

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

The mid-upper arm circumference is associated with an increased cardiometabolic risk in middle aged and elderly Chinese population

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-028904
Article Type:	Research
Date Submitted by the Author:	02-Jan-2019
Complete List of Authors:	Hou, Yanan; Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital Jia, Xu; Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital Xuan, Liping; Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital Zhu, Wen; Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital Deng, Chanjuan; Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital Wang, Long; Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital University Medical School Affiliated Ruijin Hospital Zhao, Zhiyun; Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital Li, Mian; Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital Lu, Jieli; Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Department of Endocrine and Metabolic Diseases Xu, Yu; Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital Chen, Yuhong; Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital Bi, Yufang; Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Department of Endocrine and Metabolic Diseases Xu, Yu; Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital Wang, Weiqing; Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital Bi, Yufang; Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Department of Endocrine and Metabolic Diseases Xu, Min; Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases Xu, Min; Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases Xu, Min; Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases Xuang, Tiange; Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital,
Keywords:	cardiometabolic risk, mid-upper arm circumference, subclinical atherosclerosis, upper body fat

1	
2	
3 4	SCHOLAR ONE [™]
5	Manuscripta
6	Manuscripts
7	
8	
9	
10	
11	
12	
13	
14	
15	
16 17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29 30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41 42	
42	
44	
45	
46	
47	
48	
49	
50	
51	
52 53	
55	
55	
56	
57	
58	
59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

The mid-upper arm circumference is associated with an increased cardiometabolic risk in middle aged and elderly Chinese population

Running title: Upper body fat and cardiometabolic risk

Yanan HOU^{1,2}, Xu JIA^{1,2}, Liping XUAN^{1,2}, Wen ZHU^{1,2}, Chanjuan DENG^{1,2}, Long WANG^{1,2}, Zhiyun ZHAO^{1,2}, Mian LI^{1,2}, Jieli LU^{1,2}, Yu XU^{1,2}, Yuhong CHEN^{1,2}, Weiqing WANG^{1,2}, Yufang BI ^{1,2}, Min XU^{1,2}, Tiange WANG^{1,2}¶

¹ Shanghai National Clinical Center for Endocrine and Metabolic Diseases,
 Collaborative Innovation Center of Systems Biomedicine, Rui-Jin Hospital, Shanghai
 Jiao Tong University School of Medicine, Shanghai, 200025, China;
 ² Shanghai Institute of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai
 Jiao Tong University School of Medicine, Shanghai, 200025, China.

Corresponding author:

Dr. Tiange WANG, MD & PhD

Shanghai National Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui-Jin 2nd Road, Shanghai 200025, China; Telephone: 86-21-64370045; Fax: 86-21-64749885; E-mail: wtg@live.cn

Abstract

Objectives: Upper body fat is suggested to be associated with increased cardiometabolic risk. We aimed to investigate the associations of mid-upper arm circumference (MUAC) with the cardiometabolic risk factors or biomarkers and subclinical atherosclerosis, which was indicated as elevated carotid intima media thickness (CIMT) in Chinese population.

Methods: A cross-sectional analysis was conducted in 6570 middle aged and elderly participants who were from a well-defined community in 2014, Shanghai, China. We assessed the association of MUAC with adiposity, blood glucose, lipids, insulin resistance and blood pressure levels, and as well as the CIMT. An average value of the both sides of the carotids greater than 0.8 mm was defined as subclinical atherosclerosis.

Results: MUAC was positively associated with body mass index (BMI), waist circumference, systolic blood pressure, insulin resistance index and CIMT; while inversely related to fasting plasma glucose. MUAC was also positively associated with risk of multi cardiometabolic disorders, such as central obesity, hypertension, hypertriglyceridemia and low HDL cholesterol. As compared to quartile one of MUAC, quartile 2 to 4 of MUAC was significantly associated with an increased risk of subclinical atherosclerosis (OR = 1.31, 95% CI [1.09-1.58], 1.33 [1.10-1.62], and 1.45 [1.16-1.80], respectively; $P_{for trend} = 0.005$), after adjustments for the confounding factors. Moreover, these associations were more prominent in women who are older, more obese and with insulin resistance, diabetes, and hypertension than that in men.

Conclusion: The MUAC was significantly and independently associated with an increased risk of cardiometabolic disorders and subclinical atherosclerosis in women.

Keywords: cardiometabolic risk, mid-upper arm circumference, subclinical atherosclerosis, upper body fat

Strengths and limitations of this study:

• The strength of the current study was evidenced by a well-defined community setting, fair sized sample volume, and desirable population homogeneity.

• We comprehensively determine the association of MUAC with a wide spectrum of cardiometabolic risk profile including subclinical atherosclerosis.

• Although our finding supported that it can be a reliable surrogate of upper body adiposity,

MUAC is a measure comprised of both adipose and lean tissue rather than a direct indicator for adiposity

• As body composition changes over time, the narrow range of age for the participants enrolled could affected the outcome.

• Since our study was performed in a Chinese population, it should be cautiously to generalize the results to the other ethnicities.

BMJ Open

Introduction

Cardiometabolic disease describes a spectrum of interconnected pathological alterations in the cardiovascular system and metabolic organs that symbiotically increase risk of cardiovascular disease (CVD).¹ Most of the common metabolic disorders, including obesity, diabetes, insulin resistance, dyslipidemia, and hypertension contribute to development of CVD that made CVD became a major cause of mortality and burden of healthcare expenditure worldwide, accounting for 17.3 million deaths per year.²⁻⁵ Early identification and personalized prevention to curb CVD become a big challenge.

As a common contributor of CVD goes through a protracted subclinical phase, atherosclerosis could only be detected at an advanced stage of CVD.^{6,7} Thus, identification of subclinical atherosclerosis in the asymptomatic period is critical for early prevention of CVD progression. Noninvasive ultrasonography measured carotid intima media thickness (CIMT) is a well-established clinical index for early arteriosclerosis detection and therefore has been extensively adopted around the world.⁸

Meanwhile, fat distribution, specifically upper body and visceral adiposity, is proven highly relevant with cardiovascular risk.^{9,10} In addition to the conventional body fat indices such as body mass index (BMI) and waist circumference (WC), mid-upper arm circumference (MUAC), as a novel anthropometric measurement, was widely used for diagnosing malnutrition, adiposity and chronic diseases.¹¹ A cross-sectional study using data from the 1999 to 2006 National Health and Nutrition Examination Survey (NHANES) reported that MUAC was positively associated with insulin resistance in the non-obese subjects; while no significant association in obese ones.⁹ Another follow up

study from the British National Diet and Nutrition Survey, which were included 1054 participants aged \geq 65 years and followed up for more than 15 years, demonstrated that MUAC was significantly and inversely associated with risk of all-cause mortality.¹²

To our knowledge, few studies have been systematically and comprehensively evaluated the association of cardiovascular risk factors with MUAC in East Asian populations. Hence, our study aimed to explore the association of MUAC with a spectrum of cardiometabolic risk factors.

Methods

Study population

This is a population-based cross-sectional analysis based on one of the follow-up circle of our previous community-based cohort study.^{13,14} The study participants were enrolled from Jiading district, Shanghai, China, from August 2014 to May 2015. A total of 6570 participants aged 40 years or above were invited and participated in this examination, which including a questionnaire to collect the lifestyle information, the disease history and medicine use, etc, anthropometry measurements, blood sampling and measurements to assess the early indicators of atherosclerosis. 283 individuals were excluded from the final analysis due to missing information on MUAC or CIMT. Thus, 6287 participants were finally included in our study. The study was approved by the Institutional Review Board of Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine. All participants provided the written consents.

BMJ Open

Data collection and biochemical measurements

Detailed information on sociodemographic characteristics, family history, medical history, physical activity and health-related lifestyle were obtained using a standard questionnaire by trained personnel. Anthropometric measurements such as height, weight, waist circumference, and MUAC were assessed by well-trained physician according to a standard protocol. Body height and weight were measured with participants wearing light clothes without shoes to the nearest 0.1 centimeter (cm) and 0.1 kilogram (kg). BMI was calculated as body weight in kilograms divided by body height squared in meters (kg/m²). MUAC was measured on the upper left arm (halfway between the acromion process and the olecranon process) with subject's bilateral arms hanging down naturally.¹⁵ WC was measured at the level of the umbilicus with the patient in the standing position. Systolic and diastolic blood pressures were measured in the non-dominant arm with an automated electronic sphygmomanometer (OMRON Model HEM-752 FUZZY, Omron Company, Dalian, China) three times (averaged for analysis) consecutively with 1 min intervals after at least 5 min rest in a seated position.

All individuals underwent a 75-glucose tolerance test (OGTT) after an overnight fasting (nothing by mouth after midnight), of whom fasting plasma glucose and OGTT 2-hour plasma glucose were measured using hexokinase method on a clinical chemistry diagnostic system (Beckman coulter AU5800). Serum concentrations of total cholesterol, triglycerides, high-density lipoprotein (HDL-C) and low-density lipoprotein (LDL-C) cholesterol were measured by an autoanalyzer (Beckman coulter AU5800). High sensitive C-reactive protein concentration was determined by highly sensitive

competitive immunoassay (antigens and antibodies from Beckman coulter IMMAGE800). Serum insulin was measured by using the electrochemiluminescence methods on an Immunology analyzer (Roche cobas e 60, Roche Diagnostics, Switzerland). Insulin resistance index (homeostasis model assessment of insulin resistance, HOMA-IR) was calculated as fasting insulin (μ IU/mL) × fasting plasma glucose (mmol/L) / 22.5, and insulin resistance was defined as HOMA-IR ≥ 2.8, which is the cut-off point for the highest quartile of the total participants.

Definitions

Type 2 diabetes was defined as fasting plasma glucose \geq 7.0 mmol/L or OGTT 2-hour plasma glucose \geq 11.1 mmol/L or use of anti-diabetic agents.¹⁶ Hypertension was defined as systolic blood pressure \geq 140 mmHg, diastolic blood pressure \geq 90 mmHg or current taking an antihypertensive medication.¹⁷ Central obesity was defined as WC \geq 102 cm for men and \geq 88 cm for women. Hypertriglyceridemia was defined as triglycerides \geq 2.26 mmol/L; Low HDL cholesterol was defined as HDL-C < 1.04 mmol/L. Cardiometabolic disorders was defined as status with central obesity, diabetes, hypertension, hypertriglyceridemia, or low HDL cholesterol. Current smokers or drinkers were those who consumed any kinds of cigarettes or alcohol regularly in the past 6 months, respectively. Physical activity in term of MET hour/week was acquired and calculated according to the short form of the International Physical Activity Questionnaire (IPAQ) including both during leisure time and at work.¹⁸

CIMT measurement were conducted by a trained sonographer using a high-resolution

B-mode tomographic ultrasound system (Esaote Biomedica SpA, Genoa, Italy) with a linear 7.5 MHz transducer.¹⁹ The position of CIMT measurement was recorded on the far wall of both right and left common carotid arteries, 1.5 cm proximal to the bifurcation. CIMT was measured on-line at the end of diastole as a distance from the leading edge of the first echogenic line to that of the second. These two lines represent the lumen-intima interface and collagen-contained upper layer of tunic adventitia, respectively. Individuals with a bilateral CIMT average greater than 0.8 mm was defined as subclinical atherosclerosis, which is the highest quartile of the total participants.

Statistical analyses

SAS version 9.4 (SAS Institute Inc, Cary, NC, USA) was used for data management and statistical analysis. Continuous variables were described as means ± standard deviation (SD) or median (inter-quartile ranges), and categorical variables as numbers (percentages). HOMA-IR, TG, and C-reactive protein were normalized by logarithmic transformation before analysis because of skewed distribution.

All participants were divided into four groups according to quartiles of MUAC. The quartiles of MUAC were as follows: Q1 (15.5-27.1 cm), Q2 (27.2-29.1 cm), Q3 (29.2-31.2 cm) and Q4 (31.3-43.3 cm). Linear regression analysis was used to test for trend across the MUAC quartiles for continuous variables and the Cochran-Armitage trend chi-square test was used for categorical variables. Multivariate linear regression was conducted to study the association of MUAC with a wide spectrum of cardiometabolic

risk factors or biomarkers. There models were also created to evaluate the association of MUAC with risk of subclinical atherosclerosis in multivariate logistic regression analysis. Model 1, unadjusted. Model 2, adjusted for age, sex, BMI, current smoking, current drinking, physical activity, and WC. Model 3, further adjusted for C-reactive protein, total cholesterol, HDL-C, LDL-C, triglycerides, fasting plasma glucose, and systolic blood pressure. Stratified analysis by metabolic indictors such as age, BMI, waist circumference, diabetes, insulin resistance, and hypertension were then performed to verify those associations. *P* for interaction was tested by adding these metabolic indictors in the multivariate adjusted logistic regression models simultaneously. Statistical significance was set to a two-sided P value of less than 0.05.

Patient and public involvement

The study was conducted without patient and public involvement. No patients were invited to take participate in the development of the research question and outcome measures, the study design and the interpretation of the results. The findings from this study will be disseminated to the participants after the results are published in a peerreviewed journal.

Results

Characteristics of the study participants

The study sample consisted of 2310 (36.7%) men and 3977 (63.3%) women with an average age of 62.2 ± 8.78 years. Detailed sociodemographic and clinical characteristics

of the study participants according to MUAC quartiles were displayed in Table 1. As expected, BMI, WC, systolic blood pressure, diastolic blood pressure, fasting plasma glucose, HOMA-IR, LDL-C, triglycerides, C-reactive protein and CIMT were increased with MUAC quartiles as well as the prevalence of insulin resistance, hypertension, diabetes, and subclinical atherosclerosis (all *P* value < 0.05). However, age and HDL-C gradually decreased from the lowest quartile to the highest quartile (both *P* value < 0.0001) (Table 1). Physical activity and total cholesterol were not different among the quartile of MUAC.

Association of MUAC with cardiometabolic profiles.

Table 2 shows the linear regression analysis of association of MUAC with cardiometabolic profiles. MUAC was positively associated with BMI, WC, systolic blood pressure, diastolic blood pressure, fasting plasma glucose, HOMA-IR, LDL-C, triglycerides, C-reactive protein, CIMT (all *P* value < 0.01), except for total cholesterol (*P* value = 0.30). Whereas, age and HDL-C were negatively associated with MUAC (all *P* value < 0.01). After adjustment for age, sex, BMI, current smoking, current drinking, physical activity, the results did not change appreciably. Further adjusted for WC, MUAC was positively associated with systolic blood pressure, HOMA_IR and CIMT. The subgroup analysis showed similar results that MUAC was associated with HOMA_IR, C-reactive protein and CIMT in women after adjustment for multiple confounding factors (Supplementary Table 1), but not in men (Supplementary Table 2).

Association of MUAC with risk of the cardiometabolic disorders. In the multivariable adjusted logistic regression model, we found that MUAC was positively and significantly associated with central obesity, diabetes, hypertension, hypertriglyceridemia and low HDL cholesterol, after adjustment for age, sex, BMI, current smoking, current drinking, physical activity (all *P* value < 0.001). And each one-SD increase in MUAC (3.13 cm) was associated with a 5%, 9%, 21%, and 26% increased risk in central obesity, diabetes, hypertension, and low HDL cholesterol, respectively. Further adjustment for WC, MUAC remained positively associated with these cardiometabolic disorders (all *P* value \leq 0.03), except for diabetes and hypertriglyceridemia (both *P* value > 0.05). The analysis for the association of each 1-SD increase in MUAC with the metabolic disorders showed similar results. (Table 3). In addition, the association between MUAC and hypertension was more significantly in women, but not in men after adjustment for WC and other confounding (Table 3).

Association of MUAC with risk of subclinical atherosclerosis

In the total study samples, each SD or quartile specific increment in MUAC was significantly associated with an increased risk of subclinical atherosclerosis after adjustment for traditional confounding factors (model 2). Moreover, these associations were not prominently attenuated when further adjustment for C-reactive protein, serum lipids, fasting plasma glucose, and systolic blood pressure. Compared with the lowest quartile of MUAC, the second, third and highest quartiles were associated with a 31% (95% CI [1.09-1.58]), 33% (95% CI [1.10-1.62]) and 45% (95% CI [1.16-1.80])

increased risk of subclinical atherosclerosis, respectively, after adjustment for age, sex, BMI and other confounders ($P_{\text{ for trend}}$ = 0.005). Stratified analysis by sex revealed that MUAC was positively associated with subclinical atherosclerosis in women but not in men (women, OR=1.54, 95% CI [1.24-1.93] in the second quartile; 1.42 [1.11-1.83] in the third quartile; 1.66 [1.26-2.20] in the highest quartile, $P_{\text{ for trend}}$ = 0.002, $P_{\text{ for interaction}}$ = 0.20, Table 4).

Stratified analysis of the association of MUAC with subclinical atherosclerosis We also examined the relationship between MUAC and subclinical atherosclerosis stratified by the traditional cardiometabolic risk factors. Among women, it was found that MUAC was significant and positive associated with subclinical atherosclerosis in participants with age ≥ 62 years, BMI ≥ 25 kg/m² or waist circumference < 88 cm (Figure 1A), and those women who with diabetes, insulin resistance, or hypertension (Figure 1B). Moreover, there existed significant interactions between diabetes and insulin resistance with MUAC on the risk of subclinical atherosclerosis, *P* for interaction=0.04 and 0.01, respectively. However, these relationships were disappeared when stratified analysis were performed in men (Supplementary Figure 1).

To further evaluate whether the association of MUAC with subclinical atherosclerosis was influenced by BMI and waist circumference, we conducted a similar multivariable logistic regression analysis in different BMI-WC categories. Among women, individuals were divided into 4 groups based on their BMI and WC (the BMI limits were set at < 25 kg/m² and \geq 25 kg/m²; the WC limits were set at < 88 cm and \geq

88 cm). We found that MUAC increased from the lower WC subgroups to the higher WC subgroups within each BMI subgroup. (Figure 2A). It was also found that MUAC was independently associated with subclinical atherosclerosis in subgroup of WC < 88 cm independent of BMI, after adjustment of age, BMI and other confounders (OR=1.22, 95% CI [1.05-1.43] in the subgroup of BMI < 25 kg/m² and 1.40 [1.11-1.77] in the subgroup of BMI \geq 25 kg/m², respectively). However, no significant association were found when WC \geq 88 cm (Figure 2B).

Discussion

In this cross-sectional investigation including 6287 community dwelling Chinese adults, we found that MUAC was significant associated with cardiometabolic disorders and subclinical atherosclerosis as well, which was assessed by elevated CIMT, after adjusted for the confounding factors. In sex-specific sub-analyses, the association between MUAC and subclinical atherosclerosis remained significant in women, not in men. The association was more prominent in those who were much older, obese, insulin resistant, and have diabetes and hypertension, the status that were more likely to have subclinical atherosclerosis.

MUAC was widely used for assessing obesity and malnutrition in children and adolescents;^{20, 21} several previous studies highlighted its predictive value for endings of cardiovascular events in both Asian and Caucasian populations.²¹ A retrospective observational study from the National Health and Nutrition Examination Survey III founding that MUAC is inversely associated with 28% lower in risk of all-cause

BMJ Open

mortality in non-obese individuals, but not in obese individuals.²¹ Another study using data from Health Effects of Arsenic Longitudinal Study (HEALS) reported that there was no relationship between MUAC and CIMT.²² Our study indicated that MUAC increment is associated with an increased risk of cardiometabolic disorders and subclinical atherosclerosis as well.

Possible explanations for the positive association between MUAC and cardiometabolic risk are multifactorial, including change of body composition over time, accumulation of upper body subcutaneous adipose, sarcopenia obesity, and race. First, aging is a critical factor in changing process of metabolism and body composition. Substantial fat-free mass and muscle mass reduced as the age growing, while substantial visceral fat rather than subcutaneous fat increased with the growth of age, even under the condition of body weight unchanged. Individuals with age > 65 suffer a reduction rate over 25 percent per year for muscle mass; and this rate can be accelerated to 50 percent per year for those older than 80.²²⁻²⁴ Our study indicated that MUAC levels tend to decrease with aging and there exists a stronger magnitude of association between MUAC and subclinical atherosclerosis in those aged ≥ 62 years in women. Second, upper body subcutaneous adipose tissue is not only a unique fat depot but also an active endocrine organ, which may confer additional risk for metabolic risk factors over generalized and central adiposity.²⁵ It can release free fatty acids and is more lipolytically active than lower body adipose tissue. Meanwhile, free fatty acids are directly related with hepatic very low-density lipoprotein production, insulin resistance and endothelial dysfunction, thus lead to cardiovascular and metabolic consequences.²⁶

well as connective tissue.

