SUPPORTING INFORMATION

Complete oxidation of hydroxymethylfurfural to furandicarboxylic acid by aryl-alcohol oxidase

Ana Serrano¹, Eva Calviño², Juan Carro¹, Marisa I. Sánchez-Ruiz¹, F. Javier Cañada² and Angel T. Martínez¹

 ¹ Biotechnology for Lignocellulosic Biomass, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
 ² NMR and Molecular Recognition, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain

Supporting information includes H_2O_2 effect on oxidation of furfurals (**Table S1**), Kinetic parameters of AAO variants (**Table S2**), Sequences of PCR primers (**Table S3**), Spectroscopic properties of AAO variants (**Table S4**), Effect of low H_2O_2 concentrations on FFCA oxidation (**Fig. S1**), Evolution of HMF, DFF and FFCA controls along time (**Fig. S2**), ¹H-NMR spectra of furfural standards (**Fig. S3**), NMR time-course of HMF reactions (**Fig. S4**), Surface access to AAO active site (**Fig. S5**), Active site of native AAO and ten variants (**Fig. S6**), and HPLC analyses of furfural standards (**Fig. S7**).

$HMF \xrightarrow{k_1} DFF \xrightarrow{k_2} FFCA \xrightarrow{k_3} FDCA$								
Furfural	[H ₂ O ₂] (mM)	<i>k</i> ₁ (h⁻¹)	<i>k</i> ₂ (h⁻¹)	<i>k</i> ₃ (h ⁻¹)	Activity (%) ^a			
HMF^{b}	0	2.54 ± 0.03	1.38 ± 0.17	n.d. ^e	93			
	1.5	2.61 ± 0.05	1.13 ± 0.06	n.d.	98			
	3.0	2.57 ± 0.02	1.07 ± 0.05	n.d.	96			
	6.0	2.65 ± 0.02	1.22 ± 0.06	n.d.	90			
DFF℃	0		1.23 ± 0.05	n.d.	99			
	1.5		1.30 ± 0.03	n.d.	95			
	3.0		1.30 ± 0.03	n.d.	83			
	6.0		1.34 ± 0.07	n.d.	99			
$FFCA^{d}$	0			0.016 ± 0.002	15			
	1.5			n.d.	32			
	3.0			n.d.	33			
	6.0			n.d.	30			

Table S1. H₂O₂ effect in the reaction rates and AAO residual activities oxidizing furfurals

^a Residual activity measured after 6 h and 7 d of HMF/DFF and FFCA reactions, respectively ^a k_1 and k_2 were calculated from equation $[DFF] = [HMF]_0(\frac{k_1}{(k_2-k_1)})(e^{-k_1t} - e^{-k_2t})$ ^b k_2 was calculated from equation $[DFF] = [DFF]_0e^{-k_2t}$ ^c k_3 was calculated from equation $[FFCA] = [FFCA]_0e^{-k_3t}$ ^e n.d.: Reaction not detected

r	HMF				DFF	k _{cat} ^{DFF} / k _{cat} ^{HMF}		
	<i>k</i> _{cat} (min⁻¹)	K _m (mM)	k _{cat} /K _m (min⁻¹mM⁻¹)	<i>k</i> _{cat} (min ⁻¹)	K _m (mM)	k _{cat} /K _m (min⁻¹mM⁻¹)	<pre>¬ (relative to AAO)</pre>	
AAO^{b}	20.1 ± 0.6	1.6 ± 0.2	12.9 ± 1.2	31.4 ± 0.7	3.3 ± 0.2	9.4 ± 0.5	1.56 (1)	
H91N	419.0 ± 14.0	7.3 ± 0.7	57.2 ± 5.9	256.0 ± 15.0	14.5 ± 1.5	17.6 ± 2.1	0.61 (0.39)	
H91S	8.9 ± 0.2	5.1 ± 0.3	1.7 ± 0.1	26.3 ± 1.7	11.6 ± 2.3	2.3 ± 0.5	2.96 (1.89)	
Y92F	278.0 ± 16.0	47.8 ± 8.5	5.8 ± 0.7	325.0 ± 9.0	39.3 ± 2.9	8.2 ± 0.4	1.17 (0.75)	
Y92L	59.8 ± 2.7	6.6 ± 0.9	9.1 ± 1.4	109.0 ± 4.0	16.3 ± 1.7	6.7 ± 0.7	1.82 (1.17)	
F397Y	109.0 ± 3.0	1.4 ± 0.2	76.8 ± 10.2	287.0 ± 8.0	7.0 ± 0.6	41.0 ± 3.7	2.63 (1.69)	
1500A	4.4 ± 0.2	2.6 ± 0.5	1.7 ± 0.3	21.2 ± 1.3	3.3 ± 0.7	6.4 ± 1.4	4.82 (3.08)	
1500M	4.3 ± 0.1	1.7 ± 0.2	2.6 ± 0.3	23.1 ± 1.2	5.4 ± 0.8	4.3 ± 0.7	5.37 (3.44)	
F501H	44.3 ± 0.8	16.2 ± 0.9	2.7 ± 0.2	737.0 ± 55.0	3.5 ± 0.7	214.0 ± 44.0	16.64 (10.65)	
F501W	211.0 ± 6.0	12.9 ± 0.9	16.4 ± 1.2	36.7 ± 3.5	16.8 ± 2.8	2.2 ± 0.4	0.17 (0.11)	
I500M/ F501W	6.3 ± 0.1	0.7 ± 0.1	8.7 ± 0.7	37.2 ± 0.6	5.0 ± 0.3	7.4 ± 0.4	5.90 (3.78)	
^a Reactions in 50 mM sodium phosphate, pH 6.0, at 25°C								

