem to be an additional chal-
lenge for de novo sequence assembly, but can be also used as
an advantage in some cases. For instance, if two alternatively
spliced isoforms of the same gene have di�erent expression
levels, they can be resolved using coverage depth even when
the read-pairs do not help (e.g. shared exon is longer than
the insert size). Although using coverage values becomes more
complicated when a gene has multiple di�erent expressing iso-
forms, our analysis of several RNA-Seq datasets revealed that
such cases are rather rare and most of the genes have one or
two expressing isoforms within a single sample.
To exploit the coverage depth we decided to add a simple,

but reliable path-extension rule. Let the path P = (e1, e2, e3)have extension edges e and e′ (Fig. 6a), such that cov(e) >
cov(e′) and cov(e2) > cov(e′2) , where cov(e) denotes the k-mercoverage of edge e. To select a correct extension the algorithm
detects a vertex closest to the end of path P that has two in-
coming alternative edges, one of which is included in P and
another is not (e2 and e′2 in this example). Since edge e2 ∈ Phas higher coverage than the alternative edge e′2 /∈ P, we selectextension edge e as the one with the higher coverage. How-
ever, if both isoforms have similar coverage, this simple ap-
proach may chose a false extension (since the coverage depth
is rarely perfectly uniform even along a small region). Thus
the di�erence in coverage should be signi�cant enough to dis-
tinguish between the isoforms. More formally, the following
conditions should be satis�ed:
i. cov(e) > ∆ · cov(e′)
ii. cov(e2) > ∆ · cov(e′2)iii. Ω > cov(e2)/cov(e) > 1/Ωiv. cov(e) > Cmin

where the default values of the algorithm parameters are∆ = 2,
Ω = 10 and Cmin = 2. The �rst two conditions ensure thatthe extension edges (e and e′) and alternative edges (e2 and
e′2) have signi�cant coverage di�erence, the third one requiresthe coverage depth to remain relatively persistent along the
path and the latter one prevents the algorithm from resolving
low-covered isoforms (which may result in a misassembly). In
general case, this procedure also utilizes only the last pair of
alternative edges, and is applied only in case when the path
has two possible extension edges and conventional read-pair
extender fails to extend the path.
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Figure 6. Using coverage depth for isoform reconstruction. Line width repre-
sents conventional and strand-speci�c coverage depths in �gures (a) and (b)
respectively. (a) Two isoforms of the same gene (red and blue dashed lines)
have di�erent expression levels and thus can be resolved using coverage depth.
(b) Two transcripts T1 and T2 (red and blue bold dashed lines respectively) share
a reverse-complement sequence and thus can be resolved using strand-speci�c
reads.



10 | GigaScience, 2019, Vol. 00, No. 0

Assembling strand-speci�c data
Another possible way to improve a transcriptome assembly
is to take the bene�t of strand-speci�c data when provided.
To utilize stranded RNA-Seq we introduce strand-speci�c cover-
age depths cov+(e) and cov–(e), which denote k-mer coverage
of edge e by forward and reverse reads respectively. As op-
posed to the conventional coverage cov(e), which is calculated
by aligning all reads and their reverse-complement copies to
the edges of the assembly graph (thus making cov(e) = cov(ẽ)),
strand-speci�c coverage is obtained by mapping reads accord-
ing to their origin strand. For instance, if an RNA-Seq library
is constructed in such way that reads have the same strand as
the transcript which they were sequenced from (sense/forward
reads), we expect cov+(e) to be much higher than cov–(e) if the
sequence of e corresponds to the transcript, and vice versa if e
is the reverse-complement of the original transcript. Indeed,
the situation becomes opposite when reads are sequenced from
cDNAs that are reverse-complement to the original transcripts
(anti-sense/reverse reads). When working with paired-end li-
braries, we assume that the type of the library is de�ned by the
�rst read’s strand (i.e. forward-reverse or reverse-forward).
Thus, the second read in pair is reverse-complemented before
mapping in order to match the strand of the �rst read.
To extend the paths we apply the same path-extension