Third, sarcopenia obesity is also a critical factor. Sarcopenia obesity is a phenomenon that muscle mass is gradually decreased with age, even if body fat mass or body weight is unchanged or slightly increased. It continually occurred in the elderly as well as young or middle-aged adults with chronic disease.^{27,28} It is widely held that sarcopenia obesity is a well-correlated risk factor for hypertension.²⁹ Subjects with this phenotype may be more inclined to develop metabolic and CVD than subjects with the opposite phenotype.²⁷⁻²⁸ A study has shown that decreased muscle mass in lower extremity may result in atherosclerosis; while increased muscle mass through weight training may reduce the risk of atherosclerosis and CVD.²⁹ Furthermore, the decrease of muscle mass will not only result in reduction in muscle strength but also a strong impact on metabolism.²² Finally, compared with Caucasians, the East Asians tend to have a higher percentage of body fat, a weaker willingness on body build, and less muscle mass as

MUAC was associated with subclinical atherosclerosis in a sex-specific manner. One plausible explanation for the sex difference in MUAC-subclinical atherosclerosis relationship is biological differences between men and women, such as hormones effect, immune system responses, muscle capacity and physical function. For instance, men tend to have greater muscle capacity and higher muscle mass than their women counterparts due to higher levels of testosterone.²¹

The strength of the current study was evidenced by a well-defined community setting, fair sized sample volume, and desirable population homogeneity. We comprehensively determine the association of MUAC with a wide spectrum of cardiometabolic risk

BMJ Open

profile including subclinical atherosclerosis. However, we acknowledge the following limitations in our study. Firstly, the cross-sectional nature of present study means no causal inference can be drawn. Further prospective study is needed to investigate the efficacy of MUAC in predicting atherosclerosis and CVDs. Secondly, although our finding supported that it can be a reliable surrogate of upper body adiposity, MUAC is a measure comprised of both adipose and lean tissue rather than a direct indicator for adiposity. Thirdly, as body composition changes over time, the narrow range of age for the participants enrolled could affected the outcome. Lastly, since our study was performed in a Chinese population, it should be cautiously to generalize the results to the other ethnicities.

In conclusion, our study provides evidence of a positive association of MUAC with cardiometabolic risk and subclinical atherosclerosis. Given the accelerating rise rate of atherosclerosis in China, MUAC might act as a valuable indicator for early prevention of CVD.

Acknowledgments

We thank all the study participants for their participation and contribution. The present study would not have been possible without the participation of the participants.

Footnotes

Contributors: All authors had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: TW, MX, YB and WW. Acquisition of data: YH, XJ, LX, WZ, CD, LW, ZZ, ML, JL, YX, and YC. Analysis and interpretation of data: YH, TW, MX, YB and WW. Drafting of the manuscript: YH. Critical revision of the manuscript: TW, MX, YB and WW. Statistical analysis: YH and XJ.

Founding: This work was supported by grants from the National Natural Science Foundation of China (81770842, 81500660 and 81561128019), the Ministry of Science and Technology of China (2018YFC1311705, 2016YFC1305600 and 2016YFC1304904), the Shanghai Science and Technology Commission (YDZX20173100004881) and the Shanghai Shen-Kang Hospital Development Center (SHDC12016202).

Competing interests: None declared.

Provenance and peer review: Not commissioned; externally peer reviewed.Data sharing statement: No additional data available.

- Hertle E, Stehouwer CD, Van Greevenbroek MM. The complement system in human cardiometabolic disease. Mol Immunol. 2014; 61: 135-48.
- Kaur J. A comprehensive review on metabolic syndrome. Cardiol Res Pract 2014; 2014: 943162.
- WHO (2015) Cardiovascular diseases (CVDs). Available from www.who.int/mediacentre/factsheets/fs317/en/index.html. Accessed 15 May 2016.
- 4. Leal J, Luengo-Fernández R, Gray A, et al. Economic burden of cardiovascular diseases in the enlarged European Union. Eur Heart J 2006; 27:1610–1619.
- Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics-2015 update: A report from the American Heart Association. Circulation 2015; 131: e29e322.
- 6. Mao Z, Wu F, Shan Y. Identification of key gens and miRNAs associated with carotid atherosclerosis based on mRNA-seq data. Medicine 2018; 97: e9832.
- Fernández-Friera L, Peñalvo JL, Fernández-Ortiz A, et al. Prevalence, Vascular Distribution, and Multiterritorial Extent of Subclinical Atherosclerosis in a Middle-Aged Cohort: The PESA (Progression of Early Subclinical Atherosclerosis) Study. Circulation 2015; 131: 2104-2113.
- Lorenz MW, Markus HS, Bots ML, et al. Prediction of clinical cardiovascular events with carotid intima-media thickness: a systematic review and meta-analysis. Circulation 2007; 115: 459-467.
- 9. Fox CS, Massaro JM, Hoffmann U, et al. Abdominal visceral and subcutaneous

adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation 2007; 116: 39-48.

- Nielsen S, Guo Z, Johnson CM, et al. Splanchnic lipolysis in human obesity. J Clin Invest 2004; 113:1582-1588.
- 11. Ho SC, Wang JY, Kuo HP, et al. Mid-arm and calf circumferences are stronger mortality predictors than body mass index for patients with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2016; 11: 2075-2080.
- Bates CJ1, Hamer M, Mishra GD. A study of relationships between bone-related vitamins and minerals, related risk markers, and subsequent mortality in older British people: the National Diet and Nutrition Survey of People Aged 65 Years and Over. Osteoporos Int 2012; 23: 457–466.
- Huang Y, Bi Y, Xu M, et al. Nonalcoholic fatty liver disease is associated with atherosclerosis in middle-aged and elderly Chinese. Arterioscler Thromb Vasc Biol 2012; 32: 2321-2326.
- Chen Y, Xu M, Wang T, et al. Advanced fibrosis associates with atherosclerosis in subjects with nonalcoholic fatty liver disease. Atherosclerosis 2015; 241: 145-150.
- Gul Sagun, Aytekin Oguz, Engin Karagoz, et al. Application of alternative anthropometric measurements to predict metabolic syndrome. Clinics 2014; 69: 347-353.
- Diagnosis and classification of diabetes mellitus. Diabetes Care 2014; 37 (Suppl 1): S81-90.
- 17. Wang T, Xu M, Xu Y, et al. Association of Bisphenol A exposure with hypertension

BMJ Open

	20
	and early macrovascular disease in Chinese Adults. Medicine (Baltimore) 2015; 94:
	e1814.
18.	(IPAQ)., G. f. d. p. a. a. o. t. I. P. A. Q. http://www.ipaq.ki.se/scoring.pdf.
19.	Chen Y, Xu M, Wang T, et al. Advanced fibrosis associates with atherosclerosis in
	subjects with nonalcoholic fatty liver disease. Atherosclerosis 2015; 241:145-150.
0.	Ogden CL, Carroll MD, Curtin LR, et al. Prevalence of overweight and obesity in
	the United States, 1999–2004. JAMA 2006; 295: 1549-55.
21.	Wu LW, Lin YY, Kao TW, et al. Mid-Arm Circumference and All Cause,
	Cardiovascular, and Cancer Mortality among Obese and Non-Obese US Adults: the
	National Health and Nutrition Examination Survey III. Sci Rep 2017; 7: 2302.
22.	Tom SE, Cooper R, Patel KV, Guralnik JM. Menopausal characteristics and
	physical functioning in older adulthood in the NHANES III. Menopause (New
	York, NY) 2012; 19: 283.
3.	WORKHD. Menopause & The Benefits of Exercise. Month 2016.
24.	Neff LM, Hoffmann ME, Zeiss DM, et al. Core body temperature is lower in
	postmenopausal female than premenopausal female: potential implications for
	energy metabolism and midlife weight gain. Cardiovasc Endocrinol 2016; 5: 151-
	154.
25.	Luo Y, Ma X, Shen Y, et al. Neck circumference as an effective measure for
	identifying cardiometabolic syndrome: a comparison with waist circumference.
	Endocrine 2017; 55: 822-830.
	Fitch KV1, Stanley TL, Looby SE, et al. Relationship Between Neck Circumference

and Cardiometabolic Parameters in HIV-Infected and Non–HIV-Infected Adults. Diabetes Care 2011; 34: 1026–1031.

- 27. Dominguez LJ, Barbagallo M. The cardiometabolic syndrome and sarcopenic obesity in older persons. J Cardiometab Syndr 2007; 2: 183–189.
- Stephen WC, Janssen I. Sarcopenic obesity and cardiovascular disease risk in the elderly. J Nutr Health Aging 2009; 13: 460-466.
- 29. Park SH, Park JH, Song PS, et al. Sarcopenic obesity as an independent risk factor of hypertension. Journal of the American Societyof Hypertension 2013; 7: 420-425.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Figure legends

Figure 1. Stratified analysis of the association of mid-upper arm circumference with risk of subclinical atherosclerosis in women. A: All subjects were divided into subgroups based on their average age (age < 62 years, age \ge 62 years), body mass index (BMI < 25 kg/m², BMI \ge 25 kg/m²), or waist circumference (WC < 88 cm or WC \ge 88 cm). B: All subjects were divided into subgroups based on diabetes (yes or no), insulin resistance (yes or no), or hypertension (yes or no). Data were presented as odds ratio (OR) and 95% confidence interval (CI). *P* values were calculated from multivariable logistic regression analysis. Adjusted for age (years), body mass index (kg/m²), current smoking (yes or no), current drinking (yes or no), physical activity (MET-h/wk), waist circumference (cm), C-reactive protein (mg/L), total cholesterol (mmol/L), HDL-C (mmol/L), LDL-C (mmol/L), triglycerides (mmol/L), fasting plasma glucose (mmol/L), and systolic blood pressure (mmHg).

Figure 2. A: MUAC in the BMI and WC subgroups in women. B: Association of MUAC with risk of subclinical atherosclerosis in the BMI and WC subgroups in women. MUAC: mid-upper arm circumference, BMI: body mass index, WC: waist circumference. Adjusted for age (years), body mass index (kg/m²), current smoking (yes or no), current drinking (yes or no), physical activity (MET-h/wk), waist circumference (cm), C-reactive protein (mg/L), total cholesterol (mmol/L), HDL-C (mmol/L), LDL-C (mmol/L), triglycerides (mmol/L), fasting plasma glucose (mmol/L), and systolic blood pressure (mmHg).

		Mid-upper arm c	ircumference, cm		
	Quartile 1	Quartile 2	Quartile 3	Quartile 4	
	(15.5-27.1)	(27.2-29.1)	(29.2-31.2)	(31.3-43.3)	P for trend
n	1510	1570	1582	1625	
Age (years)	63.4 (9.2)	62.2 (8.8)	61.7 (8.6)	61.6 (8.4)	< 0.0001
Female, n (%)	1110 (27.9)	1048 (26.4)	922 (23.2)	897 (22.6)	
Body mass index (kg/m ²)	22.3 (2.8)	24.2 (3.8)	25.5 (3.2)	27.9 (7.5)	< 0.0001
Waist circumference (cm)	75.6 (8.5)	81.4 (7.9)	85.5 (8.3)	91.6 (9.2)	< 0.0001
Systolic blood pressure (mmHg)	132.6 (18.0)	133.4 (17.3)	136.0 (17.2)	137.0 (16.4)	< 0.0001
Diastolic blood pressure (mmHg)	74.2 (9.5)	75.7 (9.3)	77.2 (9.2)	78.0 (9.8)	< 0.0001
Current smoking, n (%)	196 (13.0)	279 (17.8)	346 (21.9)	393 (24.2)	< 0.0001
Current drinking, n (%)	151 (10)	195 (12.4)	256 (16.2)	290 (17.9)	< 0.0001
Physical activity (MET-h/wk)	21.0 (6.0-21.0)	15.3 (3.0-21.0)	15.0 (3.0-21.0)	15.0 (3.0-21.0)	0.30
Fasting plasma glucose (mmol/L)	5.99 (1.36)	6.06 (1.34)	6.21 (1.57)	6.28 (1.61)	< 0.0001
HOMA-IR	1.42 (0.99-2.15)	1.75 (1.20-2.57)	1.95 (1.35-2.86)	2.43 (1.69-3.55)	< 0.0001
Total cholesterol (mmol/L)	5.28 (0.95)	5.31 (0.98)	5.26 (1.04)	5.24 (1.08)	0.20
LDL-C (mmol/L)	3.56 (0.75)	3.62 (0.77)	3.62 (0.83)	3.63 (0.81)	0.02
HDL-C (mmol/L)	1.42 (0.33)	1.35 (0.29)	1.31 (0.29)	1.27 (0.27)	< 0.0001
Triglycerides (mmol/L)	1.33 (0.98-1.84)	1.49 (1.07-2.12)	1.58 (1.12-2.25)	1.66 (1.19-2.30)	< 0.0001
C-reactive protein (mg/L)	0.19 (0.14-0.28)	0.21 (0.16-0.31)	0.23(0.17-0.35)	0.25(0.18-0.39)	< 0.0001
CIMT (mm)	0.69 (0.16)	0.70 (0.15)	0.70 (0.14)	0.72 (0.14)	< 0.0001
Insulin resistance, n (%)	203 (13.5)	313 (20.0)	410 (26.0)	655 (40.5)	< 0.0001

.... **.**1:-••• • 1 • c. • .1 oles

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Hypertension, n (%)	747 (49.5)	862 (52.7)	978 (61.9)	1108 (68.3)	< 0.0001
Diabetes, n (%)	368 (24.7)	403 (25.9)	457 (29.2)	533 (33.2)	< 0.0001
Subclinical atherosclerosis, n (%)	472 (31.3)	541 (34.5)	555 (35.1)	590 (36.3)	0.0035

Data are presented as means ± standard deviation (SD), or medians (inter-quartile ranges) for skewed variables, or number (proportions) for categorical variables.

P values were calculated from one-way analysis of variance (ANOVA) for continuous variables and chi-square test for categorical variables.

Subclinical atherosclerosis was defined as CIMT ≥ 0.8 mm, which is the cut-off point for the highest quartile of the total participants.

Insulin resistance was defined as HOMA-IR \geq 2.8, which is the cut-off point for the highest quartile of the total participants.

Abbreviations: MET, metabolic equivalent task; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; CIMT, carotid intima-media thickness; HOMA-IR indicates homeostasis model assessment of insulin resistance.

	Model 1		Model 2		Model 3	
	$\beta \pm SE$	P value	$\beta \pm SE$	P value	$\beta \pm SE$	P value
Age (years)	-0.20 ± 0.04	< 0.0001	/	/	/	/
Body mass index (kg/m ²)	0.70 ± 0.02	< 0.0001	/	/	/	/
Waist circumference (cm)	1.94 ± 0.03	< 0.0001	1.62 ± 0.04	< 0.0001	/	/
Systolic blood pressure (mmHg)	0.55 ± 0.07	< 0.0001	0.49 ± 0.09	< 0.0001	0.20 ± 0.10	0.04
Diastolic blood pressure	0.49 ± 0.04	<0.0001	0.32 ± 0.05	< 0.0001	0.08 ± 0.06	0.15
(mmHg)						
Fasting plasma glucose	0.03 ± 0.01	<0.0001	0.02 ± 0.01	0.01	-0.02 ± 0.01	0.04
(mmol/L)						
HOMA-IR	0.03 ± 0.001	< 0.0001	0.02 ± 0.001	< 0.0001	0.01 ± 0.002	0.0003
Total cholesterol (mmol/L)	$\textbf{-}0.004\pm0.004$	0.30	0.004 ± 0.005	0.48	-0.01 ± 0.01	0.24
LDL-C (mmol/L)	0.009 ± 0.003	0.005	0.01 ± 0.004	0.001	0.001 ± 0.005	0.79
HDL-C (mmol/L)	$\textbf{-0.02} \pm 0.001$	< 0.0001	-0.01 ± 0.001	< 0.0001	-0.003 ± 0.002	0.08
Triglycerides (mmol/L)	0.01 ± 0.001	< 0.0001	0.01 ± 0.001	<0.0001	0.001 ± 0.001	0.38
C-reactive protein (mg/L)	0.01 ± 0.001	< 0.0001	0.01 ± 0.001	<0.0001	0.002 ± 0.002	0.12
CIMT (cm)	0.003 ± 0.001	< 0.0001	0.003 ± 0.001	0.0002	0.002 ± 0.001	0.005

Data are linear regression estimates \pm standard error ($\beta \pm$ SE).

P values were calculated from multivariable linear regression model.

Model 1: unadjusted;

Model 2: adjusted for age (years), sex, body mass index (kg/m²), current smoking (yes or no), current drinking (yes or no), physical activity (MET-h/wk);

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 Model 3: further adjusted for waist circumference (cm).

Abbreviations: LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; CIMT, carotid intima-media thickness.

For beer review only

Table 3. Logistic regression analysis of risk of cardiometabolic disorders in relation to mid-upper arm circumference in total and sex-specific

samples

		OR (95% C	OR (95% CI)				
		Quartile 1	Quartile 2	Quartile 3	Quartile 4	1-SD (3.13 cm)	- P for trend
Total cohort		<u> </u>					
Central obesity	Model 1	1.00	1.43 (0.99-2.05)	3.44 (2.45-4.82)	7.25 (5.12-10.3)	2.05 (1.85-2.28)	< 0.0001
	Model 2	1.00	1.43 (0.99-2.05)	3.44 (2.45-4.82)	7.25 (5.12-10.3)	2.05 (1.85-2.28)	< 0.0001
Diabetes	Model 1	1.00	1.00 (0.82-1.21)	1.13 (0.93-1.37)	1.26 (1.02-1.55)	1.09 (1.02-1.16)	0.02
	Model 2	1.00	0.87 (0.73-1.06)	0.89 (0.73-1.10)	0.87 (0.70-1.09)	0.96 (0.90-1.04)	0.33
Hypertension	Model 1	1.00	1.04 (0.87-1.24)	1.57 (1.30-1.89)	1.65 (1.34-2.04)	1.21 (1.14-1.30)	< 0.0001
	Model 2	1.00	0.92 (0.77-1.10)	1.29 (1.06-1.56)	1.23 (0.98-1.53)	1.10 (1.03-1.19)	0.006
Hypertriglyceridemia	Model 1	1.00	1.55 (1.25-1.92)	1.78 (1.43-2.21)	1.92 (1.53-2.41)	1.24 (1.15-1.35)	< 0.0001
	Model 2	1.00	1.31 (1.05-1.63)	1.32 (1.05-1.66)	1.19 (0.93-1.54)	1.03 (0.94-1.13)	0.28
Low HDL cholesterol	Model 1	1.00	1.40 (1.06-1.84)	1.80 (1.38-2.35)	2.06 (1.57-2.69)	1.26 (1.16-1.37)	< 0.0001
	Model 2	1.00	1.21 (0.91-1.60)	1.41 (1.06-1.86)	1.38 (1.02-1.88)	1.10 (1.01-1.22)	0.03
Women							
Central obesity	Model 1	1.00	1.49 (1.04-2.15)	3.54 (2.50-4.99)	7.10 (4.97-10.2)	2.01 (1.81-2.25)	< 0.0001
	Model 2	1.00	1.49 (1.04-2.15)	3.54 (2.50-4.99)	7.10 (4.97-10.2)	2.01 (1.81-2.25)	< 0.0001
Diabetes	Model 1	1.00	1.11 (0.89-1.41)	1.29 (1.01-1.65)	1.39 (1.07-1.80)	1.12 (1.03-1.22)	0.007
	Model 2	1.00	0.98 (0.77-1.24)	1.03 (0.80-1.32)	0.97 (0.73-1.29)	0.99 (0.91-1.09)	0.93
Hypertension	Model 1	1.00	1.10 (0.89-1.35)	1.93 (1.54-2.44)	1.80 (1.39-2.33)	1.27 (1.17-1.38)	< 0.0001
	Model 2	1.00	0.96 (0.78-1.18)	1.55 (1.23-1.97)	1.29 (0.98-1.68)	1.14 (1.05-1.24)	0.003

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Hypertriglyceridemia	Model 1	1.00	1.63 (1.28-2.01)	1.89 (1.48-2.42)	1.84 (1.42-2.38)	1.25 (1.15-1.37)	< 0.0001
	Model 2	1.00	1.38 (1.08-1.78)	1.43 (1.09-1.86)	1.17 (0.87-1.58)	1.05 (0.94-1.17)	0.33
Low HDL cholesterol	Model 1	1.00	1.67 (1.17-2.38)	1.94 (1.36-2.77)	1.87 (1.29-2.71)	1.21 (1.09-1.35)	0.0007
	Model 2	1.00	1.47 (1.03-2.21)	1.56 (1.07-2.28)	1.32 (0.86-2.01)	1.08 (0.91-1.23)	0.23
Men							
Central obesity	Model 1	1.00	0.38 (0.02-6.61)	3.99 (0.49-32.0)	10.4 (1.33-81.2)	3.08 (1.92-4.95)	< 0.0001
	Model 2	1.00	0.38 (0.02-6.61)	3.99 (0.49-32.0)	10.4 (1.33-81.2)	3.08 (1.92-4.95)	< 0.0001
Diabetes	Model 1	1.00	0.79 (0.56-1.10)	0.85 (0.61-1.18)	0.97 (0.68-1.38)	1.01 (0.90-1.13)	0.84
	Model 2	1.00	0.69 (0.49-0.98)	0.68 (0.48-0.97)	0.69 (0.47-1.01)	0.91 (0.81-1.03)	0.12
Hypertension	Model 1	1.00	0.92 (0.66-1.29)	1.06 (0.76-1.48)	1.29 (0.89-1.88)	1.10 (0.98-1.24)	0.10
	Model 2	1.00	0.84 (0.60-1.17)	0.91 (0.65-1.28)	1.03 (0.70-1.52)	1.03 (0.91-1.16)	0.68
Hypertriglyceridemia	Model 1	1.00	1.37 (0.85-2.21)	1.46 (0.92-2.31)	1.66 (1.03-2.67)	1.13 (0.96-1.32)	0.04
	Model 2	1.00	1.19 (0.73-1.92)	1.15 (0.72-1.84)	1.13 (0.68-1.87)	0.97 (0.81-1.52)	0.81
Low HDL cholesterol	Model 1	1.00	1.01 (0.65-1.58)	1.42 (0.94-2.16)	1.62 (1.04-2.51)	1.21 (1.06-1.38)	0.006
	Model 2	1.00	0.92 (0.59-1.44)	1.22 (0.79-1.86)	1.27 (0.80-2.01)	1.12 (0.97-1.29)	0.13

P values were calculated from multivariable logistic regression analysis in quartile of mid-upper arm circumference.

