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This statistical supplement provides further details of the DAGs analysis and the pairwise plots of the causal 

effects between all variables. The R code for our analysis is available on request.  

Directed Acyclic Graphs (DAGs) analysis 

The DAGs analysis is described in the main paper. For readers with a statistical background, the analysis 

used the partition MCMC algorithm of Kuipers and Moffa1 applied to the covariance matrix of the 

transformed data. Partition MCMC is a search and score method that samples DAG structures using the 

Bayesian Gaussian equivalent (BGe) score. BGe scores represent the marginal likelihood of each DAG 

model under a Wishart prior on the parameters. This formulation implies that the posterior distribution is 

also Wishart, and the marginal likelihood of the model can be calculated in closed form. This allows 

calculation, up to a normalising constant, of the posterior probability of each DAG structure. Once the 

DAGs have been sampled, we are able to obtain posterior samples of the covariance matrix using the 

posterior inverse Wishart distribution.  

Although the analysis followed the approach of Moffa et al.2, there were some differences in our approach.  

Principally, we did not dichotomise the data, but rather mapped the values of each variable to the quantiles 

of a standard normal distribution.  The causal effects we estimate are therefore on the scale of z-scores 

representing standard deviations in the standardised space. This approach is in line with the nonparanormal 

approach of Liu et al.3  Note that since our data are counts including ties we can only approximate to the 

multivariate Gaussian distribution. However, this approximation to a continuous distribution is reasonable 

given that most observations took distinct values. 

A note on equivalence classes in DAGs 

Statistically, a DAG model assumes that the joint distribution of all random variables factorises according 

to the structure of the graph:  

 

 

In words, the distribution of each variable only depends upon its parents in the graph.  Since this 

factorisation places restrictions on the joint probability distribution of the variables, it is possible to learn 

the underlying DAG from observed patterns in the data. However, in some cases different causal models 

imply the same conditional independence relationships between the variables. The simplest case is that the 

two graphs 𝑋 → 𝑌 and 𝑋 ← 𝑌 cannot be distinguished. More generally, it will occur when two graphs have 

the same adjacent pairs of nodes, and the same v-structures: these are pairs of edges of the form 𝑋 → 𝑍 ← 𝑌, 

where X and Y are not joined by an edge directly.  Such DAGs form a Markov equivalence class and cannot 

be distinguished from the patterns of dependence and independence within the data. As a result, it is not 
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possible to learn the direction of all causal links 

within a set of variables.  As an example, the three 

graphs (b), (c) and (d) in the figure on the right are all 

Markov equivalent, while graph (a) is not Markov 

equivalent to the others because it contains a v-

structure4. 

A note on independence in DAGs 

To describe the independences implied by a directed acyclic graph model we need some additional 

terminology. Given two nodes X and Y, we say that Y is a descendant of X if there is a sequence of edges 

directed from X to Y.  For example, 𝑋 → 𝐴 → 𝑌 or 𝑋 → 𝑌.  Otherwise Y is a non-descendant of X.  We can 

think of a descendant as being something that happens ‘later’, in a causal sense, because it is affected by 

what happens now.  Formally, a DAG model implies that each node is independent of its non-descendants 

once its parents have been controlled for.  In other words, once the immediate parents are known, no 

further information about a node can be gained from its ‘past’. 

As an example, consider the DAG on the right, adapted from 

Lauritzen and Spiegelhalter.5 This graph represents the 

relationship between three diseases (tuberculosis, lung cancer and 

bronchitis), two risk factors (smoking and a recent visit to Asia), 

and two symptoms (a shadow on an x-ray and a cough).  

Following the rule above we can deduce that, under the 

associated model, the risk of lung cancer is independent of the 

risk of tuberculosis and bronchitis, once smoking status has been taken into account.   

Interpretation of credible intervals 

The 90% credible intervals used for causal effects in Table 2 of the main paper only include the sampled 

graphs in which the relevant causal pathway was present. Hence, they should be interpreted conditionally 

on the existence of such a pathway.  Consider the causal effect of body image on paranoia.  A causal pathway 

was present from body image to paranoia in 46% of graphs, a pathway in the other direction in 45% of 

graphs, and no pathway in the remaining 9%.  Within the 46% of graphs in which the pathway was present, 

the average causal effect was 𝑧𝑡 = −0.21, with 90% credible interval from   –0.49 to –0.01.  Note that an 

overall credible interval for this causal effect across all graphs would certainly include zero, since this happens 

in 54% of sampled graphs.  Such an interval is potentially misleading, since its values would be unstable if 

the proportion of graphs in which the pathway were present was close to 95%. Of those graphs containing 

some causal pathway from body image to paranoia, 44% included the direct edge from body image to 

paranoia; the strength of the edge in those graphs (now only 20% of total sampled graphs) was 𝑧𝑑 = −0.05, 

with 90% credible interval (–0.15, 0.00).  
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Pairwise causal plots  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. Plots of the average total causal effects for each variable on every other variable.  

z scores of the causal effect is shown on each plot. Red dotted line indicates zero causal effect. Red plots 

indicate a significant directed causal effect.   SM = social media. SM Safety = social media safety-seeking 

behaviours.    
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