
Response to Reviewers 
 

Reviewer #1:  

This is a very well written manuscript with promising results of 19 human metagenomes, however, there 

are some items that I considered they need to be addressed before publication: 

 

1) Although the machine learning model shows promising results, it would be interesting to the reader 

to know which genome regions of the viruses were used by the trained model to identify the potential 

new viruses. Is there any bias towards coat protein, RNA dependent RNA polymerase or any other genes 

to determine the presence of the virus in the dataset? 

 

Can you include in the results what are the hallmark genes that were mostly found in the identified 

sequences? This would possibly require HMMER to be run using the unknown sequences of your 19 

metagenomes after blastn. 

 

 

Reply: We thank the reviewer for these comments. We ran HMMER with pfam database on the viral 

300bp sequences and the table below represents the found proteins. The table only contains the most 

frequent proteins, because we want to have at least 10 data points when calculating average metrics. 

The second column counts the occurrences of the protein in the entire dataset (train+val+test). The third 

column counts the occurrences of the protein among val+test set samples. The fourth column shows the 

average probability of being viral according to the model for val+test set samples of the given protein 

(i.e. the average output value).  The fifth column gives the quartiles of these score values. The sixth 

column gives the AUROC (using test+val sequences containing given protein and all test set non-viruses).  

 

There are clear differences among the values in the fourth, fifth and sixth column. More importantly, all 

these values are an improvement over the average performance over all viral sequences (given in table 

caption). Hence, indeed, containing parts of certain proteins helps the model to identify the sequence as 

viral.  

 

This table is now provided as supplementary table for the paper.  

Protein Class 
Count in all 

data 
Count in Test+val 

set Average score 
Quartiles 

[25,50,75] AUROC 

Papillomavirus L1 protein 279 48 0.816 
[0.861; 0.985 

0.998] 0.984 

Anellovirus orf 1 278 52 0.769 
[0.752; 0.976; 

0.995] 0.99 

Papillomavirus helicase 123 26 0.803 
[0.754; 0.990; 

0.999] 0.984 



Anellovirus ORF2 91 18 0.738 
[0.545; 0.975; 

0.996] 0.983 

Papillomavirus E2 protein, 

N terminal 83 19 0.574 
[0.196; 0.678; 

0.943] 0.981 

Papillomavirus L2 protein 66 10 0.797 
[0.964; 0.983; 

0.994] 0.991 

Domain of Unknown 

function (DUF755) 50 10 0.496 
[0.023; 0.487; 

0.975] 0.964 

S1 Table. Most common HHMER-identified viral proteins. For the most commonly found viral proteins, 

the table shows how many 300bp sequences were found in the entire dataset (train+val+test) and same 

count for only val+test sets. The measures in the last 3 columns are calculated using a combination of 

validation and test set, validation set was included to increase the number of samples (for more reliable 

measures). Average score corresponds to the model’s mean output on the given (val+test) sequences. 

The quartiles show how these scores are distributed. The AUROC is calculated using all test-set non-viral 

sequences and only the val+test viral sequences corresponding to the given row.  For comparison, the 

baseline values - using all test+val viral sequences, containing genes or not - is 0.390 for average score, 

[0.016; 0.127; 0.915] for quartiles and 0.923 for AUROC. It can be concluded that the model achieves 

improved performance on sequences containing these commonly found genes. 

 

2) Why didn’t you try contig lengths larger than 300, for instance 1000, 5000, 10000? Would your model 

perform better with those contig lengths? 

 

Reply: As mentioned in “Data processing and labeling” subsection, we also tried sequence length 500, 

but it performed clearly worse than 300. In initial experiments we also briefly tested sequence length 

1000, but the results were even weaker. We hypothesize that this is due to having less data points with 

longer (more restrictive) sequence lengths.  

 

With sequence length 500 we have 3 times less data than with sequence length 300. With sequence 

length 1000 we have 20 times less data than with length 300. Empirical results show that in the current 

case having more data is the most important. 

 

3) The tool requires further validation with more data. I understand that you are using 19 metagenomes 

and using partitions/baselines to train, and the AUROC can be considered a good parameter to evaluate 

your model. However, it is imperative to certainly know what is in your metagenome to be able to 

validate the current technology. I’d suggest to generate simulated human metagenomes using taxon 

profiles similar to the ones that you used in the training model. I would suggest using NeSSM, ART, 

MetaSim for the simulations to determine how your trained model performs in completely new 

datasets. 

 

Reply: We believe that the true effectiveness of our models can only be measured by their performance 

on real data, preferably originating from a sequencing experiment that has not been used for training 



the model. Leaving an entire dataset out from the training procedure (using training set) and model 

picking (using validation data) procedure achieves just that. 

 

That said, we agree that working with real data, there is always some risk of unknown biases making 

results nicer than they should be. We have thus repeated our experiments on simulated data, as 

requested.  

 

We considered all three simulation tools mentioned by the reviewer and decided to use ART, as it is most 

understandable and easy to use. The article now contains a new methods section describing the 

simulation procedure and parameters, and a results subsection describing the results obtained. 

 

The results showed that the model that was trained our 19 metagenomic experiments produced AUROC 

0.751 on the simulated data. Even though the model performs clearly above the random level, it is 

indeed a more moderate performance compared to the model performance on the main test set. 