Model 1: adjusted for age (years), sex, body mass index (kg/m²), current smoking (yes or no), current drinking (yes or no), physical activity (MET-h/wk);

Model 2: further adjusted for waist circumference (cm), except for central obesity.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

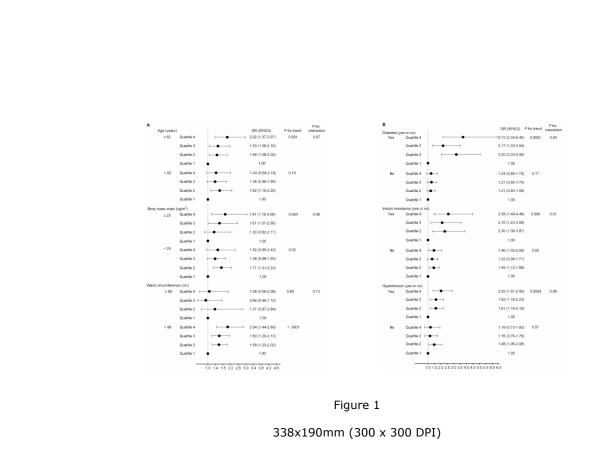
2	9
~	0

			OR (95% CI)			
	Quartile 1	Quartile 2	Quartile 3	Quartile 4	1-SD (3.13 cm)	P for trend
Total cohort						0.20*
Cases/Participants	472 / 1510	541 / 1570	555 / 1582	590 / 1625	2158 / 6287	
Model 1	1.00	1.16 (1.00-1.34)	1.19 (1.02-1.38)	1.25 (1.08-1.45)	1.06 (1.01-1.12)	0.004
Model 2	1.00	1.30 (1.08-1.56)	1.30 (1.07-1.58)	1.35 (1.09-1.67)	1.06 (0.98-1.15)	0.013
Model 3	1.00	1.31 (1.09-1.58)	1.33 (1.10-1.62)	1.45 (1.16-1.80)	1.08 (0.99-1.17)	0.005
Women						
Case/participants	287 / 1110	327 / 1048	275 / 922	282 / 897	1171 / 3977	
Model 1	1.00	1.30 (1.08-1.57)	1.22 (1.00-1.48)	1.32 (1.09-1.60)	1.07 (1.00-1.14)	0.014
Model 2	1.00	1.54 (1.24-1.93)	1.43 (1.18-1.82)	1.53 (1.17-2.02)	1.11 (1.01-1.23)	0.007
Model 3	1.00	1.54 (1.24-1.93)	1.42 (1.11-1.83)	1.66 (1.26-2.20)	1.14 (1.03-1.26)	0.002
Men						
Case/participants	185 / 400	214 / 522	280 / 660	308 / 728	987 / 2310	
Model 1	1.00	0.81 (0.62-1.05)	0.86 (0.67-1.10)	0.85 (0.67-1.09)	0.93 (0.85-1.02)	0.39
Model 2	1.00	0.89 (0.64-1.23)	1.04 (0.75-1.44)	1.00 (0.70-1.45)	0.97 (0.85-1.11)	0.71
Model 3	1.00	0.90 (0.65-1.25)	1.06 (0.76-1.48)	1.05 (0.72-1.52)	0.99 (0.86-1.06)	0.54

Table 4. The association of mid-upper arm circumference with subclinical atherosclerosis in total and sex-specific samples

Data were presented as odds ratio (OR) and 95% confidence interval (CI).

P values were calculated from multivariable logistic regression analysis.


*: the interaction of MUAC with sex on subclinical atherosclerosis.

Model 1, unadjusted;

 Model 2, adjusted for age (years), sex, body mass index (kg/m²), current smoking (yes or no), current drinking (yes or no), physical activity (MET-h/wk), waist circumference (cm);

Model 3, further adjusted for C-reactive protein (mg/L), total cholesterol (mmol/L), HDL-C (mmol/L), LDL-C (mmol/L), triglycerides (mmol/L), fasting plasma glucose (mmol/L), and systolic blood pressure (mmHg).

Tor peer review only

P < 0.001 ■ WC < 88cm Α *P* < 0.001 35-■ WC ≥ 88cm 30. 25. MUAC (cm) 20-15-10-5-0-BMI < 25kg/m² $BMI \ge 25 kg/m^2$ В BMI < 25kg/m² and WC < 88cm 2.0 BMI < 25kg/m² and WC \ge 88cm 1.8 BMI \ge 25kg/m² and WC < 88cm 1.6 OR (95% CI) BMI ≥ 25 kg/m² and WC ≥ 88 cm 1.4 1.2 1.0 0.8 0.6 0.4

Figure 2 199x176mm (300 x 300 DPI)

Supplemental Information The mid-upper arm circumference is associated with an increased cardiometabolic risk in middle aged and elderly Chinese population for oper teries only

BMJ Open

Supplemental Table 1. The association of mid-upper arm circumference with cardiometabolic profiles in women
Supplemental Table 2. The association of mid-upper arm circumference with cardiometabolic profiles in men

Supplemental Figure Legend

Supplemental Figure 1. Stratified analysis of the association of mid-upper arm circumference with risk of subclinical atherosclerosis in men. A: All subjects were divided into subgroups based on their average age (age < 62 years, age \ge 62 years), body mass index (BMI < 25 kg/m², BMI \ge 25 kg/m²), or waist circumference (WC < 88 cm or WC \ge 88 cm). B: All subjects were divided into subgroups based on diabetes (yes or no), insulin resistance (yes or no), or hypertension (yes or no). Data were presented as odds ratio (OR) and 95% confidence interval (CI). *P* values were calculated from multivariable logistic regression analysis. Adjusted for age (years), body mass index (kg/m²), current smoking (yes or no), current drinking (yes or no), physical activity (MET-h/wk), waist circumference (cm), C-reactive protein (mg/L), total cholesterol (mmol/L), HDL-C (mmol/L), LDL-C (mmol/L), triglycerides (mmol/L), fasting plasma glucose (mmol/L), and systolic blood pressure (mmHg).

1 2 3	
4 5 6	
7 8 9	
10 11	
13 14 15	
12 13 14 15 16 17 18 19 20	
19 20 21	
22 23 24	
25 26 27	
28 29	
30 31 32	
33 34 35 36 37	
38	
39 40 41	
42 43 44	
45 46	

	Model 1		Model 2		Model 3	
	$\beta \pm SE$	<i>P</i> value	$\beta \pm SE$	<i>P</i> value	$\beta \pm SE$	P value
Age (years)	-0.10 ± 0.04	0.01	/	/	/	/
Body mass index (kg/m ²)	0.76 ± 0.03	< 0.0001	/	/	/	/
Waist circumference (cm)	1.89 ± 0.04	<0.0001	1.71 ± 0.05	<0.0001	/	/
Systolic blood pressure (mmHg)	0.59 ± 0.09	<0.0001	0.54 ± 0.10	<0.0001	0.24 ± 0.12	0.06
Diastolic blood pressure (mmHg)	0.41 ± 0.05	< 0.0001	0.33 ± 0.06	<0.0001	0.10 ± 0.07	0.16
Fasting plasma glucose (mmol/L)	0.03 ± 0.007	< 0.0001	0.02 ± 0.008	0.003	-0.01 ± 0.01	0.21
HOMA-IR	0.03 ± 0.001	< 0.0001	0.02 ± 0.002	<0.0001	0.01 ± 0.002	0.0001
Total cholesterol (mmol/L)	0.01 ± 0.005	0.06	0.01 ± 0.01	0.40	-0.003 ± 0.01	0.64
LDL-C (mmol/L)	0.02 ± 0.004	< 0.0001	0.01 ± 0.005	0.006	0.004 ± 0.006	0.49
HDL-C (mmol/L)	-0.01 ± 0.001	< 0.0001	-0.01 ± 0.002	< 0.0001	-0.002 ± 0.002	0.48

BMJ Open

Triglycerides (mmol/L)	0.01 ± 0.001	< 0.0001	0.01 ± 0.001	< 0.0001	0.001 ± 0.002	0.71
C-reactive protein (mg/L)	0.02 ± 0.001	< 0.0001	0.02 ± 0.002	< 0.0001	0.006 ± 0.002	0.002
CIMT (cm)	0.003 ± 0.001	< 0.0001	0.003 ± 0.001	< 0.0001	0.003 ± 0.001	0.0007
Data are linear regression estimation	ates \pm standard error (β	\pm SE). <i>P</i> value	s were calculated f	rom multivaria	ble linear regression	model.
Model 1: unadjusted;						
Model 2: adjusted for age (years	s), sex, body mass index	t (kg/m ²), curr	ent smoking (yes or	r no), current di	rinking (yes or no), p	hysical activity (MET-h/wk)
Model 3: further adjusted for wa	aist circumference (cm).					
Abbreviations: LDL-C, low-c	lensity lipoprotein cho	olesterol; HD	L-C, high-density	lipoprotein c	holesterol; CIMT,	carotid intima-media thick

1	
2	
3 4	
5	
6	
7 8	
9	
10	
11	
12 13 14 15	
14	
15	
16 17	
18	
19	
20 21	
22	
 19 20 21 22 23 24 25 26 27 28 29 	
24 25	
26	
27	
28 29	
30	
31	
32	
33 34	
35	
36 37	
37 38	
39	
40	
41 42	
42	
44	
45	
46	

	Model 1		Model 2		Model 3	
	$\beta \pm SE$	P value	$\beta \pm SE$	P value	$\beta \pm SE$	P value
Age (years)	-0.47 ± 0.06	<0.0001	/	/	/	/
Body mass index (kg/m ²)	0.61 ± 0.02	<0.0001	/	/	/	/
Waist circumference (cm)	1.84 ± 0.06	<0.0001	1.15 ± 0.07	< 0.0001	/	/
Systolic blood pressure (mmHg)	0.57 ± 0.12	<0.0001	0.21 ± 0.16	0.18	0.06 ± 0.17	0.73
Diastolic blood pressure (mmHg)	0.51 ± 0.07	< 0.0001	0.16 ± 0.09	0.07	0.03 ± 0.10	0.78
Fasting plasma glucose (mmol/L)	0.02 ± 0.01	0.06	0.004 ± 0.02	0.83	-0.03 ± 0.02	0.11
HOMA-IR	0.03 ± 0.002	< 0.0001	0.01 ± 0.003	<0.0001	0.002 ± 0.003	0.57
Total cholesterol (mmol/L)	0.003 ± 0.006	0.57	-0.004 ± 0.01	0.65	-0.01 ± 0.01	0.15
LDL-C (mmol/L)	0.02 ± 0.005	0.0007	0.006 ± 0.007	0.40	-0.004 ± 0.008	0.55
HDL-C (mmol/L)	-0.02 ± 0.002	< 0.0001	-0.01 ± 0.003	< 0.0001	-0.005 ± 0.003	0.08

BMJ Open

Triglycerides (mmol/L)	0.01 ± 0.002	<0.0001	0.005 ± 0.002	0.01	0.001 ± 0.002	0.75
C-reactive protein (mg/L)	0.01 ± 0.002	0.0002	0.003 ± 0.003	0.31	-0.005 ± 0.003	0.09
CIMT (cm)	-0.001 ± 0.001	0.33	0.001 ± 0.002	0.48	0.001 ± 0.002	0.69
Data are linear regression estimation	ates \pm standard error (β	\pm SE). <i>P</i> value	es were calculated fr	om multivari	able linear regression n	nodel.
Model 1: unadjusted;						
Model 2: adjusted for age (years	s), sex, body mass inde	x (kg/m ²), curr	rent smoking (yes or	no), current c	lrinking (yes or no), ph	ysical activity (MET-h/w
Model 3: further adjusted for wa	aist circumference (cm)).				
Abbreviations: LDL-C, low-c	lensity lipoprotein ch	olesterol; HI	DL-C, high-density	lipoprotein	cholesterol; CIMT, c	arotid intima-media thio

Supplemental Figure 1

Α

			OR (95%CI)	D for trand	<i>P</i> for
Age (years) ≥62	Quartile 4	↓	0.96 (0.60-1.54)	P for trend 0.30	interaction 0.39
	Quartile 3	⊢-●1	0.89 (0.59-1.35)		
	Quartile 2	●1	0.89 (0.60-1.33)		
	Quartile 1	•	1.00		
< 62	Quartile 4	⊢	→ 1.26 (0.67-2.37)	0.91	
	Quartile 3	⊢	— 1.40 (0.78 - 2.50)		
	Quartile 2	⊢	0.97 (0.53-1.80)		
	Quartile 1	•	1.00		
Body mass index	(kg/m ²)				
≥ 25	Quartile 4	⊢ I	1.01 (0.52-1.95)	0.33	0.46
	Quartile 3	⊢ I	0.96 (0.49-1.86)		
	Quartile 2	├ ── ●	0.71 (0.35-1.45)		
	Quartile 1	•	1.00		
< 25	Quartile 4	⊢ −−−−1	0.81 (0.44-1.50)	0.92	
	Quartile 3	⊢ I	1.24 (0.80-1.91)		
	Quartile 2	⊢_●1	1.06 (0.72-1.58)		
	Quartile 1	•	1.00		
Naist circumferen					
≥ 88	Quartile 4		0.76 (0.36-1.58)	0.75	0.10
	Quartile 3	⊢ I	0.87 (0.41-1.83)		
	Quartile 2		0.54 (0.24-1.18)		
	Quartile 1	•	1.00		
< 88	Quartile 4	⊢	1.22 (0.72-1.56)	0.55	
	Quartile 3	⊢	1.05 (0.70-1.58)		
	Quartile 2	⊢_●1	1.06 (0.72-1.56)		
	Quartile 1		1.00		

B		OR (95%CI) P	for trend
Diabetes(Yes	Quartile 4 ⊢ ● ────	0.60 (0.25-1.44)	0.25
	Quartile 3	0.53 (0.22-1.28)	
	Quartile 2 -	───────────────── 0.78 (0.31-1.96)	
	Quartile 1	1.00	
No	Quartile 4		0.23
	Quartile 3	⊣ 1.23 (0.85-1.78)	
	Quartile 2	0.92 (0.64-1.32)	
	Quartile 1	1.00	
		1.00	
Insulin res Yes	stance (yes or no) Quartile 4	→ 0.97 (0.52-1.82)	0.84
100			0.01
	Quartile 3	→ 1.02 (0.57 - 1.83)	
	Quartile 2	0.82 (0.46-1.47)	
	Quartile 1	1.00	
No	Quartile 4 🛛 🗕 🗕 🗕		0.44
	Quartile 3	⊣ 1.16 (0.76-1.76)	
	Quartile 2	1.01 (0.67-1.53)	
	Quartile 1	1.00	
Hypertens	on (yes or no)		
Yes	Quartile 4	⊣ 1.10 (0.69-1.76)	0.62
	Quartile 3 – • – I	0.96 (0.62-1.47)	
	Quartile 2	0.96 (0.62-1.48)	
	Quartile 1	1.00	
No	Quartile 4	0.89 (0.46-1.65)	0.87
	Quartile 3 🛛 🗕 🗕 🗕	1.22 (0.72-2.01)	
	Quartile 2	0.82 (0.49-1.38)	
	Quartile 1	1.00	
		6 1.9 2.2 2.5 2.8 3.1	

BMJ Open

Association between mid-upper arm circumference and cardiometabolic risk in Chinese population: a crosssectional study

1	RM1 Open
Journal:	
Manuscript ID	bmjopen-2019-028904.R1
Article Type:	Research
Date Submitted by the Author:	21-May-2019
Complete List of Authors:	Hou, Yanan; Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital Jia, Xu; Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital Xuan, Liping; Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital Zhu, Wen; Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital Deng, Chanjuan; Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital Wang, Long; Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital Ui, Mian; Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital Li, Mian; Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital Lu, Jieli; Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Department of Endocrine and Metabolic Diseases Xu, Yu; Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital Li, Miang; Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital Lu, Jieli; Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Department of Endocrine and Metabolic Diseases Xu, Yu; Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital Bi, Yufang; Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Department of Endocrine and Metabolic Diseases Xu, Min; Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Department of Endocrine and Metabolic Diseases Xu, Min; Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Department of Endocrine and Metabolic Diseases Xu, Min; Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases Xua, Yiang; Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai Jiao-Tong University School of
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Diabetes and endocrinology, Cardiovascular medicine
Keywords:	cardiometabolic risk, mid-upper arm circumference, subclinical atherosclerosis, upper body fat, Chinese adults

1	
2 3	
4 5	
5 6 7 8 9	SCHOLARONE [™] Manuscripts
10	
11 12	
13	
14 15	
16 17	
18	
19 20	
21	
22 23	
24	
25 26	
27	
28 29	
30 31	
32	
33 34	
35	
36 37	
38	
39 40	
41 42	
43	
44 45	
46	
47 48	
49	
50 51	
52	
53 54	
55 56	
57	
58 59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	Association between mid-upper arm circumference and cardiometabolic risk in
2	Chinese population: a cross-sectional study
3	
4	Running title: Upper body fat and cardiometabolic risk
5	
6	Yanan Hou ^{1,2} , Xu Jia ^{1,2} , Liping Xuan ^{1,2} , Wen Zhu ^{1,2} , Chanjuan Deng ^{1,2} , Long Wang ^{1,2} ,
7	Zhiyun Zhao ^{1,2} , Mian Li ^{1,2} , Jieli Lu ^{1,2} , Yu Xu ^{1,2} , Yuhong Chen ^{1,2} , Weiqing Wang ^{1,2} ,
8	Yufang Bi ^{1,2} , Min Xu ^{1,2} , Tiange Wang ^{1,2} ¶
9	
10	¹ State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and
11	Metabolic Diseases of Ministry of Health, National Clinical Research Center for
12	Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases,
13	Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
14	200025, China;
15	² Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and
16	Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of
17	Medicine, Shanghai, 200025, China.
18	
19	¶Corresponding author:
20	Tiange Wang, MD, PhD
21	State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and
22	Metabolic Diseases of Ministry of Health, National Clinical Research Center for
22	Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases,
23	Shanghai Institute of Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai
24	Shanghar institute of Endoernie and Wetabone Diseases, Rui-Jili Hospital, Shaliglial

25 Jiao Tong University School of Medicine, 197 Rui-Jin	2nd Road, Shanghai 200025,
---	----------------------------

26 China. Telephone: 86-21-64370045; Fax: 86-21-64749885; E-mail: <u>wtg@live.cn</u>.

tor peer terien only

27	Abstract
28	Objectives: Upper body fat has been associated with an unfavorable cardiometabolic
29	risk. We aimed to investigate the associations between mid-upper arm circumference
30	(MUAC), a novel indicator of upper body fat, and a wide spectrum of cardiometabolic
31	risk profiles in Chinese population.
32	Design and setting: Cross-sectional analyses were performed using data from a well-
33	defined community in 2014, Shanghai, China.
34	Participants: The study population consisted of 6287 participants with complete
35	measurement data (men n=2310, women n=3977).
36	Outcome measures: Multivariable logistic regression model was used to explore the
37	associations of MUAC with cardiometabolic disorders including central obesity,
38	diabetes, hypertension, hypertriglyceridemia, low HDL cholesterol and subclinical
39	atherosclerosis.
40	Results: In overall participants, each 1-SD increment in MUAC (3.13 cm) was
41	positively associated with central obesity (OR, 2.05; 95% CI, 1.85-2.28), hypertension
42	(OR, 1.10; 95% CI, 1.03-1.19), and low HDL cholesterol (OR, 1.10; 95% CI, 1.01-
43	1.22), after multivariable adjustment. Multivariable-adjusted ORs for subclinical
44	atherosclerosis was gradually increased across increasing quartiles of MUAC with the
45	lowest quartile as reference (quartile 2: OR, 1.31; 95% CI, 1.09-1.58; quartile 3: 1.33;
46	1.10-1.62; quartile 4: 1.45; 1.16-1.80, $P_{for trend} = 0.005$) among total participants, and

- 47 such association was more prominent among women than men. Additionally, MUAC
- 48 was significantly interacted with diabetes and insulin resistance on subclinical

49 atherosclerosis ($P_{\text{for interaction}} = 0.04$ and 0.01, respectively).

