


**Figure S1. Disc and wing phenotypes induced by** *tai* and a panel of growth regulators. **Related to Figure 1.** (**A-B**) 12hr APF pupal wing discs imaged through the pupal case of wild-type control and *MS0196>tai* animals. Dotted line indicates the edge of the operculum. (**C**) Overexpression or RNAi depletion of candidate factors using either the *MS1096* or *nubbin* Gal4 drivers. Percentage of embedded wingtips at eclosion and number of wings scored (n) are indicated. (**D-E**) Thin-sections of resin-embedded *MS1096>+* or *MS1096>tai* adult flies stained with toluidine blue. Red arrows in (**E**) indicate large vesicular cells near location of wing entry. (**F-G**) Cryosection of 18hr APF *MS1096>tai*, *GFP* animal stained with anti-βgal (greyscale) to detect *diap1-lacZ* expression. Arrows denote embedded GFP (green) tissue that expresses *diap1-lacZ*.

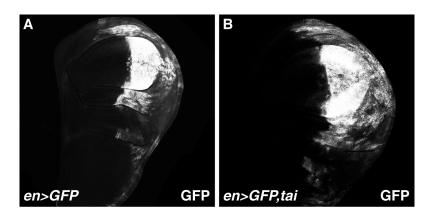



Figure S2. Larval *en>tai* wing discs used for RNA-seq analysis are overgrown. Related to Figure 3. To-scale images of control (A) *en>GFP* and (B) *en>GFP*, tai larval wing discs showing overgrowth of the posterior (GFP+) domain

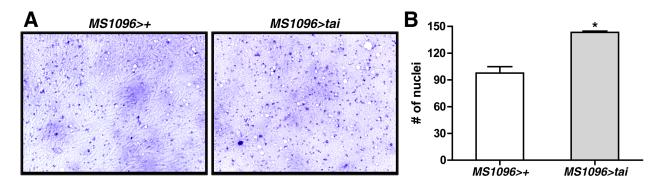



Figure S3. *tai* expression in wing tissue increases hemocyte numbers. Related to Figure 4. (A) Diff-quik<sup>TM</sup> staining (a modified Giemsa stain that highlights nuclei; refer to STAR methods section) of hemocytes from larval bleeds of control MS1096>+ (left) and MS1096>tai (right) animals. (B) Quantification of hemocyte nuclei per field (n=7; \* p<0.05).

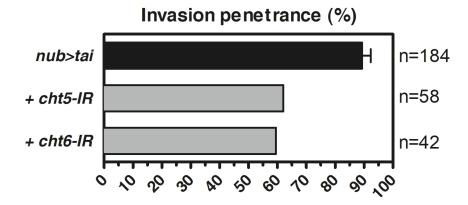



Figure S4. Suppression by chitinase RNAi expression in *nub>tai* wing cells. Related to Figure 5. Penetrance (%) of *nub>tai* wing invasion in the background of *UAS-RNAi* lines to *cht5* or *cht6* (n=number of wings counted). Control *nub>tai* is indicated by black fill.

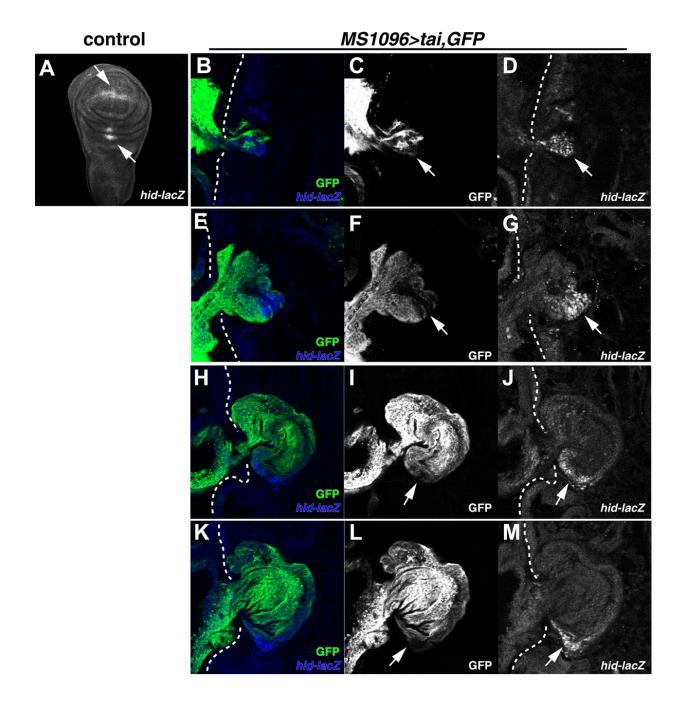



Figure S5. hid-lacZ marks cells at the tip of invading wing tissue. Related to Figure 6. (A) Confocal image of control MS1096>+ larval wing disc stained with anti-βgal (greyscale) to detect expression of hid-lacZ. Arrows denote hid-lacZ-positive cells located along the DV margin in the pouch (top) and in the dorsal hinge (bottom). (B-M) Cryosections from MS1096>tai,GFP, hid-lacZ animals imaged for GFP fluorescence (green in B,E,H,K; greyscale in C,F,I,L) and anti-βgal (blue in B,E,H,K; greyscale in D,G,J,M) showing position of hid-lacZ expressing cells (arrows) during sequential stages of invasion into the thorax. Dotted line indicates the thoracic cuticle.