procedure described above for conventional coverage, but use
strand-speci�c coverage values instead. Fig. 6b demonstrates
a situation, when two transcript correspond to paths T1 =(e1, e, e2) and T2 = (ẽ4, ẽ, ẽ3). If the repetitive edge e is longerthan the insert size and the conventional coverage depth of
these two transcripts is similar, the situation cannot be resolve
neither by paired reads, nor by coverage. However, in case of
stranded data, strand-speci�c coverage for actual transcripts’
paths will be much higher than for their reverse-complement
copies, i.e. cov+(T1) >> cov+(T̃1) and cov+(T2) >> cov+(T̃2) (inthis example we assume that reads have the same stand as the
transcripts they come from). Moreover, edges corresponding
to the reverse-complement sequences only (ẽ1 and ẽ2 for T̃1, e3and e4 for T̃2) will have cov+(e) values close to zero. There-fore, the conditions given for coverage-based path extender
(see previous subsection) will be satis�ed for strand-speci�c
coverage values, the repetitive edge e will be resolved and both
transcripts will be reconstructed.
To avoid collapsing transcripts from the opposite strands

that share common sequences at their ends, we also split edges
that have signi�cantly di�erent strand-speci�c coverage val-
ues at their ends. More formally, edge e is splitted at position
p if cov+(e[0, p]) >> cov–(e[0, p]) and cov–(e[p + 1, length(e]) >>
cov+(e[p + 1, length(e]) (or vise versa), where e[i, j] is de�ned as
a region of edge e starting from i and ending at j.
In addition, for stranded RNA-Seq data we output the paths

constructed by the exSPAnder algorithm according to the orig-
inal transcript’s strand. E.g. in the example given in Figure 6b
rnaSPAdes will output paths T1 and T2, since they have higherstrand-speci�c coverage than their reverse complement copies
(T̃1 and T̃2 respectively).
Filtering assembled transcripts
Before outputting the paths constructed by the exSPAndermod-
ule as contigs, we additionally apply various �ltering proce-
dures in order to remove non-mRNA contigs, such as inter-
genic sequences, which often contaminate RNA-Seq datasets.
Our analysis showed that the majority of such unwanted se-
quences have low coverage, relatively small length and often
correspond to isolated edges in the assembly graph. However,
applying �lters based on these criteria may also remove correct
low-expressed transcripts in some cases. Thus, we decided to
implement three di�erent presets of parameters for the �ltra-
tion procedure (soft, normal and hard) and output three �les

with contigs (see exact parameters in the Supplementary Table
S12). Depending on the project goal the researcher may choose
more sensitive (soft �ltration) or more speci�c results (hard �l-
tration). Table S13 in the Supplementary material shows how
the assembly quality depends on the �ltration parameters. In
other tables we use default transcripts with the normal level of
�ltering.

Software availability

Project name: rnaSPAdes
Project home page: cab.spbu.ru/software/rnaspades/,
github.com/ablab/spades
Operating systems: Linux and MacOS
Programming language: C++, Python
Other requirements: no requirements for pre-compiled bina-
ries; g++ 5.3.1+, cmake 2.8.12+, zlib and libbz2 are required
for compiling from source code
License: GPLv2
RRID: SCR_016992

Availability of supporting data and materials

All real RNA-Seq datasets are available at short read archive
(https://www.ncbi.nlm.nih.gov/sra) with the following acces-
sion numbers
• Human: SRR5133163
• Human large: SRR1957703, SRR1957706
• Mouse: SRX648736
• Worm: SRR1560107
• Corn: SRR1588569
• Arabidopsis: SRR5344669, SRR5344670
Simulated data is available on the server

• H. sapiens: http://spades.bioinf.spbau.ru/rnaspades/
simulated_data/human/

• M. musculus: http://spades.bioinf.spbau.ru/rnaspades/
simulated_data/mouse/
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