BMJ Open

50	Conclusion: A greater MUAC was positively associated with several cardiometabolic
51	disorders and subclinical atherosclerosis in Chinese population, and such association
52	patterns were more significant among women.
53	
54	Keywords: Cardiometabolic risk, mid-upper arm circumference, subclinical
55	atherosclerosis, upper body fat, Chinese adults
56	
57	Strengths and limitations of this study:
58	• The strength of the current study was evidenced by a well-defined community setting,
59	fair sized sample volume, and desirable population homogeneity.
60	• The comprehensive examination of the associations between MUAC and a wide
61	spectrum of cardiometabolic risk profiles including central obesity, diabetes,
62	hypertension, hypertriglyceridemia, low HDL cholesterol and subclinical
63	atherosclerosis.
64	• Although our findings support that MUAC could be a reliable surrogate of upper body
65	adiposity, MUAC is a measure which comprised both adipose and lean tissue rather
66	than a direct indicator for adiposity.
67	• As body composition changes over time, the narrow range of age for the participants
68	enrolled could affect the outcome.
69	• Since our study was performed in a Chinese population, it should be cautiously to
70	generalize the results to the other ethnicities.

71 Introduction

Cardiometabolic disorders describe a spectrum of interconnected pathological alterations in the cardiovascular system and metabolic organs that symbiotically increase the risk of cardiovascular disease (CVD), which is a major cause of mortality and burden of healthcare expenditure worldwide.¹⁻⁵ Several important cardiometabolic disorders, including obesity, diabetes, insulin resistance, dyslipidemia, and hypertension, are major risk factors for CVD and could be served as early targets for early identification and personalized prevention for CVD.²⁻⁵ In addition, as a common contributor of CVD, atherosclerosis goes through a protracted subclinical phase and could only be detected at an advanced stage of CVD.^{6,7} Thus, the identification of subclinical atherosclerosis in the asymptomatic period is also critical for prevention of CVD progression. Noninvasive ultrasonography measured carotid intima media thickness (CIMT) is a well-established clinical index for early arteriosclerosis detection and therefore has been extensively adopted to measure subclinical atherosclerosis.⁸ Meanwhile, fat distribution, specifically upper body and visceral adiposity, is proven highly relevant to cardiovascular risk.^{9,10} In addition to the conventional body fat indices such as body mass index (BMI) and waist circumference (WC), mid-upper arm circumference (MUAC), as a novel anthropometric measurement, has been widely used for screening of malnutrition, adiposity and chronic diseases.¹¹ Several epidemiological studies have revealed inconsistent results on the relationship between MUAC and cardiometabolic risk. A cross-sectional study using data from the 1999 to 2006 National Health and Nutrition Examination Survey (NHANES) reported that MUAC was positively associated with insulin resistance in non-obese individuals; while no significant association was found in obese individuals.⁹ In a prospective cohort of 1061 European elderly participants with a follow-up of approximately 6 years, a larger

Page 7 of 32

BMJ Open

MUAC was associated with elevated risks of all-cause and cardiovascular diseases mortality.¹² In contrast, in the Canada Fitness Survey of 10638 adults, a larger MUAC was independently associated with a lower risk of all-cause mortality.¹³ And such inverse association between a larger MUAC and a lower risk of mortality was also documented in the British National Diet and Nutrition Survey of 1054 participants with more than 15 years of followed up.¹⁴ Most of these previous studies were conducted in European population; so far, comprehensive data on the associations between MUAC and cardiovascular risk profiles in Chinese population are limited. Chinese population tend to have a higher percentage of body fat, a weaker willingness on body build, and less muscle mass as well as connective tissue,¹⁵ as compared with their European counterparts. And these different features may translate into varying susceptibilities to adiposity related cardiometabolic disorders. Therefore, this study aimed to investigate the association between MUAC and cardiometabolic disorders as well as subclinical atherosclerosis in

110 Chinese population.

. . . .

112 Methods

113 Study population

This is a cross-sectional analysis based on one of the follow-up circles of our
established community-based cohort.^{16,17} Eligible participants aged 40 years or above
were identified from the local residence registration records. There was no restriction on
ethnicity or gender. Each eligible participant was recruited by trained community staff
and local health workers using a door-to-door invitation method. Participants who
consented for the study and signed informed consent were scheduled for health
examinations. In brief, a total of 6570 participants aged 40 years or above were enrolled

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

from Jiading district, Shanghai, China, from August 2014 to May 2015. All participants received anthropometric measurements (including height, weight, WC, and MUAC), a standard 75-g oral glucose tolerance test (OGTT), and a standard questionnaire to acquire information regarding lifestyle factors (including smoking and alcohol drinking habits, and physical activity), education, social demographic information, and history of diseases and medicines. Blood samples were collected for biochemical measurements. In the present study, 283 participants were excluded due to missing data on MUAC or CIMT. Thus, a total of 6287 participants were included in the final analysis. This study was approved by the Institutional Review Board of Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine. Written informed consent was obtained from all study participants.

133 Data collection and biochemical measurements

Detailed information on sociodemographic characteristics, family history, medical
history, physical activity and health-related lifestyle were obtained using a standard
questionnaire by trained personnel. Current smokers or drinkers were those who
consumed any kinds of cigarettes or alcohol regularly in the past 6 months, respectively.
Physical activity in term of MET hour/week was calculated according to the short form
of the International Physical Activity Questionnaire (IPAQ) including both during
leisure time and at work.¹⁸

Anthropometric measurements such as height, weight, WC, and MUAC were assessed by well-trained physician according to a standard protocol. Body height and weight were measured with participants wearing light clothes without shoes to the nearest 0.1 centimeter (cm) and 0.1 kilogram (kg), respectively. BMI was calculated as body weight in kilograms divided by body height squared in meters (kg/m²). MUAC Page 9 of 32

BMJ Open

8

2	
3 4	14
5 6	14
7 8 9	14
9 10 11	14
12 13	15
14 15	15
16 17	15
18 19 20	15
20 21 22	15
23 24	15
25 26	15
27 28 29	15
30 31	15
32 33	15
34 35	16
36 37 38	16
39 40	16
41 42	16
43 44	16
45 46	
47 48 49	16
50 51	16
52 53	16
54 55	16
56 57 58	16
59 60	17

6 was measured on the upper left arm (halfway between the acromion process and the olecranon process) with subject's bilateral arms hanging down naturally.¹⁹ WC was 7 8 measured at the level of the umbilicus with the participants in the standing position. 9 Systolic and diastolic blood pressures were measured in the non-dominant arm with an automated electronic sphygmomanometer (OMRON Model HEM-752 FUZZY, Omron 0 Company, Dalian, China) three times (averaged for analysis) consecutively with 1 min 1 2 intervals after at least 5 min rest in a seated position. 3 All participants underwent a 75-glucose tolerance test (OGTT) after an overnight 4 fasting (nothing by mouth after midnight), of whom fasting plasma glucose and OGTT 2-hour plasma glucose were measured using hexokinase method on a clinical chemistry 5 diagnostic system (Modular P800; Roche, Basel, Switzerland). Serum concentrations of 6 7 total cholesterol, triglycerides, high-density lipoprotein (HDL-C) and low-density 8 lipoprotein (LDL-C) cholesterol were measured by an autoanalyzer (Modular E170; Roche). High sensitive C-reactive protein concentration was determined by highly 9 0 sensitive competitive immunoassay (antigens and antibodies from Beckman coulter 1 IMMAGE800, America). Serum insulin was measured by using the 2 electrochemiluminescence methods on an Immunology analyzer (RIABEAD II; Abbott, 3 Tokyo, Japan). Homeostasis model assessment of insulin resistance (HOMA-IR) was 4 calculated as fasting insulin (μ IU/mL) × fasting plasma glucose (mmol/L) / 22.5, and 5 insulin resistance was defined as HOMA-IR \geq 2.8, which is the cut-off point for the 66 highest quartile of the total participants. 7 8 **Definitions of cardiometabolic risk profile**

Type 2 diabetes was defined as fasting plasma glucose \geq 7.0 mmol/L or OGTT 2-hour

170 plasma glucose ≥ 11.1 mmol/L or use of anti-diabetic agents.²⁰ Hypertension was

171defined as systolic blood pressure $\geq 140 \text{ mmHg}$, diastolic blood pressure $\geq 90 \text{ mmHg}$ or172current taking an antihypertensive medication.²¹ Central obesity was defined as WC \geq 173102 cm for men and ≥ 88 cm for women. Hypertriglyceridemia was defined as174triglycerides $\geq 2.26 \text{ mmol/L}$. Low HDL cholesterol was defined as a level of HDL-C <</td>1751.04 mmol/L.

CIMT measurement was conducted by a trained sonographer using a high-resolution B-mode tomographic ultrasound system (Esaote Biomedica SpA, Genoa, Italy) with a linear 7.5 MHz transducer.²² The position of CIMT measurement was recorded on the far wall of both right and left common carotid arteries, 1.5 cm proximal to the bifurcation. CIMT was measured on-line at the end of diastole as a distance from the leading edge of the first echogenic line to that of the second. These two lines represent the lumen-intima interface and collagen-contained upper layer of tunic adventitia, respectively. Subclinical atherosclerosis was defined as a bilateral CIMT average greater than 0.8 mm, which is the highest quartile cut-off point of the total participants.

187 Statistical analyses

SAS version 9.4 (SAS Institute Inc, Cary, NC, USA) was used for data management
and statistical analysis. Continuous variables were described as means ± standard
deviations (SDs) or medians (inter-quartile ranges), and categorical variables as
numbers (percentages). Variables with skewed distributions, such as HOMA-IR,
triglycerides, and C-reactive protein, were normalized by logarithmic transformation
before analysis.

All participants were divided into four subgroups according to quartiles of MUAC.
The ranges of MUAC within each quartile were 15.5 to 27.1 cm for quartile 1, 27.2 to

Page 11 of 32

BMJ Open

2 3 4	196	29.1 cm for quartile 2, 29.2 to 31.2 cm for quartile 3, and 31.3 to 43.3 cm for quartile 4.
5 6	197	Linear regression analysis was used to test for trend across the MUAC quartiles for
7 8 9	198	continuous variables and the Cochran-Armitage trend chi-square test was used for
9 10 11 12 13 14 15 16 17 18	199	categorical variables. Multivariable linear regression and multivariable logistic
	200	regression analyses were conducted to assess the associations of MUAC with a wide
	201	spectrum of cardiometabolic disorders and subclinical atherosclerosis, with adjustment
	202	for age, sex, BMI, current smoking, current drinking, physical activity, WC, C-reactive
19 20	203	protein, total cholesterol, HDL-C, LDL-C, triglycerides, fasting plasma glucose, and
21 22 23	204	systolic blood pressure. Stratified analyses by age, BMI, WC, diabetes, insulin
24 25	205	resistance, and hypertension were performed. Interactions were tested by adding the
26 27	206	respective multiplicative terms in the models simultaneously. Statistical significance
28 29 30	207	was set to a two-sided <i>P</i> value of less than 0.05.
30 31 32	208	
33 34	209	Patient and public involvement
35 36	210	This study was conducted without patient and public involvement. No patients were
37 38 30	211	invited to take participate in the development of the research question and outcome
39 40 41	212	measures, the study design and the interpretation of the results. The findings from this
42 43	213	study will be disseminated to the participants after the results are published in a peer-
44 45 46	214	reviewed journal.
40 47 48	215	
48 49 50 51 52 53 54 55	216	Results
	217	Characteristics of the study participants
	218	The study sample consisted of 2310 (36.7%) men and 3977 (63.3%) women with an
56 57	219	average age of 62.2 years (SD: 8.78). Detailed sociodemographic and clinical
58 59 60	220	characteristics of the study participants according to MUAC quartiles are shown in

1	
2	
3	
4	
5	
6 7	
7	
8 9	
9 10	
10	
11	
12	
13	
14	
16	
17	
18	
12 13 14 15 16 17 18 19	
20	
21 22 23 24	
22	
23	
24	
25	
26	
27	
28	
29	
30 21	
31 22	
32 33	
34	
35	
35 36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47 48	
40 49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

221	Table 1. Participants with a large MUAC were more likely to have higher levels of
222	BMI, WC, systolic and diastolic blood pressures, fasting plasma glucose, HOMA-IR,
223	LDL-C, triglycerides, C-reactive protein, and CIMT, and had higher proportions of
224	insulin resistance, hypertension, diabetes, and subclinical atherosclerosis (all P values <
225	0.05). In addition, participants with a large MUAC were younger and had lower levels
226	of HDL-C (both <i>P</i> values < 0.0001) (Table 1). Multivariable linear regression analyses
227	revealed consistent results on the associations between MUAC and these
228	cardiometabolic profiles (Supplemental Table1).
229	
230	Association between MUAC and cardiometabolic disorders
231	As shown in Table 2, a large MUAC was positively associated with central obesity,
232	diabetes, hypertension, hypertriglyceridemia, and low HDL cholesterol after adjustment
233	for age, sex, BMI, current smoking, current drinking, and physical activity (all P values
234	< 0.001). The multivariable-adjusted OR per 1-SD increment in MUAC (3.13 cm) was
235	2.05 (95% CI, 1.85-2.28) for central obesity, 1.09 (1.02-1.16) for diabetes, 1.21 (1.14-
236	1.30) for hypertension, 1.24 (1.15-1.35) for hypertriglyceridemia, and 1.26 (1.16-1.37)
237	for low HDL cholesterol. Most of these associations were not substantially changed
238	after additional adjustment for WC (all P values ≤ 0.03), except for diabetes and
239	hypertriglyceridemia. When stratified by sex, more prominent results were observed
240	among women.
241	
242	Association between MUAC and subclinical atherosclerosis
243	In total participants, we observed strong and positive association between MUAC and
244	subclinical atherosclerosis with fully adjustment (Table 3). The OR for subclinical

BMJ Open

	12
246	CI, 1.10-1.62) within quartile 3, and 1.45 (95% CI, 1.16-1.80) within quartile 4, as
247	compared with the lowest quartile ($P_{\text{for trend}} = 0.005$). When stratified by sex, significant
248	results were observed among women but not among men.
249	
250	Stratification analyses by traditional cardiovascular risk factors
251	We further examined the association between MUAC and subclinical atherosclerosis
252	stratified by traditional cardiometabolic risk factors. In women, MUAC was associated
253	with subclinical atherosclerosis among participants who aged \geq 62 years, with BMI \geq 25
254	kg/m ² or waist circumference < 88 cm (Figure 1A), and among those with diabetes,
255	insulin resistance, or hypertension (Figure 1B). Moreover, there were significant
256	interactions of MUAC with diabetes and insulin resistance on subclinical
257	atherosclerosis ($P_{\text{for interaction}} = 0.04$ and 0.01, respectively). These association patterns
258	were not observed in men (Supplementary Figure 1).
259	To further evaluate whether the association of MUAC with subclinical
260	atherosclerosis may be influenced by BMI and WC, we replicated the analyses within
261	combinations of BMI and WC. In women, those with higher WC were more likely to
262	have larger MUAC, regardless of BMI levels (Figure 2A). And MUAC was
263	independently associated with subclinical atherosclerosis in the combination of WC $<$
264	88 cm and BMI < 25 kg/m ² (OR, 1.22; 95% CI, 1.05-1.43) and in the combination of
265	WC < 88 cm and BMI \ge 25 kg/m ² (OR, 1.40; 95% CI, 1.11-1.77) (Figure 2B).
266	
267	Discussion
268	In this cross-sectional investigation of 6287 community dwelling Chinese adults, we
269	found that a large MUAC was positively associated with a series of cardiometabolic
270	disorders including central obesity, hypertension, low HDL cholesterol, and subclinical

atherosclerosis. Such association patterns were independent from traditional cardiovascular risk factors, and were more prominent among women than men. Moreover, we observed significant interactions of MUAC with diabetes and insulin resistance in relation to subclinical atherosclerosis. MUAC is a widely used indicator of upper body adiposity in children, adolescents, and adults.^{23, 24} Previous studies have shown mixed results on the associations between MUAC and CVD.²⁵⁻²⁸ Findings from a retrospective cohort study of 771 Japanese adults have suggested that MUAC may play a complementary role to BMI in predicting prognosis in patients with heart failure.²⁵ In addition, a cross-sectional study of 93 pubertal obese adolescents from Brazil have associated a larger MUAC with a higher level of HOMAR-IR and a higher cardiometabolic risk score. ²⁶ In contrast, results from the Health Effects of Arsenic Longitudinal Study of 562 middle-aged participants who were free of CVD in rural Bangladesh have shown no relationship between MUAC and CIMT.²⁸ Our present study has extended the existing evidence by demonstrating that MUAC increment was associated with an increased risk of a series of cardiometabolic disorders including central obesity, hypertension, low HDL cholesterol, and subclinical atherosclerosis in Chinese population, particularly among women. Central obesity, hypertension, low HDL cholesterol, and subclinical atherosclerosis have been robustly associated with increased risks of CVD. Detecting more effective risk factors for these cardiometabolic disorders is critical to the prevention of CVD. Our findings suggest that paying more attention to women with higher MUAC would be useful in the early identification and prevention of cardiometabolic disorders. Explanations for the observations between MUAC and cardiometabolic risk are multifactorial. Our study found that MUAC level tended to decrease with age and there was a stronger association between MUAC and subclinical atherosclerosis among

Page 15 of 32

BMJ Open

2 3 4	296	women aged greater 62 years or older. Aging is a critical factor in changing process of
5 6	297	metabolism and body composition. Fat-free mass and muscle mass reduced while
7 8 9	298	substantial visceral fat rather than subcutaneous fat increased with aging, even under the
10 11 12 13 14 15 16	299	condition of body weight unchanged. Individuals with age greater than 65 years suffer a
	300	reduction rate over 25 percent per year for muscle mass; and this rate can be accelerated
	301	to 50 percent per year for those older than 80 years. ²⁸⁻³⁰ In addition, we found that
17 18	302	MUAC was associated with subclinical atherosclerosis in a sex-specific manner. One
19 20	303	plausible explanation for the sex difference in MUAC-subclinical atherosclerosis
21 22 23	304	relationship is biological differences between men and women, such as hormones effect,
24 25	305	immune system responses, muscle capacity and physical function. For instance, men
26 27	306	tend to have greater muscle capacity and higher muscle mass than women due to higher
28 29 30	307	levels of testosterone. ²⁴ Body fat redistributes to upper body and to a preferential
31 32	308	adiposity around the waist with age and this trend was more obvious in women than in
33 34	309	men. ³⁰ The sex difference in redistribution of body fat may partly contribute to the
35 36 37	310	observed more predominant associations between MUAC and cardiometabolic
37 38 39	311	disorders among women.
40 41	312	The unique advantage of the present study is that we comprehensively determined
42 43	313	the association of MUAC with a wide spectrum of cardiometabolic risk profiles in a
44 45 46	314	well-defined community setting with fair sized sample and desirable population
47 48	315	homogeneity. However, several limitations should be considered. Firstly, the cross-
49 50 51 52 53 54 55	316	sectional nature of present study means no causal inference can be drawn. Secondly,
	317	although our finding supported that it can be a reliable surrogate of upper body
	318	adiposity, MUAC is a measure comprised of both adipose and lean tissue rather than a
56 57	319	direct indicator for adiposity. Thirdly, as body composition changes over time, the
58 59 60	320	narrow range of age for the participants enrolled could affected the outcome. Fourthly,

MUAC measurement was performed on the left arm, though it should be determined on
the non-dominant arm. Given the fact that the majority of Chinese population were
right-handers, measurement protocol employed in our study for MUAC was acceptable.
Finally, since our study was performed in a Chinese population, it should be cautiously
to generalize the results to other ethnicities.
In conclusion, our study provides evidence of positive associations of MUAC with
cardiometabolic disorders as well as subclinical atherosclerosis in Chinese population.

328 These results suggest that MUAC, as a convenient and inexpensive measurable metric,

329 can be potentially used as a risk stratification tool in cardiometabolic disorders. Given

the reliable assessment of MUAC in middle aged and elderly population and the

accelerating rise rate of atherosclerosis in China, MUAC may be used as a valuable

332 indicator for early prevention of CVD.

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

1

BMJ Open

16

2	
3 4	
5 6	
7 8	
9	
10 11	
12 13	
14 15	
16 17	
18	
19 20	
21 22	
23 24	
25	
26 27	
28 29	
30 31	
32 33	
34	
35 36	
37 38	
39 40	
41 42	
43	
44 45	
46 47	
48 49	
50	
51 52 53	
54	
55 56	
57 58	
59 60	
. •	

333 Acknowledgments

Footnotes

We thank all the study participants for their participation and contribution. The presentstudy would not have been possible without the participation of the participants.

Contributors: All authors had full access to all of the data in the study and take

responsibility for the integrity of the data and the accuracy of the data analysis. Study

concept and design: TW, MX, YB and WW. Acquisition of data: YH, XJ, LX, WZ, CD,

LW, ZZ, ML, JL, YX, and YC. Analysis and interpretation of data: YH, TW, MX, YB

and WW. Drafting of the manuscript: YH. Critical revision of the manuscript: TW, MX,

Founding: This work was supported by grants from the National Natural Science

Foundation of China (81770842and 81561128019), the Ministry of Science and

Technology of China (2018YFC1311705, 2016YFC1305600 and 2016YFC1304904),

the Shanghai Pujiang Program (18PJ1409600), the "Shanghai Municipal Education

Commission-Gaofeng Clinical Medicine Grant Support" from Shanghai Jiao Tong

University School of Medicine (20171901), the Shanghai Science and Technology

Commission (YDZX20173100004881), and the Shanghai Shen-Kang Hospital

Provenance and peer review: Not commissioned; externally peer reviewed.