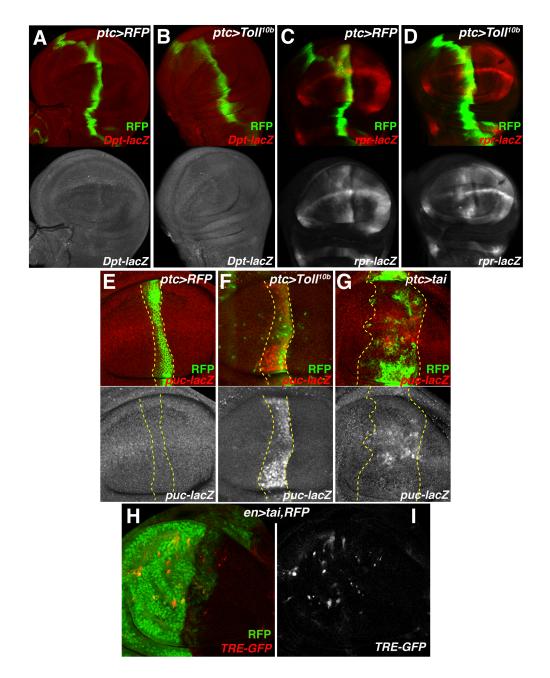



Figure S6. Effects of  $Toll^{10b}$  and tai on transcriptional reporters in L3 wing disc cells. Related to Figure 7. Dpt-LacZ (A-B) and rpr-lacZ (C-D) expression in (A,C) ptc>RFP control and (B,D)  $ptc>Toll^{10b}$  L3 wing discs. puc-lacZ expression in (E) ptc>GFP control, (F)  $ptc>UAS\text{-}Toll^{10b}$ , GFP, (G) ptc>tai, GFP L3 wing discs. Note induction of puc-lacZ in tai-expressing cells in the center of the pouch. (H) Tre-GFP-16 expression in en>tai, RFP discs. RFP is false-colored green and GFP is false-colored red.

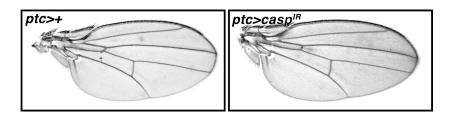



Figure S7. The effect of *ptc-Gal4* driven expression of  $casp^{IR}$  on adult wing development. Related to Figure 7. Adult wings of ptc>Gal4 control and  $ptc>casp^{IR}$ .

| Suppressors    | Strength | Gene(s) confirmed for effect |
|----------------|----------|------------------------------|
| Df(2R)Exel6061 |          | -                            |
| Df(2R)Exel6069 |          | -                            |
| Df(2R)BSC152   | Ī        | -                            |
| Df(2L)BSC169   |          | -                            |
| Df(2L)BSC180   |          | -                            |
| Df(2R)BSC199   | +++      | -                            |
| Df(2L)BSC278   |          | cact                         |
| Df(2L)BSC291   |          | pvf2, pvf3                   |
| Df(2R)BSC595   |          | -                            |
| Df(2R)BSC661   |          | -                            |
| Df(2L)Exel7011 | ++       | -                            |
| Df(2R)Exel7131 |          | -                            |
| Df(2R)Exel7144 |          | -                            |
| Df(2R)Exel7162 |          | -                            |
| Df(2L)BSC109   |          | -                            |
| Df(2R)BSC161   |          | -                            |
| Df(2R)BSC280   |          | myd88                        |
| Df(2R)BSC383   |          | -                            |
| Df(2L)Exel6038 |          | -                            |
| Df(2R)Exel6284 |          | -                            |
| Df(2L)Exel7034 |          | -                            |
| Df(2R)BSC135   |          | -                            |
| Df(2L)BSC148   |          | dl                           |
| Df(2L)BSC149   |          | -                            |
| Df(2L)BSC172   | +        | -                            |
| Df(2L)BSC188   |          | -                            |
| Df(2R)BSC274   |          | -                            |
| Df(2L)BSC277   |          | -                            |
| Df(2R)BSC267   |          | -                            |
| Df(2R)BSC331   |          | -                            |
| Df(2R)BSC485   |          | -                            |
| Df(2R)BSC550   |          | -                            |
| Enhancers      | Strength | Gene(s) confirmed for effect |
| Df(2L)C144     | +++      | -                            |
| Df(2R)M60E     |          | -                            |
| Df(2L)BSC6     |          | -                            |
| Df(2L)ED19     |          | -                            |
| Df(2R)ED2457   |          | -                            |
| Df(2R)ED1715   |          | -                            |
| Df(2R)ED3728   |          | hpo                          |
| Df(2L)ED105    |          | ds                           |
| Df(2R)BSC630   |          | -                            |