However,  consider that the simulated dataset was generated based on randomly picked viral reference 

genomes from GenBank without any prior selection. 

Using a ViraMiner model both trained and tested on simulated data, the test AUROC increases to 0.921. 

We believe that this further proves that the architecture is useful and able to generalize to different 

datasets. 

 

---- 

Per line comments: 

Line 40: Builds on top of the CNN architecture of Ren [25].  

Reply: Changed as requested  

 

Line 101: Spell out AUROC as Area Under the Receiver Operating Characteristics the first time in the 

text.  

Reply: Changed as requested  

 

Line 185: You can say something like: “trained to identify viruses infecting prokaryotic  

organisms”  

Reply: We thank the reviewer for pointing this out. Changed as requested  

 

Line 251: replace producing by produced.  

Reply: Changed as requested  

 

----------------------------------------------------------------------------------------------------------------------- 

Reviewer #2:  
This article proposed a new machine learning approach for characterizing unknown metagenomics 

contigs. The approach using ANN with raw DNA sequences as inputs is unique and novel. The authors 

demonstrated that the proposed approach “viralMiner” performs better than random forests and kmer 



as baseline. The writing is excellent as well. Because of the novelty of the approach, I recommend the 

paper accepted after minor revision. 

 

 

Several minor areas can be improved: 

1) The AUC is 0.92, however, the real performance 0.9 accuracy and 0.32 recall is not as impressive. I 

believe these numbers are much worse than blast, so I recommend emphasize this in the abstract. 

 

Reply:    

Blast was used as reference method (i.e. always correct by definition) and a comparison of performance 

with the reference method is not useful. In the abstract, we suggest to use our method only after having 

applied conventional alignment methods (BLAST) in order to further investigate the sequences that are 

left unlabeled.  

Also, as seen from precision-recall curve, instead of precision-recall pair 0.9&0.32, any other pair (e.g. 

0.95&0.24 or 1.0&0.151) could have been chosen. It is not possible to foresee which particular 

precision-recall ratio is the most important to the reader. Hence, we are reluctant to stress one particular 

pair of values by mentioning them in the abstract. 

In this manuscript we have decided to use AUROC as the main metric, because it does not depend neither 

on class distribution nor on a particular classification threshold.  

  

2) The real strength of this approach is to detect “unknown” contigs which cannot be detected by blast. 

However the training test validation experiments did not evaluate anything that is “unknown”. Maybe 

the authors can hold out some viral classes in the training and test if the machine learning approach can 

detect “unknown” contigs? 

 

Reply:  We thank the reviewer for this comment. The primary purpose use case of ViraMiner is to identify 

distant homologs that alignment-based methods cannot detect reliably. To maximally detect those 

highly divergent viruses, we think that all viral classes should be included in the training dataset. In 

comparison, detecting new yet unknown viral classes is a much more complicated task since one viral 

family can be very different from the others. Note that even though the CNN-based method does not use 

the same type of similarity measures as BLAST or HMMER3, it still must rely on some kind of common 

features.  

 

Nevertheless, we have now investigated if ViraMiner is able to identify viruses from a viral class that it 

had not been trained on. For this purpose, we trained and validated the ViraMiner model on a dataset 

where all anelloviruses were removed.  We used the same hyperparameters (layer sizes) as above, with 

the same stepwise training strategy - i.e. no new hyperparameter search was performed. The test set 

contained non-viral samples (10% of all non-viruses) and the left-out anelloviruses.  

 

In this setting, from the model's point of view anelloviruses are a completely unknown and unseen type 

of viruses. On this test set, frequency branch alone achieves the best result, with 0.755 AUROC. This is 

clearly above random performance and translates into getting 11 of the top 20 predictions correct on a 

test set with 5% prevalence. We conclude that even when dealing with viral sequences that are distant 



from our training (and validation) samples, using ViraMiner as recommendation system increases the 

chances of identifying viruses. 

 

 

 

3) A table could be added to show all training viral classes. 

 

Reply: Such table is now provided in the manuscript.  

 

 

Viral class 

Number of viruses (before cutting 

into 300bp) 

Number of viruses (after 

cutting into 300bp) 

Anelloviridae 447 1348 

Caudovirales 634 1595 

Geminiviridae 6 24 

Genomoviridae 63 110 

Herpesvirales 149 165 

Inoviridae 12 15 

Circoviridae 4 10 

Iridoviridae 5 8 

Microviridae 251 252 

Mimiviridae 42 67 

Papillomaviridae 845 1045 

Parvoviridae 37 86 

Phycodnaviridae 55 64 

Polyomaviridae 14 48 

Poxviridae 31 50 

Retroviridae 20 24 

Others 233 640 

 

S2 Table. Viral classes in the entire dataset. The first column shows the viral classes (families) found in 

the dataset, the second column represents number of viruses found by Blast. The sequences are cut into 

300 bp long sequences and the third column counts the numbers after the cut. Cutting longer contigs into 



smaller pieces means that the resulting 300bp training sequences represent different parts of the same 

virus. “Others”, at the last row of table, includes sequences that have by Blast been classified as 

definitely being viral, but have not been assigned a viral family yet. 

 

 