YB and WW. Statistical analysis: YH and XJ.

Development Center (SHDC12016202).

Data sharing statement: No additional data available.

Competing interests: None declared.

1 2			17
2 3 4	355	Re	ferences
5 6	356	1.	Hertle E, Stehouwer CD, Van Greevenbroek MM. The complement system in
7 8 9	357		human cardiometabolic disease. Mol Immunol 2014; 61: 135-48.
9 10 11	358	2.	Kaur J. A comprehensive review on metabolic syndrome. Cardiol Res Pract 2014;
12 13	359		2014: 943162.
14 15	360	3.	WHO (2015) Cardiovascular diseases (CVDs). Available from
16 17 18	361		www.who.int/mediacentre/factsheets/fs317/en/index.html. Accessed 15 May 2016.
19 20	362	4.	Leal J, Luengo-Fernández R, Gray A, et al. Economic burden of cardiovascular
21 22	363		diseases in the enlarged European Union. Eur Heart J 2006; 27:1610–1619.
23 24 25	364	5.	Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics-2015
26 27	365		update: A report from the American Heart Association. Circulation 2015; 131: e29-
28 29	366		e322.
30 31 32	367	6.	Mao Z, Wu F, Shan Y. Identification of key gens and miRNAs associated with
33 34	368		carotid atherosclerosis based on mRNA-seq data. Medicine 2018; 97: e9832.
35 36	369	7.	Fernández-Friera L, Peñalvo JL, Fernández-Ortiz A, et al. Prevalence, vascular
37 38	370		distribution, and multiterritorial extent of subclinical atherosclerosis in a middle-
39 40 41	371		aged cohort: The PESA (Progression of Early Subclinical Atherosclerosis) Study.
42 43	372		Circulation 2015; 131: 2104-2113.
44 45	373	8.	Lorenz MW, Markus HS, Bots ML, et al. Prediction of clinical cardiovascular
46 47 48	374		events with carotid intima-media thickness: a systematic review and meta-analysis.
49 50	375		Circulation 2007; 115: 459-467.
51 52	376	9.	Fox CS, Massaro JM, Hoffmann U, et al. Abdominal visceral and subcutaneous
53 54 55	377		adipose tissue compartments: association with metabolic risk factors in the
56 57	378		Framingham Heart Study. Circulation 2007; 116: 39-48.
58 59 60	379	10.	Nielsen S, Guo Z, Johnson CM, et al. Splanchnic lipolysis in human obesity. J Clin

Page 19 of 32

BMJ Open

1 2		1.	8
2 3 4	380	Invest 2004; 113:1582-1588.	
5 6	381	11. Ho SC, Wang JY, Kuo HP, et al. Mid-arm and calf circumferences are stronger	
7 8 9	382	mortality predictors than body mass index for patients with chronic obstructive	
10 11	383	pulmonary disease. Int J Chron Obstruct Pulmon Dis 2016; 11: 2075-2080.	
12 13	384	12. Ellen L, Wanda J, Lisette C. Associations between changes in anthropometric	
14 15 16	385	measures and mortality in old age: a role for mid-upper arm circumference?	
17 18	386	JAMDA 2013; 187e193.	
19 20	387	13. Mason C, Craig CL, Katzmarzyk PT.Influence of central and extremity	
21 22	388	circumferences on all-cause mortality in men and women. Obesity (Silver	
23 24 25	389	Spring) 2008; 16(12):2690-5.	
26 27	390	14. Bates CJ, Hamer M, Mishra GD. A study of relationships between bone-related	
28 29	391	vitamins and minerals, related risk markers, and subsequent mortality in older	
30 31 32	392	British people: the National Diet and Nutrition Survey of People Aged 65 Years	
33 34	393	and Over. Osteoporos Int 2012; 23: 457–466.	
35 36	394	15. Suzuki A, Abdelmalek MF, Unalp-Arida A, et al. Regional anthropometric	
37 38	395	measures and hepatic fibrosis in patients with nonalcoholic fatty liver disease. Clin	
39 40 41	396	Gastroenterol Hepatol, 2010; 8(12): 1062-1069.	
42 43	397	16. Huang Y, Bi Y, Xu M, et al. Nonalcoholic fatty liver disease is associated with	
44 45	398	atherosclerosis in middle-aged and elderly Chinese. Arterioscler Thromb Vasc Biol	
46 47 48	399	2012; 32: 2321-2326.	
49 50	400	17. Chen Y, Xu M, Wang T, et al. Advanced fibrosis associates with atherosclerosis in	
51 52	401	subjects with nonalcoholic fatty liver disease. Atherosclerosis 2015; 241: 145-150.	
53 54 55	402	18. Craig CL, Marshall AL, Sjöström M, et al. International physical activity	
55 56 57	403	questionnaire: 12-country reliability and validity. Med Sci Sports Exerc 2003;	
58 59 60	404	35:1381-1395.	

Page 20 of 32

BMJ Open

1 2			19
2 3 4	405	19. Gul Sagun, Aytekin Oguz, Engin Karagoz, et al. Application of alternative	
5 6 7	406	anthropometric measurements to predict metabolic syndrome. Clinics 2014; 69:	
7 8 9	407	347-353.	
10 11	408	20. Diagnosis and classification of diabetes mellitus. Diabetes Care 2014; 37 (Suppl 1)):
12 13	409	S81-90.	
14 15 16	410	21. Wang T, Xu M, Xu Y, et al. Association of Bisphenol A exposure with	
17 18	411	hypertension and early macrovascular disease in Chinese Adults. Medicine	
19 20	412	(Baltimore) 2015; 94: e1814.	
21 22 23	413	22. Chen Y, Xu M, Wang T, et al. Advanced fibrosis associates with atherosclerosis in	i
23 24 25	414	subjects with nonalcoholic fatty liver disease. Atherosclerosis 2015; 241:145-150.	
26 27	415	23. Ogden CL, Carroll MD, Curtin LR, et al. Prevalence of overweight and obesity in	
28 29	416	the United States, 1999–2004. JAMA 2006; 295: 1549-55.	
30 31 32	417	24. Wu LW, Lin YY, Kao TW, et al. Mid-arm circumference and all Cause,	
33 34	418	cardiovascular, and cancer mortality among obese and non-obese US adults: the	
35 36 27	419	National Health and Nutrition Examination Survey III. Sci Rep 2017; 7: 2302.	
37 38 39	420	25. Kentaro Kamiya, Takashi Masuda, Yuya Matsue, et al. Complementary role of arn	n
40 41	421	circumference to body massindex in risk stratification in heart failure. JACC Heart	
42 43	422	Fail. 2016; 4(4):265-73.	
44 45 46	423	26. Araújo AJ, Santos AC, Prado WL. Body composition of obese adolescents:	
40 47 48	424	association between adiposity indicators and cardiometabolic risk factors. J Hum	
49 50	425	Nutr Diet 2017; 30(2):193-202.	
51 52 53	426	27. Wenzhen Ge, Faruque Parvez, Fen Wu, et al. Association between anthropometric	
55 55	427	measures of obesity and subclinical atherosclerosis in Bangladesh. Atherosclerosis	
56 57	428	2014; 232(1): 234–241.	
58 59 60	429	28. Tom SE, Cooper R, Patel KV, Guralnik JM. Menopausal characteristics and	

1		
2 3 4	430	physical functioning in older adulthood in the NHANES III. Menopause (New
5 6	431	York, NY) 2012; 19: 283.
7 8 9	432	29. Neff LM, Hoffmann ME, Zeiss DM, et al. Core body temperature is lower in
10 11	433	postmenopausal female than premenopausal female: potential implications for
12 13	434	energy metabolism and midlife weight gain. Cardiovasc Endocrinol 2016; 5: 151-
14 15 16	435	154.
17 18	436	30. Jonathan CK Wells, Philip Treleaven, and Tim J Cole. BMI compared with
19 20	437	dimensional body shape: the UK National Sizing Survey. Am J Clin Nutr 2007;
21 22 23	438	85:419-25.
23 24 25		
26		
27		
28 29		
30		
31		
32		
33		
34		
35		
36 37		
38		
39		
40		
41		
42		
43		
44 45		
45 46		
47		
48		
49		
50		
51		
52		
53 54		
55		
56		
57		
58		
59		
60		

1
1 2
3 4
4 5
6
/ 8
o 9
9 10
10
12
12
14
15
16
17
18
19
20
20
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
~~

439 Figure legends

440	Figure 1. Stratification analysis of the association between MUAC and subclinical
441	atherosclerosis in women. A: All participants were divided into subgroups based on
442	their average age (age < 62 years, age \ge 62 years), body mass index (BMI < 25 kg/m ² ,
443	BMI \ge 25 kg/m ²), or waist circumference (WC < 88 cm or WC \ge 88 cm). B: All
444	participants were divided into subgroups based on diabetes (yes or no), insulin
445	resistance (yes or no), or hypertension (yes or no). Data were presented as odds ratio
446	(OR) and 95% confidence interval (CI). P values were calculated from multivariable
447	logistic regression analysis. Adjusted for age (years), body mass index (kg/m ²), current
448	smoking (yes or no), current drinking (yes or no), physical activity (MET-h/wk), WC
449	(cm), C-reactive protein (mg/L), total cholesterol (mmol/L), HDL-C (mmol/L), LDL-C
450	(mmol/L), triglycerides (mmol/L), fasting plasma glucose (mmol/L), and systolic blood
451	pressure (mmHg).
451 452	pressure (mmHg). Figure 2. Association between MUAC and subclinical atherosclerosis according to
452	Figure 2. Association between MUAC and subclinical atherosclerosis according to
452 453	Figure 2. Association between MUAC and subclinical atherosclerosis according to combined categories of BMI and WC. A: MUAC in the BMI and WC subgroups in
452 453 454	Figure 2. Association between MUAC and subclinical atherosclerosis according to combined categories of BMI and WC. A: MUAC in the BMI and WC subgroups in women. B: Association of MUAC with risk of subclinical atherosclerosis in the BMI
452 453 454 455	Figure 2. Association between MUAC and subclinical atherosclerosis according to combined categories of BMI and WC. A: MUAC in the BMI and WC subgroups in women. B: Association of MUAC with risk of subclinical atherosclerosis in the BMI and WC subgroups in women. MUAC: mid-upper arm circumference, BMI: body mass
452 453 454 455 456	Figure 2. Association between MUAC and subclinical atherosclerosis according to combined categories of BMI and WC. A: MUAC in the BMI and WC subgroups in women. B: Association of MUAC with risk of subclinical atherosclerosis in the BMI and WC subgroups in women. MUAC: mid-upper arm circumference, BMI: body mass index, WC: waist circumference. Adjusted for age (years), body mass index (kg/m ²),
452 453 454 455 456 457	Figure 2. Association between MUAC and subclinical atherosclerosis according to combined categories of BMI and WC. A: MUAC in the BMI and WC subgroups in women. B: Association of MUAC with risk of subclinical atherosclerosis in the BMI and WC subgroups in women. MUAC: mid-upper arm circumference, BMI: body mass index, WC: waist circumference. Adjusted for age (years), body mass index (kg/m ²), current smoking (yes or no), current drinking (yes or no), physical activity (MET-h/wk),
452 453 454 455 456 457 458	Figure 2. Association between MUAC and subclinical atherosclerosis according to combined categories of BMI and WC. A: MUAC in the BMI and WC subgroups in women. B: Association of MUAC with risk of subclinical atherosclerosis in the BMI and WC subgroups in women. MUAC: mid-upper arm circumference, BMI: body mass index, WC: waist circumference. Adjusted for age (years), body mass index (kg/m ²), current smoking (yes or no), current drinking (yes or no), physical activity (MET-h/wk), WC (cm), C-reactive protein (mg/L), total cholesterol (mmol/L), HDL-C (mmol/L),

	Mid-upper arm circumference, cm							
	Quartile 1	Quartile 2	Quartile 3	Quartile 4				
	(15.5-27.1)	(27.2-29.1)	(29.2-31.2)	(31.3-43.3)	P for			
					trend			
n	1510	1570	1582	1625				
Age (years)	63.4 ± 9.2	62.2 ± 8.8	61.7 ± 8.6	61.6 ± 8.4	< 0.0001			
Female, n (%)	1110 (27.9)	1048 (26.4)	922 (23.2)	897 (22.6)				
Body mass index (kg/m2)	22.3 ± 2.8	24.2 ± 3.8	25.5 ± 3.2	27.9 ± 7.5	< 0.0001			
Waist circumference (cm)	75.6 ± 8.5	81.4 ± 7.9	85.5 ± 8.3	91.6 ± 9.2	< 0.0001			
Systolic blood pressure (mmHg)	132.6 ± 18.0	133.4 ± 17.3	136.0 ± 17.2	137.0 ± 16.4	< 0.0001			
Diastolic blood pressure (mmHg)	74.2 ± 9.5	75.7 ± 9.3	77.2 ± 9.2	78.0 ± 9.8	< 0.0001			
Current smoking, n (%)	196 (13.0)	279 (17.8)	346 (21.9)	393 (24.2)	< 0.0001			
Current drinking, n (%)	151 (10)	195 (12.4)	256 (16.2)	290 (17.9)	< 0.0001			
Physical activity (MET-h/wk)	21.0 (6.0-21.0)	15.3 (3.0-21.0)	15.0 (3.0-21.0)	15.0 (3.0-21.0)	0.30			
Fasting plasma glucose (mmol/L)	5.99 ± 1.36	6.06 ± 1.34	6.21 ± 1.57	6.28 ± 1.61	< 0.0001			
HOMA-IR	1.42 (0.99-2.15)	1.75 (1.20-2.57)	1.95 (1.35-2.86)	2.43 (1.69-3.55)	< 0.0001			
Total cholesterol (mmol/L)	5.28 ± 0.95	5.31 ± 0.98	5.26 ± 1.04	5.24 ± 1.08	0.20			
LDL-C (mmol/L)	3.56 ± 0.75	3.62 ± 0.77	3.62 ± 0.83	3.63 ± 0.81	0.02			
HDL-C (mmol/L)	1.42 ± 0.33	1.35 ± 0.29	1.31 ± 0.29	1.27 ± 0.27	< 0.0001			

es

Triglycerides (mmol/L)	1.33 (0.98-1.84)	1.49 (1.07-2.12)	1.58 (1.12-2.25)	1.66 (1.19-2.30)	< 0.0001
C-reactive protein (mg/L)	0.19 (0.14-0.28)	0.21 (0.16-0.31)	0.23(0.17-0.35)	0.25(0.18-0.39)	< 0.0001
CIMT (mm)	0.69 ± 0.16	0.70 ± 0.15	0.70 ± 0.14	0.72 ± 0.14	< 0.0001
Insulin resistance, n (%)	203 (13.5)	313 (20.0)	410 (26.0)	655 (40.5)	< 0.0001
Hypertension, n (%)	747 (49.5)	862 (52.7)	978 (61.9)	1108 (68.3)	< 0.0001
Diabetes, n (%)	368 (24.7)	403 (25.9)	457 (29.2)	533 (33.2)	< 0.0001
Subclinical atherosclerosis, n (%)	472 (31.3)	541 (34.5)	555 (35.1)	590 (36.3)	0.0035

 Data are presented as means \pm standard deviation (SD), or medians (inter-quartile ranges) for skewed variables, or number (proportions) for categorical variables. *P* values were calculated from one-way analysis of variance (ANOVA) for continuous variables and chi-square test for categorical variables. Subclinical atherosclerosis was defined as CIMT ≥ 0.8 mm, which is the cut-off point for the highest quartile of the total participants. Insulin resistance was defined as HOMA-IR ≥ 2.8 , which is the cut-off point for the highest quartile of the total participants. Abbreviations: MET, metabolic equivalent task; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; CIMT, carotid intima-media thickness; HOMA-IR indicates homeostasis model assessment of insulin resistance.

	OR (95% CI)					– P for trend	
		Quartile 1	Quartile 2	Quartile 3	Quartile 4	1-SD (3.13 cm)	
Total cohort							
Central obesity	Model 1	1.00	1.43 (0.99-2.05)	3.44 (2.45-4.82)	7.25 (5.12-10.3)	2.05 (1.85-2.28)	< 0.0001
	Model 2	1.00	1.43 (0.99-2.05)	3.44 (2.45-4.82)	7.25 (5.12-10.3)	2.05 (1.85-2.28)	< 0.0001
Diabetes	Model 1	1.00	1.00 (0.82-1.21)	1.13 (0.93-1.37)	1.26 (1.02-1.55)	1.09 (1.02-1.16)	0.02
	Model 2	1.00	0.87 (0.73-1.06)	0.89 (0.73-1.10)	0.87 (0.70-1.09)	0.96 (0.90-1.04)	0.33
Hypertension	Model 1	1.00	1.04 (0.87-1.24)	1.57 (1.30-1.89)	1.65 (1.34-2.04)	1.21 (1.14-1.30)	< 0.0001
	Model 2	1.00	0.92 (0.77-1.10)	1.29 (1.06-1.56)	1.23 (0.98-1.53)	1.10 (1.03-1.19)	0.006
Hypertriglyceridemia	Model 1	1.00	1.55 (1.25-1.92)	1.78 (1.43-2.21)	1.92 (1.53-2.41)	1.24 (1.15-1.35)	< 0.0001
	Model 2	1.00	1.31 (1.05-1.63)	1.32 (1.05-1.66)	1.19 (0.93-1.54)	1.03 (0.94-1.13)	0.28
Low HDL cholesterol	Model 1	1.00	1.40 (1.06-1.84)	1.80 (1.38-2.35)	2.06 (1.57-2.69)	1.26 (1.16-1.37)	< 0.0001
	Model 2	1.00	1.21 (0.91-1.60)	1.41 (1.06-1.86)	1.38 (1.02-1.88)	1.10 (1.01-1.22)	0.03
Women							
Central obesity	Model 1	1.00	1.49 (1.04-2.15)	3.54 (2.50-4.99)	7.10 (4.97-10.2)	2.01 (1.81-2.25)	< 0.0001
	Model 2	1.00	1.49 (1.04-2.15)	3.54 (2.50-4.99)	7.10 (4.97-10.2)	2.01 (1.81-2.25)	< 0.0001
Diabetes	Model 1	1.00	1.11 (0.89-1.41)	1.29 (1.01-1.65)	1.39 (1.07-1.80)	1.12 (1.03-1.22)	0.007
	Model 2	1.00	0.98 (0.77-1.24)	1.03 (0.80-1.32)	0.97 (0.73-1.29)	0.99 (0.91-1.09)	0.93

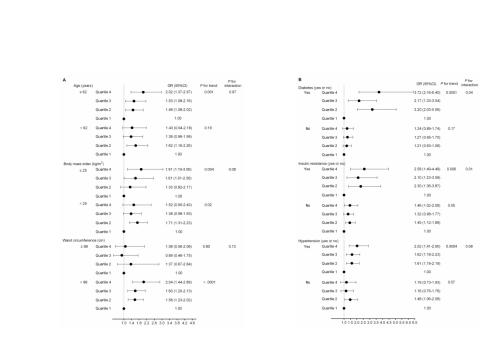
Hypertension	Model 1	1.00	1.10 (0.89-1.35)	1.93 (1.54-2.44)	1.80 (1.39-2.33)	1.27 (1.17-1.38)	< 0.0001
	Model 2	1.00	0.96 (0.78-1.18)	1.55 (1.23-1.97)	1.29 (0.98-1.68)	1.14 (1.05-1.24)	0.003
Hypertriglyceridemia	Model 1	1.00	1.63 (1.28-2.01)	1.89 (1.48-2.42)	1.84 (1.42-2.38)	1.25 (1.15-1.37)	< 0.0001
	Model 2	1.00	1.38 (1.08-1.78)	1.43 (1.09-1.86)	1.17 (0.87-1.58)	1.05 (0.94-1.17)	0.33
Low HDL cholesterol	Model 1	1.00	1.67 (1.17-2.38)	1.94 (1.36-2.77)	1.87 (1.29-2.71)	1.21 (1.09-1.35)	0.0007
	Model 2	1.00	1.47 (1.03-2.21)	1.56 (1.07-2.28)	1.32 (0.86-2.01)	1.08 (0.91-1.23)	0.23
Men							
Central obesity	Model 1	1.00	0.38 (0.02-6.61)	3.99 (0.49-32.0)	10.4 (1.33-81.2)	3.08 (1.92-4.95)	< 0.0001
	Model 2	1.00	0.38 (0.02-6.61)	3.99 (0.49-32.0)	10.4 (1.33-81.2)	3.08 (1.92-4.95)	< 0.0001
Diabetes	Model 1	1.00	0.79 (0.56-1.10)	0.85 (0.61-1.18)	0.97 (0.68-1.38)	1.01 (0.90-1.13)	0.84
	Model 2	1.00	0.69 (0.49-0.98)	0.68 (0.48-0.97)	0.69 (0.47-1.01)	0.91 (0.81-1.03)	0.12
Hypertension	Model 1	1.00	0.92 (0.66-1.29)	1.06 (0.76-1.48)	1.29 (0.89-1.88)	1.10 (0.98-1.24)	0.10
	Model 2	1.00	0.84 (0.60-1.17)	0.91 (0.65-1.28)	1.03 (0.70-1.52)	1.03 (0.91-1.16)	0.68
Hypertriglyceridemia	Model 1	1.00	1.37 (0.85-2.21)	1.46 (0.92-2.31)	1.66 (1.03-2.67)	1.13 (0.96-1.32)	0.04
	Model 2	1.00	1.19 (0.73-1.92)	1.15 (0.72-1.84)	1.13 (0.68-1.87)	0.97 (0.81-1.52)	0.81
Low HDL cholesterol	Model 1	1.00	1.01 (0.65-1.58)	1.42 (0.94-2.16)	1.62 (1.04-2.51)	1.21 (1.06-1.38)	0.006
	Model 2	1.00	0.92 (0.59-1.44)	1.22 (0.79-1.86)	1.27 (0.80-2.01)	1.12 (0.97-1.29)	0.13

Data were presented as odds ratio (OR) and 95% confidence interval (CI). *P* values were calculated from multivariable logistic regression analysis in quartile of mid-upper arm circumference. Model 1: adjusted for age (years), sex, body mass index (kg/m²), current smoking (yes or

no), current drinking (yes or no), physical activity (MET-h/wk); Model 2: further adjusted for waist circumference (cm), except for central obesity.