Table S2. Kinetic parameters for the oxidation of HMF and DFF by native AAO and different mutated variants^a

phosphate, pH 6.0, a

^b From Carro *et. al.* [1]

Table S3. Forward primers used for PCR mutagenesis and corresponding templates^a

	Template			Pr	imer (5'	-3')				
H91N	native AAO	GGG GGG	TCT AGC	TCT GI	TT <u>AAC</u>	TAC A	TG GTC	ATG	ATG	
H91S	native AAO	-GG TCT	AGC TCT	GTT AG	<u>SC</u> TAC 2	ATG G	TC ATG	ATG	C	
Y92F	native AAO	GGG TCT	AGC TCT	GTT CA	AC TTC	ATG G	TC ATG	ATG	CG-	
Y92L	native AAO	GGG TCT	AGC TCT	GTT CA	AC <u>CTC</u>	ATG G	TC ATG	ATG	CG-	
F397Y	native AAO	C TTT	TCC AAC	CAA TO	GG TAC	CAC C	CA GCT	ATC	ССТ	CG
I500A	native AAO	GAC AAC	GCC AAC	ACG GC	<u>CT</u> TTC	CAC C	CA GTT	GG-		
1500M	native AAO	GAC AAC	GCC AAC	ACG AT	IG TTC	CAC C	CA GTT	GG-		
F501H	native AAO	C AAC	GCC AAC	ACG AT	TT <u>CAC</u>	CAC C	CA GTT	GGA	ACG	
F501W	native AAO	GAC AAC	GCC AAC	ACG AI	TT <u>TGG</u>	CAC C	CA GTT	GG-		
I500M/F501W	F501W	GAC AAC	GCC AAC	ACG AT	rg <u>tgg</u>	CAC C	CA GTT	GG-		

^aThe substituted nucleotides are in bold and the mutated triplets are underlined

	λ ^{band I} (nm)	λ ^{band II} (nm)	ε ^{band I} (M ⁻¹ cm ⁻¹)	Reference
native AAO	386	463	11050	[2]
H91N	384	463	12825	here
H91S	379	458	11629	here
Y92F	386	463	10044	[3]
Y92L	386	463	11240	[3]
F397Y	382	462	10415	[4]
1500A	386	457	9925	[5]
1500M	384	458	9609	[5]
F501H	385	461	9229	here
F501W	387	462	9944	[6]
I500M/F501W	386	460	9290	[5]

Table S4. Spectroscopic properties of AAO variants in the visible region^a

^a Spectra recorded in 50 mM sodium phosphate, pH 6.0

Figure S1. Effect of low H_2O_2 concentrations on the oxidation of FFCA by AAO. Reactions between 1.5 mM FFCA and 2.5 μ M AAO were performed in 50 mM sodium phosphate, pH 6.0, at 28°C in presence of different amounts of H_2O_2 (0.0125 – 1.2 mM).

Figure S2. Evolution of HMF (**A** and **D**), DFF (**B** and **E**) and FFCA (**C** and **F**) controls along time in absence of AAO (*left*) and in presence of catalase (10-17 U/mL) (*right*). The three compounds (1.5 mM) were incubated in 50 mM sodium phosphate, pH 6.0, at 28° C.