**Table S1. Deficiencies that dominantly modify** *tai***-driven wing invasion. Related to Figures 2, 3, and 5.** Table of BDSC or Exelixis deficiency (Df) stocks that dominantly modify the MS1096 > tai phenotype. Strength of modification: +++ strong, ++ moderate, +mild. Where noted in column 3, suppressive effects were mapped to specific genes using available alleles.

| REAGENT or RESOURCE                                                          | SOURCE                         | IDENTIFIER |
|------------------------------------------------------------------------------|--------------------------------|------------|
| Primer pair for <i>spz</i> : GGAAGCTGGTGTACCCAAAA, GTCCAGTTCGCCATCACTTT      | Integrated DNA<br>Technologies | N/A        |
| Primer pair for <i>spz4</i> : CACAGTTGGGGCTTCGTAAT, GATGCGGGTGAGTACTTGGT     | Integrated DNA<br>Technologies | N/A        |
| Primer pair for <i>spz6</i> : TTCAGGCACGCTGTCACTAC, TGCCCTCTTCTGCAGGTACT     | Integrated DNA<br>Technologies | N/A        |
| Primer pair for <i>cht5</i> : CCAGGTCCTGTTCCAACTGT, ATCTCGTTGGGATCGAACTG     | Integrated DNA<br>Technologies | N/A        |
| Primer pair for <i>cht6</i> : TCAGCGAAGCTTCAGAGACA. CAATTTTTCAATGCCCTCGT     | Integrated DNA<br>Technologies | N/A        |
| Primer pair for <i>PGRP-LD</i> : TCGGCACACTGAACTTCTTG, TCTTCCAGCGAAGAAGAAA   | Integrated DNA<br>Technologies | N/A        |
| Primer pair for <i>PGRP-LC</i> : GCTCAACGATTCGAAATTGG, GGGCGGTACATTATTTTTCGT | Integrated DNA<br>Technologies | N/A        |
| Primer pair for <i>tai</i> : CTCCGTTTGGCTCTAACTCG, TGTTGTTGCAGCGTTCTACC      | Integrated DNA<br>Technologies | N/A        |
| Primer pair for <i>rpr</i> : ACGGGGAAAACCAATAGTCC, TGGCTCTGTGTCCTTGACTG      | Integrated DNA<br>Technologies | N/A        |
| Primer pair for <i>hid</i> : CTAAAACGCTTGGCGAACTT, CCCAAAAATCGCATTGATCT      | Integrated DNA<br>Technologies | N/A        |
| Primer pair for <i>puc</i> : GTTTCTGAAGCCACCTCTGC, GTTTTCGCTTTGTGGTTGGT      | Integrated DNA<br>Technologies | N/A        |
| Primer pair for <i>rp49</i> : CGGATCGATATGCTAAGCTGT, GCGCTTGTTCGATCCGTA      | Integrated DNA<br>Technologies | N/A        |
| Primer pair for <i>edg78e</i> : GCGGCCAGTCATTGTTATTT. CATCCGCCTGAAATTTGTTT   | Integrated DNA<br>Technologies | N/A        |
| Primer pair for <i>cpr100A</i> : AAGTTCGGAGCTGCCTATGA, GGCAAGTGATCTCCAGAAGC  | Integrated DNA<br>Technologies | N/A        |
| Primer pair for <i>fiz-f1</i> : TGATCGACTTCAAGCACCTG, CTCGAGGCACTTCTGGAATC   | Integrated DNA<br>Technologies | N/A        |
| Primer pair for <i>dilp8</i> : GCTGGTCATCGGAGTCTGTT, TAGCTGCTTCGGCTGATGT     | Integrated DNA<br>Technologies | N/A        |

**Table S4. Sequences of DNA primers for qPCR. Related to Figure 3.** Pairs of DNA sequences (listed 5'-to-3') used to assay expression levels of the corresponding mRNAs.

## **Supplemental Reference**

S1. Colombani, J., Andersen, D.S., and Leopold, P. (2012). Secreted peptide Dilp8 coordinates Drosophila tissue growth with developmental timing. *Science* 336, 582-585.