.-h/wk); Model 2: furth.

OR (95% CI)									
	Quartile 1	Quartile 2	Quartile 3	Quartile 4	1-SD (3.13 cm)	<i>P</i> for trend			
Total cohort						0.20*			
Cases/Participants	472 / 1510	541 / 1570	555 / 1582	590 / 1625	2158 / 6287				
Model 1	1.00	1.16 (1.00-1.34)	1.19 (1.02-1.38)	1.25 (1.08-1.45)	1.06 (1.01-1.12)	0.004			
Model 2	1.00	1.30 (1.08-1.56)	1.30 (1.07-1.58)	1.35 (1.09-1.67)	1.06 (0.98-1.15)	0.013			
Model 3	1.00	1.31 (1.09-1.58)	1.33 (1.10-1.62)	1.45 (1.16-1.80)	1.08 (0.99-1.17)	0.005			
Women									
Case/participants	287 / 1110	327 / 1048	275 / 922	282 / 897	1171 / 3977				
Model 1	1.00	1.30 (1.08-1.57)	1.22 (1.00-1.48)	1.32 (1.09-1.60)	1.07 (1.00-1.14)	0.014			
Model 2	1.00	1.54 (1.24-1.93)	1.43 (1.18-1.82)	1.53 (1.17-2.02)	1.11 (1.01-1.23)	0.007			
Model 3	1.00	1.54 (1.24-1.93)	1.42 (1.11-1.83)	1.66 (1.26-2.20)	1.14 (1.03-1.26)	0.002			
Men									
Case/participants	185 / 400	214 / 522	280 / 660	308 / 728	987 / 2310				
Model 1	1.00	0.81 (0.62-1.05)	0.86 (0.67-1.10)	0.85 (0.67-1.09)	0.93 (0.85-1.02)	0.39			
Model 2	1.00	0.89 (0.64-1.23)	1.04 (0.75-1.44)	1.00 (0.70-1.45)	0.97 (0.85-1.11)	0.71			
Model 3	1.00	0.90 (0.65-1.25)	1.06 (0.76-1.48)	1.05 (0.72-1.52)	0.99 (0.86-1.06)	0.54			


ants

egression 95% confidence interva s ouus rai (OK)(UI). ŀ analysis. *: the interaction of MUAC with sex on subclinical atherosclerosis. Model 1, unadjusted; Model 2, adjusted for age (years), sex, body

 BMJ Open

mass index (kg/m²), current smoking (yes or no), current drinking (yes or no), physical activity (MET-h/wk), waist circumference (cm); Model 3, further adjusted for C-reactive protein (mg/L), total cholesterol (mmol/L), HDL-C (mmol/L), LDL-C (mmol/L), triglycerides (mmol/L), fasting plasma glucose (mmol/L), and systolic blood pressure (mmHg).

For peer review only

338x190mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

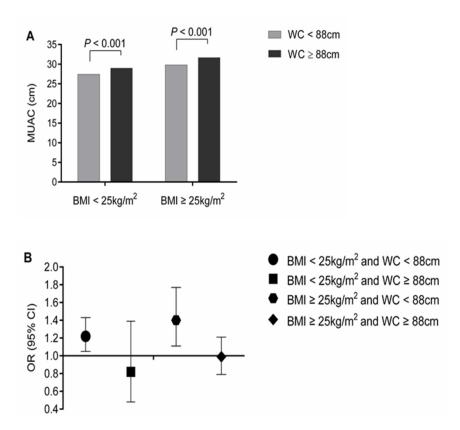


Figure 2 199x176mm (300 x 300 DPI)

3
4
4 5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
5Z
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

STROBE Statement—	-Checklist of items	s that should be include	ed in reports of cross	-sectional studies

	Item No	Recommendation	Page number
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	Page 1
		(b) Provide in the abstract an informative and balanced summary of what	Page 3-4
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	Page 5-4
		was done and what was found	
Introduction	2	Evaluin the countifie background and rationals for the investigation being	Page 5-6
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	Page 5-0
Objectives	3	State specific objectives, including any prespecified hypotheses	Page 6
Methods			
Study design	4	Present key elements of study design early in the paper	Page 6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	Page 6-7
Participants	6	(<i>a</i>) Give the eligibility criteria, and the sources and methods of selection of	Page 6-7
1 articipants	0	participants	1 age 0-7
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	Page 6-9
, and the	,	and effect modifiers. Give diagnostic criteria, if applicable	I uge o y
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	Page 7-9
measurement	Ũ	assessment (measurement). Describe comparability of assessment methods	ruge /)
		if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	Page 6-9
Study size	10	Explain how the study size was arrived at	Page 6-7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	Page 10
		applicable, describe which groupings were chosen and why	U
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	Page 9-10
		confounding	-
		(b) Describe any methods used to examine subgroups and interactions	Page 10
		(c) Explain how missing data were addressed	Page 7
		(<i>d</i>) If applicable, describe analytical methods taking account of sampling	
		strategy	
		(<u>e</u>) Describe any sensitivity analyses	Page 10
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers	Page 10
-		potentially eligible, examined for eligibility, confirmed eligible, included in	Page 22
		the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical,	Page 10-1
		social) and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of	
Outcoma data	15*	interest	Dags 10.1
Outcome data	15*	Report numbers of outcome events or summary measures	Page 10-12 Page 22
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted	Page 11-12
		estimates and their precision (eg, 95% confidence interval). Make clear	

2
4
5
6
7
8
9
10
11
11
12
13
14
15
16
17
18
19
20
20 21
21
22
23
24
25
26
27
27
28
29
30
31
32
33
34
35
36
20
37
38
39
40
41
42
43
44
44 45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
20

60

		which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	Page 9
		(<i>c</i>) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	Page 12
Discussion			
Key results	18	Summarise key results with reference to study objectives	Page 12-13
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	Page 14-15
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	Page 13-14
Generalisability	21	Discuss the generalisability (external validity) of the study results	Page 15
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	Page 16

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Association between mid-upper arm circumference and cardiometabolic risk in Chinese population: a crosssectional study

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-028904.R2
Article Type:	Research
Date Submitted by the Author:	04-Jul-2019
Complete List of Authors:	Hou, Yanan; Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital Jia, Xu; Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital Xuan, Liping; Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital Zhu, Wen; Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital Deng, Chanjuan; Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital Wang, Long; Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital University Medical School Affiliated Ruijin Hospital Zhao, Zhiyun; Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital Li, Mian; Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital Lu, Jieli; Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Department of Endocrine and Metabolic Diseases Xu, Yu; Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital Chen, Yuhong; Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital Bi, Yufang; Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Department of Endocrine and Metabolic Diseases Xu, Yu; Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital Bi, Yufang; Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Department of Endocrine and Metabolic Diseases Xu, Min; Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Department of Endocrine and Metabolic Diseases Xu, Min; Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases Xu, Min; Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital,
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Diabetes and endocrinology, Cardiovascular medicine
Keywords:	cardiometabolic risk, mid-upper arm circumference, subclinical atherosclerosis, upper body fat, Chinese adults

SCHOLARONE [™] Manuscripts
For noar roviow only http://bmionan.hmi.com/site/about/guidalines.yhtml
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Association between mid-upper arm circumference and cardiometabolic risk in
Chinese population: a cross-sectional study
Running title: Upper body fat and cardiometabolic risk
Kunning title: Opper body fat and cardiometabolic risk
Yanan Hou ¹ , Xu Jia ¹ , Liping Xuan ¹ , Wen Zhu ¹ , Chanjuan Deng ¹ , Long Wang ¹ , Zhiyun
Zhao ¹ , Mian Li ¹ , Jieli Lu ¹ , Yu Xu ¹ , Yuhong Chen ¹ , Weiqing Wang ¹ , Yufang Bi ¹ , Min
Xu ¹ , Tiange Wang ¹ ¶
¹ Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases,
Key Laboratory for Endocrine and Metabolic Diseases of the National Health
Commission of the PR China, Shanghai Institute of Endocrine and Metabolic Diseases,
Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
[¶] Corresponding author:
Tiange Wang, MD, PhD, Shanghai National Clinical Research Center for Endocrine
and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the
National Health Commission of the PR China, Shanghai Institute of Endocrine and
Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of
Medicine, Shanghai, China. Telephone: 86-21-64370045; Fax: 86-21-64749885; E-mail:
wtg@live.cn.

BMJ Open

		2
22	Abstract	
23	Objectives: Upper body fat has been associated with an unfavorable cardiometabolic	
24	risk. We aimed to investigate the associations between mid-upper arm circumference	
25	(MUAC), a novel indicator of upper body fat, and a wide spectrum of cardiometabolic	
26	risk profiles in Chinese population.	
27	Design and setting: Cross-sectional analyses were performed using data from a well-	
28	defined community in 2014, Shanghai, China.	
29	Participants: A total of 6287 Chinese adults (2310 men and 3977 women) aged 40	
30	years or older.	
31	Outcome measures: Multivariable logistic regression model was used to examine the	
32	associations of MUAC with cardiometabolic disorders including central obesity,	
33	diabetes, hypertension, hypertriglyceridemia, low high-density lipoprotein (HDL)	
34	cholesterol, and subclinical atherosclerosis.	
35	Results: In the overall participants, after multivariable adjustment, each 1-SD (3.13 cm	1)
36	increment in MUAC was positively associated with central obesity (OR, 2.05; 95% CI,	,
37	1.85-2.28), hypertension (OR, 1.10; 95% CI, 1.03-1.19), and low HDL cholesterol (OR	` ,
38	1.10; 95% CI, 1.01-1.22). Multivariable-adjusted ORs for subclinical atherosclerosis	
39	were gradually increased across increasing quartiles of MUAC with the lowest quartile	
40	as reference (quartile 2: OR, 1.31; 95% CI, 1.09-1.58; quartile 3: 1.33; 1.10-1.62;	
41	quartile 4: 1.45; 1.16-1.80; P for trend = 0.005). Similar but more prominent	
42	associations were observed among women than men. In addition, MUAC was	
43	significantly interacted with diabetes (P for interaction = 0.04) and insulin resistance (F)
44	for interaction = 0.01) on subclinical atherosclerosis.	

Conclusion: A greater MUAC was positively associated with higher risks of several cardiometabolic disorders and subclinical atherosclerosis in Chinese adults. **Keywords:** Cardiometabolic risk, mid-upper arm circumference, subclinical atherosclerosis, upper body fat, Chinese adults Strengths and limitations of this study: • The strengths of this study included a well-defined community setting, a fair sized sample size, and comprehensive measurements of cardiometabolic risk profiles. • The thorough analyses of the associations between MUAC and a wide spectrum of cardiometabolic risk profiles including central obesity, diabetes, hypertension, hypertriglyceridemia, low HDL cholesterol, and subclinical atherosclerosis. • Although our findings support that MUAC could be a reliable surrogate of upper body adiposity, MUAC is a measurement which reflect both adipose and lean tissue rather than a direct indicator for adiposity. • Age-related changes in body composition might influence these findings. • This study was restricted to middle-aged and elderly Chinese adults, and the generalizability of our findings should be cautious to other demographic and ethnic populations.

BMJ Open

Cardiometabolic disorders describe a spectrum of interconnected pathological alterations in the cardiovascular system and metabolic organs that symbiotically increase the risk of cardiovascular disease (CVD), which is a major cause of mortality and increasing burden of healthcare expenditure worldwide.¹⁻⁵ Several important cardiometabolic disorders, including obesity, diabetes, insulin resistance, dyslipidemia, and hypertension, are important risk factors for CVD and could be served as targets for early identification and personalized prevention for CVD.²⁻⁵ In addition, as a common contributor of CVD, atherosclerosis goes through a protracted subclinical phase and could only be detected at an advanced stage of CVD.^{6,7} Thus, identification of subclinical atherosclerosis in the asymptomatic period is also critical for the prevention of CVD progression. Noninvasive ultrasonography measured carotid intima media thickness (CIMT) is a well-established clinical index for early arteriosclerosis detection and therefore has been extensively adopted to measure subclinical atherosclerosis.⁸ Fat distribution, specifically upper body and visceral adiposity, has been proven highly relevant to cardiovascular risk.^{9,10} In addition to the conventional body fat indices such as body mass index (BMI) and waist circumference (WC), mid-upper arm circumference (MUAC), a novel anthropometric measurement, has been widely used in the screening of malnutrition, adiposity and chronic diseases.¹¹ However, current epidemiological studies have revealed inconsistent results with regard to the association between MUAC and cardiometabolic risk. A cross-sectional study using data from the National Health and Nutrition Examination Survey (NHANES) 1999 to 2006 circles has reported a positive association between MUAC and insulin resistance in non-obese individuals but no significant association in obese individuals.⁹ In a prospective cohort

study of 1061 European elderly participants with a follow-up of approximately 6 years,
a larger MUAC was associated with elevated risks of all-cause or CVD mortality.¹² By
contrast, in the Canada Fitness Survey of 10638 adults, a larger MUAC was
independently associated with a lower risk of all-cause mortality.¹³ And such inverse
association between a larger MUAC and a lower risk of mortality was also documented
in the British National Diet and Nutrition Survey of 1054 participants with more than 15
years of followe-up.¹⁴

So far, most of the previous studies were conducted in European population. Chinese population tend to have a higher percentage of body fat, a weaker willingness on body build, and less muscle mass as well as connective tissue as compared with their European counterparts.¹⁵ These different features in body composition may translate into varying susceptibilities to adiposity related cardiometabolic disorders. However, comprehensive analyses on associations between MUAC and cardiovascular risk profiles in Chinese population are still limited. Therefore, this study aimed to investigate the association between MUAC and multiple cardiometabolic disorders as well as subclinical atherosclerosis in Chinese population.

105 Methods

Study population

107 This is a cross-sectional analysis based on one of the follow-up circles of the established
108 community-based cohort.^{16,17} Eligible participants aged 40 years or older were
109 identified from the local residence registration records. There was no restriction on
110 ethnicity or gender. Each eligible participant was recruited by trained community staff

Page 7 of 38

BMJ Open

111	and local health workers using a door-to-door invitation method. Participants who
112	consented for the study and signed informed consent were scheduled for health
113	examinations. Briefly, a total of 6570 participants aged 40 years or older were enrolled
114	from Jiading district, Shanghai, China, from August 2014 to May 2015. All participants
115	received anthropometric measurements including height, weight, WC, and MUAC, a
116	standard 75-g oral glucose tolerance test (OGTT), and a standard questionnaire to
117	collect information regarding social demographic characteristics, education attainment,
118	lifestyle factors, and history of disease and medicine. Blood samples were collected for
119	biochemical measurements. In the present study, 283 participants were excluded due to
120	missing data on MUAC or CIMT, and a total of 6287 participants were included in the
121	final analysis. This study was approved by the Institutional Review Board of Ruijin
122	Hospital Affiliated to Shanghai Jiao Tong University School of Medicine. Written
123	informed consents were obtained from all study participants.

Data collection and biochemical measurements

Detailed information on sociodemographic characteristics, education attainment, and lifestyle factors including smoking and alcohol drinking habits and physical activity, family history, and medical history were obtained by using a standard questionnaire administered by trained personnel. Current smokers or alcohol drinkers were defined as persons who consumed any kinds of cigarettes or alcohol regularly in the past 6 months, respectively. Physical activity in term of metabolic equivalent (MET) hour/week was calculated according to the short form of the International Physical Activity Questionnaire including physical activities both during leisure time and at work.¹⁸

Anthropometric measurements including height, weight, WC, and MUAC were assessed by well-trained physician according to a standard protocol. Body height and weight were measured with participants wearing light clothes without shoes to the nearest 0.1 centimeter and 0.1 kg, respectively. BMI was calculated as body weight in kilograms divided by body height in meters squared (kg/m²). MUAC was measured on the upper left arm (halfway between the acromion process and the olecranon process) with the participants' bilateral arms hanging down naturally.¹⁹ WC was measured at the level of the umbilicus with the participants in the standing position. Systolic and diastolic blood pressures were measured in the non-dominant arm with an automated electronic sphygmomanometer (OMRON Model HEM-752 FUZZY, Omron Company, Dalian, China) three times (averaged for analysis) consecutively with 1 min interval after at least 5 min rest in a seated position. All participants were undertaken a 75-g OGTT after an overnight fasting. Fasting plasma glucose and OGTT 2-hour plasma glucose were measured using hexokinase method on a clinical chemistry diagnostic system (Modular P800; Roche, Basel, Switzerland). Serum concentrations of total cholesterol, triglycerides, high-density lipoprotein (HDL) cholesterol and low-density lipoprotein (LDL) cholesterol were measured by an autoanalyzer (Modular E170; Roche). High sensitive C-reactive protein concentration was determined by highly sensitive competitive immunoassay (antigens and antibodies from Beckman coulter IMMAGE800, America). Serum insulin was measured by using the electrochemiluminescence methods on an Immunology analyzer (RIABEAD II; Abbott, Tokyo, Japan). Homeostasis model assessment of insulin resistance (HOMA-IR) was calculated as fasting insulin (μ IU/mL) × fasting plasma glucose (mmol/L) / 22.5, and insulin resistance was defined as HOMA-IR \geq 2.8, which is the cut-off point for the highest quartile of the total participants.

160	Definitions of cardiometabolic risk profile
161	Type 2 diabetes was defined as fasting plasma glucose \geq 7.0 mmol/L or OGTT 2-hour
162	plasma glucose \geq 11.1 mmol/L or use of anti-diabetic agents. ²⁰ Hypertension was
163	defined as systolic blood pressure \geq 140 mmHg, diastolic blood pressure \geq 90 mmHg or
164	current taking an antihypertensive medication. Central obesity was defined as $WC \ge 102$
165	cm for men and \geq 88 cm for women. Hypertriglyceridemia was defined as triglycerides
166	\geq 2.26 mmol/L. Low HDL cholesterol was defined as a level of HDL cholesterol < 1.04
167	mmol/L.
168	CIMT measurement was conducted by a trained sonographer using a high-
169	resolution B-mode tomographic ultrasound system (Esaote Biomedica SpA, Genoa,
170	Italy) with a linear 7.5 MHz transducer. ²¹ The position of CIMT measurement was
171	recorded on the far wall of both right and left common carotid arteries, 1.5 cm proximal
172	to the bifurcation. CIMT was measured on-line at the end of diastole as a distance from
173	the leading edge of the first echogenic line to that of the second. These two lines
174	represent the lumen-intima interface and collagen-contained upper layer of tunic
175	adventitia, respectively. Subclinical atherosclerosis was defined as a bilateral CIMT
176	average greater than 0.8 mm, which is the highest quartile cut-off point of the total
177	participants.
178	

179 Statistical analyses

180 SAS version 9.4 (SAS Institute Inc, Cary, NC, USA) was used for statistical analysis.
181 Continuous variables were described as means ± standard deviations (SDs) or medians

Page 10 of 38

BMJ Open

(interquartile ranges), and categorical variables as numbers (percentages). Variables
with skewed distributions, such as HOMA-IR, triglycerides, and C-reactive protein,
were normalized by logarithmic transformation before analysis.

Participants were divided into four subgroups according to quartiles of MUAC. The ranges of MUAC within each quartile were 15.5 to 27.1 cm for quartile 1, 27.2 to 29.1 cm for quartile 2, 29.2 to 31.2 cm for quartile 3, and 31.3 to 43.3 cm for quartile 4. Linear regression analysis was used to test the trend of continuous variables across MUAC quartiles and the Cochran-Armitage trend chi-square test was used to test the differences of proportions of categorical variables. Multivariable linear regression and multivariable logistic regression analyses were conducted to assess the associations of MUAC with multiple cardiometabolic disorders and subclinical atherosclerosis, with adjustment for age, sex, BMI, WC, current smoking, current drinking, physical activity, C-reactive protein, total cholesterol, HDL cholesterol, LDL cholesterol, triglycerides, fasting plasma glucose, and systolic blood pressure. Stratification analyses by age, BMI, WC, diabetes, insulin resistance, and hypertension were also performed. Interactions were tested by adding the respective multiplicative terms in the models simultaneously. Statistical significance was set to a two-sided *P* value of less than 0.05.