Figure S3. ¹H-NMR (4.2-9.8 ppm) analysis of furfural standards: HMF (**A**), HMFCA (**B**), DFF (**C**), FFCA (**D**) and FDCA (**E**) in 50 mM sodium phosphate, pH 6.0, with 10% D₂O. HMF shows four signal for the protons of the aldehyde group (H₁, 9.2 ppm), furanic ring (H₂ and H₃, 7.4 and 6.4 ppm) and hydroxymethyl group (H₄, 4.5 ppm) (**A**). HMFCA shows three signals of the furanic ring (H₁ and H₂, 6.8 and 6.3 ppm) and hydroxymethyl (H₃, 4.4 ppm) protons (**B**). DFF shows signals of: **i**) the aldehyde group (H₁ and H₄, 9.5 ppm) and furanic ring (H₂ and H₃, 7.4 ppm) protons of unhydrated DFF; and **ii**) the unhydrated aldehyde (H_{1*}, 9.3 ppm), furanic ring (H_{2*} and H_{3*}, 7.3 and 6.5 ppm) and hydrated aldehyde (H_{4*}, 5.9 ppm) protons of mono-hydrated DFF. FFCA shows signals of: **i**) the furanic ring (H₁ and H₂, 6.9 and 7.3 ppm) and aldehyde (H₃, 9.4 ppm) protons of unhydrated FFCA; and **ii**) the furanic ring (H_{2*}, 6.3 ppm, and H_{1*}, 6.9 ppm, overlapping with one signal of unhydrated FFCA) and hydrated aldehyde (H_{3*}, 5.8 ppm) protons of hydrated FFCA (with very low intensities due to its low hydration degree) (**D**). FDCA only shows the signal of the furanic ring (H₁ and H₂, 6.9 ppm) protons (**E**).

Figure S4. Time course of the reaction of HMF with AAO in absence (**A**) and in presence of catalase (**B**) obtained from NMR experiments. Reactions performed in 50 mM sodium phosphate, pH 6.0, 10% D_2O at room temperature.

Figure S5. Surface (semi-transparent) access to AAO active site showing the FAD cofactor (green-carbon CPK-colored sticks), neighbor residues (cyan-carbon CPK-colored sticks) and channel to the active site (meshes). Based on PDB ID 3FIM.

Figure S6. Active site of native AAO (Based on PDB ID 3FIM) (**A**) and ten variants (*in silico* introduced on AAO structure (3FIM) using PyMOL software) assayed for HMF conversion into FDCA (**B**). Residues near the isoalloxazine ring of FAD (gold-carbon CPK-colored sticks) are cyan-carbon CPK-colored (sticks inside semi-transparent spheres) with mutated residues showing white-colored carbons. The access channel (meshes) is also shown in **A**.

Figure S7. HPLC analysis of furfural standards. (**A**) Elution profile of a mixture of FDCA (t_R , 14 min), HMFCA (t_R , 17 min), FFCA (t_R , 19 min), HMF (t_R , 24 min) and DFF (t_R , 29 min). (**B**) Calibration curve for the different compounds and response factor for the ratio between the absorbance at 264 nm and the concentration.

Supporting references

- Carro J, Ferreira P, Rodríguez L, Prieto A, Serrano A, Balcells B, Ardá A, Jiménez-Barbero J, Gutiérrez A, Ullrich R, Hofrichter M, Martínez AT. 5-Hydroxymethylfurfural conversion by fungal aryl-alcohol oxidase and unspecific peroxygenase. FEBS J. 2015, 282:3218-29.
- Ruiz-Dueñas FJ, Ferreira P, Martínez MJ, Martínez AT. In vitro activation, purification, and characterization of *Escherichia coli* expressed aryl-alcohol oxidase, a unique H2O2-producing enzyme. Protein Express Purif. 2006, 45:191-9.
- 3. Ferreira P, Hernández-Ortega A, Borrelli K, Lucas F, Herguedas B, Guallar V, Martínez AT, Medina M. Aromatic stacking interactions govern catalysis in arylalcohol oxidase. FEBS J. 2015, 282:3091-106.
- 4. Carro J, Amengual-Rigo P, Sancho F, Medina M, Guallar V, Ferreira P, Martínez AT. Multiple implications of an active site phenylalanine in the catalysis of arylalcohol oxidase. Sci Rep. 2018, 8:8121.
- 5. Serrano A, Sancho F, Viña-Gonzalez J, Carro J, Alcalde M, Guallar V, Martínez AT. Switching the substrate preference of fungal aryl-alcohol oxidase: towards stereoselective oxidation of secondary benzyl alcohols. Catal Sci Technol. 2019, 9:833-41.
- Hernández-Ortega A, Lucas F, Ferreira P, Medina M, Guallar V, Martínez AT. Modulating O2 reactivity in a fungal flavoenzyme: Involvement of aryl-alcohol oxidase Phe-501 contiguous to catalytic histidine. J Biol Chem. 2011, 286:41105-14.