200 Patient and public involvement

This study was conducted without patient and public involvement. No patients were
invited to take participate in the development of the research question and outcome
measures, the study design and the interpretation of the results. The findings from this
study will be disseminated to the participants after the results are published in a peerreviewed journal.

Results **Characteristics of the study participants** Study participants included 2310 (36.7%) men and 3977 (63.3%) women with an average age of 62.2 years (SD: 8.78). Sociodemographic and clinical characteristics of the study participants according to MUAC quartiles are shown in Table 1. Participants with a large MUAC were younger, had higher levels of BMI, WC, systolic and diastolic blood pressures, fasting plasma glucose, HOMA-IR, LDL cholesterol, triglycerides, C-reactive protein, and CIMT, had higher proportions of insulin resistance, hypertension, diabetes, and subclinical atherosclerosis, and had lower levels of HDL cholesterol (all P values < 0.05; Table 1). Consistent linear associations were observed between MUAC and these cardiometabolic profiles (Supplemental Table1). Association between MUAC and cardiometabolic disorders As shown in Table 2, the multivariable-adjusted OR per 1-SD increment (3.13 cm) in MUAC was 2.05 (95% CI, 1.85-2.28) for central obesity, 1.09 (1.02-1.16) for diabetes, 1.21 (1.14-1.30) for hypertension, 1.24 (1.15-1.35) for hypertriglyceridemia, and 1.26(1.16-1.37) for low HDL cholesterol. Most of these associations were not substantially changed after additional adjustment for WC, except for diabetes and hypertriglyceridemia. When stratified by sex, similar but more prominent associations between MUAC and these cardiometabolic disorders were observed among women.

228 Association between MUAC and subclinical atherosclerosis

In total participants, we observed strong and positive association between MUAC and
subclinical atherosclerosis with fully adjustment (Table 3). The OR for subclinical
atherosclerosis was 1.31 (95% CI, 1.09-1.58) for quartile 2 of MUAC, 1.33 (95% CI,
1.10-1.62) for quartile 3, and 1.45 (95% CI, 1.16-1.80) for quartile 4 as compared with
the lowest quartile (P for trend = 0.005). When stratified by sex, statistically significant
results were observed among women but not among men.

236 Stratification analyses by traditional cardiovascular risk factors

We further examined the association between MUAC and subclinical atherosclerosis across strata of traditional cardiometabolic risk factors. In women, MUAC was associated with subclinical atherosclerosis among participants who aged > 62 years. with BMI \geq 25 kg/m² or waist circumference < 88 cm (Figure 1A), and among participants with diabetes, insulin resistance, or hypertension (Figure 1B). Moreover, there were significant interactions of MUAC with diabetes and insulin resistance on subclinical atherosclerosis (P for interaction = 0.04 and 0.01, respectively). These association patterns were not observed in men (Supplementary Figure 1).

To further evaluate whether the association of MUAC with subclinical
atherosclerosis is influenced by BMI and WC, we replicated the analyses within
combinations of BMI and WC. In women, those with higher WC were more likely to
have larger MUAC, regardless of BMI levels (Figure 2A). And MUAC was
independently associated with subclinical atherosclerosis in the combination of WC <

Page 13	of 38	BMJ Open
1		12
2 3 4	250	88 cm and BMI < 25 kg/m ² (OR, 1.22; 95% CI, 1.05-1.43) and the combination of WC
5	251	< 88 cm and BMI ≥ 25 kg/m ² (OR, 1.40; 95% CI, 1.11-1.77) (Figure 2B).
7 8 9	252	
10 11 12 13	253	Discussion
14 15 16	254	In this cross-sectional study of 6287 community dwelling Chinese adults, MUAC was
17 18	255	positively associated with a series of cardiometabolic disorders including central obesity,
19 20	256	hypertension, low HDL cholesterol, and subclinical atherosclerosis. These associations
21 22	257	were independent from traditional cardiovascular risk factors, and were more prominent
23 24 25	258	in women. Moreover, we observed significant interactions of MUAC with diabetes and
26 27 28	259	insulin resistance in relation to subclinical atherosclerosis.
29 30	260	MUAC has been accepted as a widely used indicator of upper body adiposity in
31 32 33	261	children, adolescents, and adults. ^{22, 23} Previous studies have shown mixed results on the
34 35	262	associations between MUAC and CVD. ²⁴⁻²⁷ Findings from a retrospective cohort study
36 37	263	of 771 Japanese adults have suggested that MUAC may play a complementary role to
38 39	264	BMI in predicting prognosis in patients with heart failure. ²⁴ In addition, a cross-
40 41 42	265	sectional study of 93 pubertal obese adolescents from Brazil have associated a larger
42 43 44	266	MUAC with a higher level of HOMA-IR and a higher cardiometabolic risk score. ²⁵ On
45 46	267	the contrary, results from the Health Effects of Arsenic Longitudinal Study of 562
47 48	268	middle-aged participants who were free of CVD in rural Bangladesh have shown no
49 50 51	269	relationship between MUAC and CIMT. ²⁷ Our study has extended the existing evidence
52 53	270	by demonstrating that a greater MUAC was associated with higher prevalent risk of
54 55	271	multiple cardiometabolic disorders including central obesity, hypertension, low HDL
56 57	272	cholesterol, and subclinical atherosclerosis in Chinese adults, particularly among
58 59 60	273	women. Central obesity, hypertension, low HDL cholesterol, and subclinical

Page 14 of 38

atherosclerosis have been robustly associated with increased risks of CVD, therefore
detecting more effective risk factors for these cardiometabolic disorders is critical to the
prevention of CVD. Our findings highlight the importance of paying more attention to
women with higher MUAC in the early identification and precise prevention of
cardiometabolic disorders.

Explanations for the observations between MUAC and cardiometabolic risk are multifactorial. Our study found that MUAC level tended to decrease with age and there was a stronger association between MUAC and subclinical atherosclerosis among women aged 62 years or older. Aging is a critical factor in the changing process of metabolism and body composition. Fat-free mass and muscle mass reduced while substantial visceral fat increased with aging, even under the condition of body weight unchanged.²⁷ It has been documented that individuals aged greater than 65 years would suffer a reduction in muscle mass over 25% per year; and this rate can be accelerated to 50% per year for those older than 80 years.²⁷⁻²⁹ In addition, we found that MUAC was associated with subclinical atherosclerosis in a sex-specific manner. One plausible explanation for the sex difference in MUAC-subclinical atherosclerosis relationship may be due to the biological differences between men and women, such as hormones effect, immune system responses, muscle capacity and physical function. For instance, men tend to have greater muscle capacity and higher muscle mass than women due to higher levels of testosterone.²³ Body fat redistributes to upper body and to a preferential adiposity around the waist with age and this trend was more obvious in women than in men.²⁹ The sex difference in redistribution of body fat may partly contribute to the observed more predominant associations between MUAC and cardiometabolic disorders among women.

Page 15 of 38

BMJ Open

2 3 4	298	The strength of this study is the comprehensive analyses of the association between
5 6	299	MUAC and a wide spectrum of cardiometabolic risk profiles in a well-defined
7 8	300	community setting with fair sized sample and desirable population homogeneity.
9 10 11	301	Several limitations should be considered. First, due to a cross-sectional nature of the
12 13	302	present study, no causal inference can be drawn. Second, although our findings
14 15	303	supported that MUAC could be a reliable surrogate of upper body adiposity, MUAC is a
16 17 18	304	measurement which reflect both adipose and lean tissue rather than a direct indicator for
19 20	305	adiposity. Third, although we have carefully adjusted for multiple confounders, age-
21 22	306	related changes in body composition might influence these findings. Fourth, MUAC
23 24 25	307	measurement was performed on the left arm, though it should be determined on the non-
25 26 27	308	dominant arm. Given that the majority of Chinese population were right-handers,
28 29	309	measurement protocol employed in our study for MUAC was acceptable. Finally, this
30 31	310	study was restricted to middle-aged and elderly Chinese adults, and the generalizability
32 33 34	311	of our findings should be cautious to other demographic and ethnic populations.
35 36	312	In conclusion, our study provided novel evidence of positive associations between
37	512	In conclusion, our study provided nover evidence of positive associations between
38 39	313	MUAC and cardiometabolic disorders as well as subclinical atherosclerosis in Chinese
40 41 42	314	population. Our findings suggest that MUAC, as a convenient and inexpensive
43 44	315	measurable metric, can be potentially used as a risk stratification indicator in the early
45 46	316	detection and prevention of CVD.
47		
48 40		
49 50		
51		
52		
53		

317 Acknowledgments

We thank all the study participants for their participation and contribution. The presentstudy would not have been possible without the participation of the participants.

321 Footnotes

322 Contributors: All authors had full access to all the data in the study and take

responsibility for the integrity of the data and the accuracy of the data analysis. Study

324 concept and design: TW, MX, YB and WW. Acquisition of data: YH, XJ, LX, WZ, CD,

325 LW, ZZ, ML, JL, YX, and YC. Analysis and interpretation of data: YH, TW, MX, YB

and WW. Drafting of the manuscript: YH. Critical revision of the manuscript: TW, MX,

327 YB and WW. Statistical analysis: YH and XJ.

Founding: This work was supported by grants from the National Natural Science

329 Foundation of China (81770842and 81561128019), the Ministry of Science and

330 Technology of China (2018YFC1311705, 2016YFC1305600 and 2016YFC1304904),

the Shanghai Pujiang Program (18PJ1409600), the "Shanghai Municipal Education

332 Commission–Gaofeng Clinical Medicine Grant Support" from Shanghai Jiao Tong

333 University School of Medicine (20171901), the Shanghai Science and Technology

Commission (YDZX20173100004881), and the Shanghai Shen-Kang Hospital

335 Development Center (SHDC12016202).

Competing interests: None.

337 Patient consent for publication: Written informed consent was obtained from all study338 participants.

Ethics approval: The study protocol was approved by the Institutional Review Board

340 of Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine.

Provenance and peer review: Not commissioned; externally peer reviewed.

342 Data sharing statement: No additional data available.

for peer teries only

BMJ Open

343	Ref	ferences
344	1.	Hertle E, Stehouwer CD, Van Greevenbroek MM. The complement system in
345		human cardiometabolic disease. Mol Immunol 2014; 61: 135-48.
346	2.	Kaur J. A comprehensive review on metabolic syndrome. Cardiol Res Pract 2014;
347		2014: 943162.
348	3.	WHO (2015) Cardiovascular diseases (CVDs). Available from
349		www.who.int/mediacentre/factsheets/fs317/en/index.html. Accessed 15 May 2016.
350	4.	Leal J, Luengo-Fernández R, Gray A, et al. Economic burden of cardiovascular
351		diseases in the enlarged European Union. Eur Heart J 2006; 27:1610–1619.
352	5.	Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics-2015
353		update: A report from the American Heart Association. Circulation 2015; 131: e29-
354		e322.
355	6.	Mao Z, Wu F, Shan Y. Identification of key gens and miRNAs associated with
356		carotid atherosclerosis based on mRNA-seq data. Medicine 2018; 97: e9832.
357	7.	Fernández-Friera L, Peñalvo JL, Fernández-Ortiz A, et al. Prevalence, vascular
358		distribution, and multiterritorial extent of subclinical atherosclerosis in a middle-
359		aged cohort: The PESA (Progression of Early Subclinical Atherosclerosis) Study.
360		Circulation 2015; 131: 2104-2113.
361	8.	Lorenz MW, Markus HS, Bots ML, et al. Prediction of clinical cardiovascular
362		events with carotid intima-media thickness: a systematic review and meta-analysis.
363		Circulation 2007; 115: 459-467.
364	9.	Fox CS, Massaro JM, Hoffmann U, et al. Abdominal visceral and subcutaneous
365		adipose tissue compartments: association with metabolic risk factors in the
366		Framingham Heart Study. Circulation 2007; 116: 39-48.
367	10.	Nielsen S, Guo Z, Johnson CM, et al. Splanchnic lipolysis in human obesity. J Clin

BMJ Open

2			2
2 3 4	368	Invest 2004; 113:1582-1588.	
5 6	369	11. Ho SC, Wang JY, Kuo HP, et al. Mid-arm and calf circumferences are stronger	
7 8 9	370	mortality predictors than body mass index for patients with chronic obstructive	
9 10 11	371	pulmonary disease. Int J Chron Obstruct Pulmon Dis 2016; 11: 2075-2080.	
12 13	372	12. Ellen L, Wanda J, Lisette C. Associations between changes in anthropometric	
14 15	373	measures and mortality in old age: a role for mid-upper arm circumference?	
16 17 18	374	JAMDA 2013; 187e193.	
19 20	375	13. Mason C, Craig CL, Katzmarzyk PT.Influence of central and extremity	
21 22	376	circumferences on all-cause mortality in men and women. Obesity (Silver	
23 24 25	377	Spring) 2008; 16(12):2690-5.	
25 26 27	378	14. Bates CJ, Hamer M, Mishra GD. A study of relationships between bone-related	
28 29	379	vitamins and minerals, related risk markers, and subsequent mortality in older	
30 31 32	380	British people: the National Diet and Nutrition Survey of People Aged 65 Years	
32 33 34	381	and Over. Osteoporos Int 2012; 23: 457–466.	
35 36	382	15. Suzuki A, Abdelmalek MF, Unalp-Arida A, et al. Regional anthropometric	
37 38	383	measures and hepatic fibrosis in patients with nonalcoholic fatty liver disease. Clin	
39 40 41	384	Gastroenterol Hepatol, 2010; 8(12): 1062-1069.	
42 43	385	16. Huang Y, Bi Y, Xu M, et al. Nonalcoholic fatty liver disease is associated with	
44 45	386	atherosclerosis in middle-aged and elderly Chinese. Arterioscler Thromb Vasc Biol	
46 47 48	387	2012; 32: 2321-2326.	
48 49 50	388	17. Chen Y, Xu M, Wang T, et al. Advanced fibrosis associates with atherosclerosis in	
51 52	389	subjects with nonalcoholic fatty liver disease. Atherosclerosis 2015; 241: 145-150.	
53 54	390	18. Craig CL, Marshall AL, Sjöström M, et al. International physical activity	
55 56 57	391	questionnaire: 12-country reliability and validity. Med Sci Sports Exerc 2003;	
58 59 60	392	35:1381-1395.	

Page 20 of 38

BMJ Open

1			19
2 3 4	393	19.	Gul Sagun, Aytekin Oguz, Engin Karagoz, et al. Application of alternative
5 6	394		anthropometric measurements to predict metabolic syndrome. Clinics 2014; 69:
7 8 9	395		347-353.
10 11	396	20.	Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes
12 13	397		mellitus and its complications. Part 1: diagnosis and classification of diabetes
14 15 16	398		mellitus provisional report of a WHO consultation. Diabet Med. 1998, 15(7): 539-
17 18	399		553.
19 20	400	21.	Chen Y, Xu M, Wang T, et al. Advanced fibrosis associates with atherosclerosis in
21 22 23	401		subjects with nonalcoholic fatty liver disease. Atherosclerosis 2015; 241:145-150.
23 24 25	402	22.	Ogden CL, Carroll MD, Curtin LR, et al. Prevalence of overweight and obesity in
26 27	403		the United States, 1999–2004. JAMA 2006; 295: 1549-55.
28 29	404	23.	Wu LW, Lin YY, Kao TW, et al. Mid-arm circumference and all Cause,
30 31 32	405		cardiovascular, and cancer mortality among obese and non-obese US adults: the
33 34	406		National Health and Nutrition Examination Survey III. Sci Rep 2017; 7: 2302.
35 36	407	24.	Kentaro Kamiya, Takashi Masuda, Yuya Matsue, et al. Complementary role of arm
37 38 30	408		circumference to body massindex in risk stratification in heart failure. JACC Heart
39 40 41	409		Fail. 2016; 4(4):265-73.
42 43	410	25.	Araújo AJ, Santos AC, Prado WL. Body composition of obese adolescents:
44 45	411		association between adiposity indicators and cardiometabolic risk factors. J Hum
46 47 48	412		Nutr Diet 2017; 30(2):193-202.
49 50	413	26.	Wenzhen Ge, Faruque Parvez, Fen Wu, et al. Association between anthropometric
51 52	414		measures of obesity and subclinical atherosclerosis in Bangladesh. Atherosclerosis
53 54 55	415		2014; 232(1): 234–241.
55 56 57	416	27.	Tom SE, Cooper R, Patel KV, Guralnik JM. Menopausal characteristics and
58 59 60	417		physical functioning in older adulthood in the NHANES III. Menopause (New

1 2				2
2 3 4	418		York, NY) 2012; 19: 283.	
5 6	419	28.	Neff LM, Hoffmann ME, Zeiss DM, et al. Core body temperature is lower in	
7 8	420		postmenopausal female than premenopausal female: potential implications for	
9 10 11	421		energy metabolism and midlife weight gain. Cardiovasc Endocrinol 2016; 5: 151	-
12 13	422		154.	
14 15	423	29.	Jonathan CK Wells, Philip Treleaven, and Tim J Cole. BMI compared with	
16 17 18	424		dimensional body shape: the UK National Sizing Survey. Am J Clin Nutr 2007;	
19 20	425		85:419–25.	
21 22				
23 24				
25 26				
27 28				
29				
30 31				
32				
33 34				
35				
36 37				
38				
39 40				
41 42				
42 43				
44 45				
45 46				
47 48				
40 49				
50 51				
52				
53 54				
55				
56				
57 58				
59				
60				

1 2	
2	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
8 9 10 11 12 13 14 15 16 17 18	
19	
20	
20	
20 21 22 23 24 25 26 27 28 29	
23	
24	
25	
26	
27	
28	
30	
31	
32	
33 24	
34 35	
36	
35 36 37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47 40	
48 49	
49 50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

426	Figure legends
427	Figure 1. Stratification

427	Figure 1. Stratification analysis of the association between MUAC and subclinical
428	atherosclerosis in women. A: All participants were divided into subgroups based on
429	their average age (age < 62 years, age \ge 62 years), body mass index (BMI < 25 kg/m ² ,
430	BMI \ge 25 kg/m ²), or waist circumference (WC < 88 cm or WC \ge 88 cm). B: All
431	participants were divided into subgroups based on diabetes (yes or no), insulin
432	resistance (yes or no), or hypertension (yes or no). Data were presented as odds ratio
433	(OR) and 95% confidence interval (CI). P values were calculated from multivariable
434	logistic regression analysis. Adjusted for age (years), body mass index (kg/m ²), current
435	smoking (yes or no), current drinking (yes or no), physical activity (MET-h/wk), WC
436	(cm), C-reactive protein (mg/L), total cholesterol (mmol/L), HDL cholesterol (mmol/L),
437	LDL cholesterol (mmol/L), triglycerides (mmol/L), fasting plasma glucose (mmol/L),
438	and systolic blood pressure (mmHg).
439	Figure 2. Association between MUAC and subclinical atherosclerosis according to
440	combined categories of BMI and WC. A: MUAC in the BMI and WC subgroups in
441	women. B: Association of MUAC with risk of subclinical atherosclerosis in the BMI
442	and WC subgroups in women. MUAC: mid-upper arm circumference, BMI: body mass
443	index, WC: waist circumference. Adjusted for age (years), body mass index (kg/m ²),
444	current smoking (yes or no), current drinking (yes or no), physical activity (MET-h/wk),
445	WC (cm), C-reactive protein (mg/L), total cholesterol (mmol/L), HDL cholesterol
446	(mmol/L), LDL cholesterol (mmol/L), triglycerides (mmol/L), fasting plasma glucose
447	(mmol/L), and systolic blood pressure (mmHg).

	Mid-upper arm c	ircumference, cm			
	Quartile 1	Quartile 2	Quartile 3	Quartile 4	
	(15.5-27.1)	(27.2-29.1)	(29.2-31.2)	(31.3-43.3)	P for
					trend
n	1510	1570	1582	1625	
Age (years)	63.4 ± 9.2	62.2 ± 8.8	61.7 ± 8.6	61.6 ± 8.4	< 0.000
Female, n (%)	1110 (27.9)	1048 (26.4)	922 (23.2)	897 (22.6)	
Body mass index (kg/m2)	22.3 ± 2.8	24.2 ± 3.8	25.5 ± 3.2	27.9 ± 7.5	< 0.000
Waist circumference (cm)	75.6 ± 8.5	81.4 ± 7.9	85.5 ± 8.3	91.6 ± 9.2	< 0.000
Systolic blood pressure (mmHg)	132.6 ± 18.0	133.4 ± 17.3	136.0 ± 17.2	137.0 ± 16.4	< 0.000
Diastolic blood pressure (mmHg)	74.2 ± 9.5	75.7 ± 9.3	77.2 ± 9.2	78.0 ± 9.8	< 0.000
Current smoking, n (%)	196 (13.0)	279 (17.8)	346 (21.9)	393 (24.2)	< 0.000
Current drinking, n (%)	151 (10)	195 (12.4)	256 (16.2)	290 (17.9)	< 0.000
Physical activity (MET-h/wk)	21.0 (6.0-21.0)	15.3 (3.0-21.0)	15.0 (3.0-21.0)	15.0 (3.0-21.0)	0.30
Fasting plasma glucose (mmol/L)	5.99 ± 1.36	6.06 ± 1.34	6.21 ± 1.57	6.28 ± 1.61	< 0.000
HOMA-IR	1.42 (0.99-2.15)	1.75 (1.20-2.57)	1.95 (1.35-2.86)	2.43 (1.69-3.55)	< 0.000
Total cholesterol (mmol/L)	5.28 ± 0.95	5.31 ± 0.98	5.26 ± 1.04	5.24 ± 1.08	0.20
LDL cholesterol (mmol/L)	3.56 ± 0.75	3.62 ± 0.77	3.62 ± 0.83	3.63 ± 0.81	0.02

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

HDL cholesterol (mmol/L)	1.42 ± 0.33	1.35 ± 0.29	1.31 ± 0.29	1.27 ± 0.27	< 0.0001
Triglycerides (mmol/L)	1.33 (0.98-1.84)	1.49 (1.07-2.12)	1.58 (1.12-2.25)	1.66 (1.19-2.30)	< 0.0001
C-reactive protein (mg/L)	0.19 (0.14-0.28)	0.21 (0.16-0.31)	0.23(0.17-0.35)	0.25(0.18-0.39)	< 0.0001
CIMT (mm)	0.69 ± 0.16	0.70 ± 0.15	0.70 ± 0.14	0.72 ± 0.14	< 0.0001
Insulin resistance, n (%)	203 (13.5)	313 (20.0)	410 (26.0)	655 (40.5)	< 0.0001
Hypertension, n (%)	747 (49.5)	862 (52.7)	978 (61.9)	1108 (68.3)	< 0.0001
Diabetes, n (%)	368 (24.7)	403 (25.9)	457 (29.2)	533 (33.2)	< 0.0001
Subclinical atherosclerosis, n (%)	472 (31.3)	541 (34.5)	555 (35.1)	590 (36.3)	0.0035

Data are presented as means \pm standard deviation (SD), or medians (interquartile ranges) for skewed variables, or number (proportions) for categorical variables. *P* values were calculated from one-way analysis of variance (ANOVA) for continuous variables and chi-square test for categorical variables. Subclinical atherosclerosis was defined as CIMT ≥ 0.8 mm, which is the cut-off point for the highest quartile of the total participants. Insulin resistance was defined as HOMA-IR ≥ 2.8 , which is the cut-off point for the highest quartile of the total participants. Abbreviations: MET, metabolic equivalent task; LDL, low-density lipoprotein; HDL, high-density lipoprotein; CIMT, carotid intima-media thickness; HOMA-IR indicates homeostasis model assessment of insulin resistance.

 BMJ Open

Table 2. Association between mid-upper arm circumference and multiple cardiometabolic disorders in total and sex-specific participants

			OR (95	5% CI)			P for trend
		Quartile 1	Quartile 2	Quartile 3	Quartile 4	1-SD (3.13 cm)	
Total		0	6				
Central obesity	Model 1	1.00	1.43 (0.99-2.05)	3.44 (2.45-4.82)	7.25 (5.12-10.3)	2.05 (1.85-2.28)	< 0.0001
	Model 2	1.00	1.43 (0.99-2.05)	3.44 (2.45-4.82)	7.25 (5.12-10.3)	2.05 (1.85-2.28)	< 0.0001
Diabetes	Model 1	1.00	1.00 (0.82-1.21)	1.13 (0.93-1.37)	1.26 (1.02-1.55)	1.09 (1.02-1.16)	0.02
	Model 2	1.00	0.87 (0.73-1.06)	0.89 (0.73-1.10)	0.87 (0.70-1.09)	0.96 (0.90-1.04)	0.33
Hypertension	Model 1	1.00	1.04 (0.87-1.24)	1.57 (1.30-1.89)	1.65 (1.34-2.04)	1.21 (1.14-1.30)	< 0.0001
	Model 2	1.00	0.92 (0.77-1.10)	1.29 (1.06-1.56)	1.23 (0.98-1.53)	1.10 (1.03-1.19)	0.006
Hypertriglyceridemia	Model 1	1.00	1.55 (1.25-1.92)	1.78 (1.43-2.21)	1.92 (1.53-2.41)	1.24 (1.15-1.35)	< 0.0001
	Model 2	1.00	1.31 (1.05-1.63)	1.32 (1.05-1.66)	1.19 (0.93-1.54)	1.03 (0.94-1.13)	0.28
Low HDL cholesterol	Model 1	1.00	1.40 (1.06-1.84)	1.80 (1.38-2.35)	2.06 (1.57-2.69)	1.26 (1.16-1.37)	< 0.0001

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	Model 2	1.00	1.21 (0.91-1.60)	1.41 (1.06-1.86)	1.38 (1.02-1.88)	1.10 (1.01-1.22)	0.03
Women							
Central obesity	Model 1	1.00	1.49 (1.04-2.15)	3.54 (2.50-4.99)	7.10 (4.97-10.2)	2.01 (1.81-2.25)	< 0.00
	Model 2	1.00	1.49 (1.04-2.15)	3.54 (2.50-4.99)	7.10 (4.97-10.2)	2.01 (1.81-2.25)	< 0.00
Diabetes	Model 1	1.00	1.11 (0.89-1.41)	1.29 (1.01-1.65)	1.39 (1.07-1.80)	1.12 (1.03-1.22)	0.007
	Model 2	1.00	0.98 (0.77-1.24)	1.03 (0.80-1.32)	0.97 (0.73-1.29)	0.99 (0.91-1.09)	0.93
Hypertension	Model 1	1.00	1.10 (0.89-1.35)	1.93 (1.54-2.44)	1.80 (1.39-2.33)	1.27 (1.17-1.38)	< 0.00
	Model 2	1.00	0.96 (0.78-1.18)	1.55 (1.23-1.97)	1.29 (0.98-1.68)	1.14 (1.05-1.24)	0.003
Hypertriglyceridemia	Model 1	1.00	1.63 (1.28-2.01)	1.89 (1.48-2.42)	1.84 (1.42-2.38)	1.25 (1.15-1.37)	< 0.00
	Model 2	1.00	1.38 (1.08-1.78)	1.43 (1.09-1.86)	1.17 (0.87-1.58)	1.05 (0.94-1.17)	0.33
Low HDL cholesterol	Model 1	1.00	1.67 (1.17-2.38)	1.94 (1.36-2.77)	1.87 (1.29-2.71)	1.21 (1.09-1.35)	0.000
	Model 2	1.00	1.47 (1.03-2.21)	1.56 (1.07-2.28)	1.32 (0.86-2.01)	1.08 (0.91-1.23)	0.23
		For peer	review only - http://bn	njopen.bmj.com/site/al	bout/guidelines.xhtml		

 BMJ Open

Men							
Central obesity	Model 1	1.00	0.38 (0.02-6.61)	3.99 (0.49-32.0)	10.4 (1.33-81.2)	3.08 (1.92-4.95)	< 0.000
	Model 2	1.00	0.38 (0.02-6.61)	3.99 (0.49-32.0)	10.4 (1.33-81.2)	3.08 (1.92-4.95)	< 0.000
Diabetes	Model 1	1.00	0.79 (0.56-1.10)	0.85 (0.61-1.18)	0.97 (0.68-1.38)	1.01 (0.90-1.13)	0.84
	Model 2	1.00	0.69 (0.49-0.98)	0.68 (0.48-0.97)	0.69 (0.47-1.01)	0.91 (0.81-1.03)	0.12
Hypertension	Model 1	1.00	0.92 (0.66-1.29)	1.06 (0.76-1.48)	1.29 (0.89-1.88)	1.10 (0.98-1.24)	0.10
	Model 2	1.00	0.84 (0.60-1.17)	0.91 (0.65-1.28)	1.03 (0.70-1.52)	1.03 (0.91-1.16)	0.68
Hypertriglyceridemia	Model 1	1.00	1.37 (0.85-2.21)	1.46 (0.92-2.31)	1.66 (1.03-2.67)	1.13 (0.96-1.32)	0.04
	Model 2	1.00	1.19 (0.73-1.92)	1.15 (0.72-1.84)	1.13 (0.68-1.87)	0.97 (0.81-1.52)	0.81
Low HDL cholesterol	Model 1	1.00	1.01 (0.65-1.58)	1.42 (0.94-2.16)	1.62 (1.04-2.51)	1.21 (1.06-1.38)	0.006
	Model 2	1.00	0.92 (0.59-1.44)	1.22 (0.79-1.86)	1.27 (0.80-2.01)	1.12 (0.97-1.29)	0.13

Data were presented as odds ratio (OR) and 95% confidence interval (CI). *P* values were calculated from multivariable logistic regression analysis in quartile of mid-upper arm circumference. Model 1: adjusted for age (years), sex, body mass index (kg/m²), current smoking (yes or no), current drinking (yes or no), physical activity (MET-h/wk); Model 2: further adjusted for waist circumference (cm), except for central obesity.

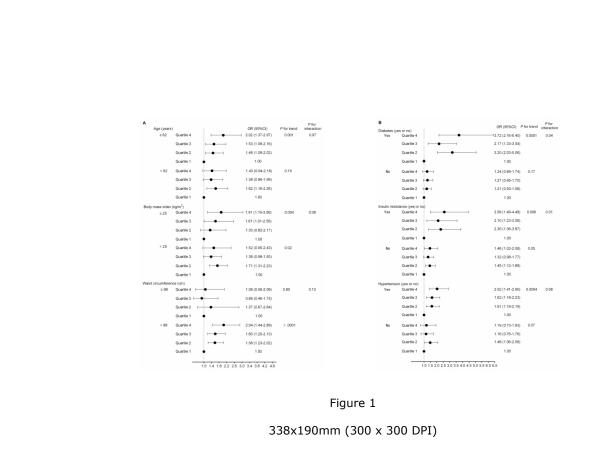

			OR (95% CI)			
	Quartile 1	Quartile 2	Quartile 3	Quartile 4	1-SD (3.13 cm)	<i>P</i> for trend
Total						0.20*
Cases/Participants	472 / 1510	541 / 1570	555 / 1582	590 / 1625	2158 / 6287	
Model 1	1.00	1.16 (1.00-1.34)	1.19 (1.02-1.38)	1.25 (1.08-1.45)	1.06 (1.01-1.12)	0.004
Model 2	1.00	1.30 (1.08-1.56)	1.30 (1.07-1.58)	1.35 (1.09-1.67)	1.06 (0.98-1.15)	0.013
Model 3	1.00	1.31 (1.09-1.58)	1.33 (1.10-1.62)	1.45 (1.16-1.80)	1.08 (0.99-1.17)	0.005
Women						
Case/participants	287 / 1110	327 / 1048	275 / 922	282 / 897	1171 / 3977	
Model 1	1.00	1.30 (1.08-1.57)	1.22 (1.00-1.48)	1.32 (1.09-1.60)	1.07 (1.00-1.14)	0.014
Model 2	1.00	1.54 (1.24-1.93)	1.43 (1.18-1.82)	1.53 (1.17-2.02)	1.11 (1.01-1.23)	0.007
Model 3	1.00	1.54 (1.24-1.93)	1.42 (1.11-1.83)	1.66 (1.26-2.20)	1.14 (1.03-1.26)	0.002

Table 3. Association between mid-upper arm circumference and subclinical atherosclerosis in total and sex-specific participants

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

Men						
Case/participants	185 / 400	214 / 522	280 / 660	308 / 728	987 / 2310	
Model 1	1.00	0.81 (0.62-1.05)	0.86 (0.67-1.10)	0.85 (0.67-1.09)	0.93 (0.85-1.02)	0.39
Model 2	1.00	0.89 (0.64-1.23)	1.04 (0.75-1.44)	1.00 (0.70-1.45)	0.97 (0.85-1.11)	0.71
Model 3	1.00	0.90 (0.65-1.25)	1.06 (0.76-1.48)	1.05 (0.72-1.52)	0.99 (0.86-1.06)	0.54
analysis. *: the inter	raction of MUAC	with sex on subclinic	cal atherosclerosis.	Model 1, unadjuste	d; Model 2, adjuste	ble logistic regression d for age (years), sex, body circumference (cm); Mode
· • • ·	-					erol (mmol/L), triglyceride
(mmol/L), fasting p	lasma glucose (m	nmol/L), and systolic b	plood pressure (mm	Hg).		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

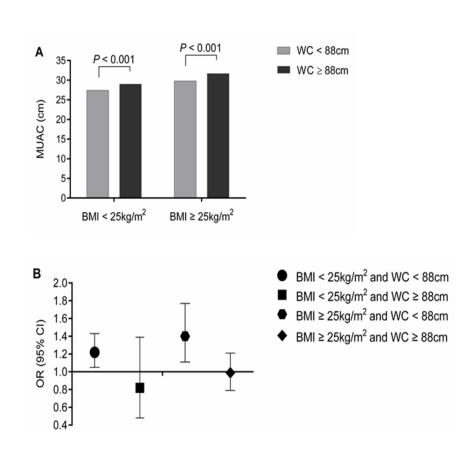


Figure 2 199x176mm (300 x 300 DPI)

Online Supplemental Information

Association between mid-upper arm circumference and cardiometabolic risk in

Chinese population: a cross-sectional study

Supplemental Table 1. The association of mid-upper arm circumference with

cardiometabolic profiles in total participants

Supplemental Figure Legend

Supplemental Figure 1. Stratified analysis of the association of mid-upper arm circumference with risk of subclinical atherosclerosis in men. A: All subjects were divided into subgroups based on their average age (age < 62 years, age \geq 62 years), body mass index (BMI < 25 kg/m², BMI \geq 25 kg/m²), or waist circumference (WC < 88 cm or WC \geq 88 cm). B: All subjects were divided into subgroups based on diabetes (yes or no), insulin resistance (yes or no), or hypertension (yes or no). Data were presented as odds ratio (OR) and 95% confidence interval (CI). *P* values were calculated from multivariable logistic regression analysis. Adjusted for age (years), body mass index (kg/m²), current smoking (yes or no), current drinking (yes or no), physical activity (MET-h/wk), waist circumference (cm), C-reactive protein (mg/L), total cholesterol (mmol/L), HDL cholesterol (mmol/L), LDL cholesterol (mmol/L), triglycerides (mmol/L), fasting plasma glucose (mmol/L), and systolic blood pressure (mmHg).

 BMJ Open

	Model	1	Model 2		Model 3	
	$\beta \pm SE$	P value	$\beta \pm SE$	P value	$\beta \pm SE$	P value
Age (years)	-0.20 ± 0.04	< 0.0001	/	/	/	/
Body mass index (kg/m2)	0.70 ±0.02	<0.0001	/	/	/	/
Waist circumference (cm)	1.94 ±0.03	<0.0001	1.62 ± 0.04	< 0.0001	/	/
Systolic blood pressure (mmHg)	0.55 ± 0.07	<0.0001	0.49 ±0.09	< 0.0001	0.20 ± 0.10	0.04
Diastolic blood pressure (mmHg)	$0.49\ \pm 0.04$	< 0.0001	0.32 ± 0.05	< 0.0001	0.08 ± 0.06	0.15
Fasting plasma glucose (mmol/L)	0.03 ± 0.01	< 0.0001	0.02 ± 0.01	0.01	-0.02 ± 0.01	0.04
HOMA-IR	0.03 ±0.001	< 0.0001	0.02 ± 0.001	<0.0001	0.01 ±0.002	0.0003
Total cholesterol (mmol/L)	-0.004 ± 0.004	0.30	0.004 ± 0.005	0.48	-0.01 ± 0.01	0.24
LDL cholesterol (mmol/L)	0.009 ±0.003	0.005	0.01 ± 0.004	0.001	0.001 ± 0.005	0.79
HDL cholesterol (mmol/L)	-0.02 ± 0.001	< 0.0001	-0.01 ± 0.001	< 0.0001	-0.003 ± 0.002	0.08

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Triglycerides (mmol/L)	0.01 ± 0.001	< 0.0001	0.01 ± 0.001	< 0.0001	0.001 ± 0.001	0.38
C-reactive protein (mg/L)	0.01 ± 0.001	< 0.0001	0.01 ± 0.001	< 0.0001	0.002 ± 0.002	0.12
CIMT (cm)	0.003 ± 0.001	< 0.0001	0.003 ± 0.001	0.0002	0.002 ± 0.001	0.005
Data are linear regression estin	nates ±standard error ($\beta \pm SE$). P values	were calculated from m	ultivariable linear	regression model. Mo	del 1: unadjusted;
Model 2: adjusted for age (yea	rs), sex, body mass inde	ex (kg/m2), currer	nt smoking (yes or no),	current drinking (yes or no), physical act	ivity (MET-h/wk);
Model 3: further adjusted for w	vaist circumference (cm	n). Abbreviations:	LDL, low-density lipor	protein; HDL, hig	h-density lipoprotein; C	CIMT, carotid
intima-media thickness.			10.	-		
Infitma-media timek ness						
muma-media unickness.						
ntima-media unickness.						
ntima-media unickness.						
intima-media unickness.						
intima-media unickness.			LDL, low-density lipop			
intima-media unickness.						
intima-media unekness.						

1 2						
2	Supplemental Fig	gure 1				
5 6 7 8	A Age (years) ≥62	Quartile 4		OR (95%CI) 0.96 (0.60-1.54)	<i>P</i> for trend 0.30	<i>P</i> for interaction 0.39
9	= 02			· · · · ·	0.00	0.00
10 11		Quartile 3		0.89 (0.59-1.35)		
12 13		Quartile 2		0.89 (0.60-1.33)		
		Quartile 1		1.00		
	< 62	Quartile 4	⊢●	1.26 (0.67-2.37)	0.91	
		Quartile 3	⊢	→ 1.40 (0.78-2.50)		
		Quartile 2	⊢ −●−−−−−1	0.97 (0.53-1.80)		
		Quartile 1	•	1.00		
	Body mass index (ka/m ²)				
	≥ 25	Quartile 4	⊢	1.01 (0.52-1.95)	0.33	0.46
		Quartile 3	⊢ I	0.96 (0.49-1.86)		
		Quartile 2	⊢ ● <u> </u>	0.71 (0.35-1.45)		
		Quartile 1	•	1.00		
	< 25	Quartile 4		0.81 (0.44-1.50)	0.92	
		Quartile 3		1.24 (0.80-1.91)		
		Quartile 2		1.06 (0.72-1.58)		
		Quartile 1	•	1.00		
	Waist circumfereno ≥ 88	ce (cm) Quartile 4		0.76 (0.36-1.58)	0.75	0.10
	2 00				0.75	0.10
		Quartile 3		0.87 (0.41-1.83)		
		Quartile 2		0.54 (0.24-1.18)		
		Quartile 1	•	1.00		
	< 88	Quartile 4	⊢ ● − − 1	1.22 (0.72-1.56)	0.55	
		Quartile 3	⊢_●1	1.05 (0.70-1.58)		
		Quartile 2	⊢_●1	1.06 (0.72-1.56)		
		Quartile 1	•	1.00		
			1.0 1.4 1.8 2.2	2.6 3.0 3.4 3.8		

Diabetes (ye	as or po)		OR (95%CI) F	for trend	intera
Yes	Quartile 4		0.60 (0.25-1.44)	0.25	0.4
	Quartile 3 ⊢	-	0.53 (0.22-1.28)		
	Quartile 2	├ ──●			
	Quartile 1	•	1.00		
No	Quartile 4	⊢ ● −−−−−	1.17 (0.76-1.79)	0.23	
	Quartile 3	⊢	1.23 (0.85-1.78)		
	Quartile 2	⊢_●I	0.92 (0.64-1.32)		
	Quartile 1	•	1.00		
Insulin resis	tance (yes or i	no)			
Yes	Quartile 4		0.97 (0.52-1.82)	0.84	0.3
	Quartile 3	⊢	1.02 (0.57-1.83)		
	Quartile 2	⊢●	0.82 (0.46-1.47)		
	Quartile 1	•	1.00		
No	Quartile 4	⊢	1.15 (0.72-1.85)	0.44	
	Quartile 3	⊢	1.16 (0.76-1.76)		
	Quartile 2	⊢	1.01 (0.67-1.53)		
	Quartile 1	•	1.00		
	on (yes or no)				
Yes	Quartile 4	•	1.10 (0.69-1.76)	0.62	0.5
	Quartile 3	⊢	0.96 (0.62-1.47)		
	Quartile 2	●	0.96 (0.62-1.48)		
	Quartile 1	•	1.00		
No	Quartile 4	⊢ ● − − 1	0.89 (0.46-1.65)	0.87	
	Quartile 3	⊢			
	Quartile 2	⊢_●_	0.82 (0.49-1.38)		
	Quartile 1	•	1.00		

BMJ Open

For beer review only For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25 26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
J∠ 52
52 53 54
54
55
56
57 58 59
58
59

STROBE Statement—Checklist of items that should be included in reports of <i>cross-sectional studies</i>
--

	Item No	Recommendation	Page number
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	Page 1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	Page 2-3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	Page 4-5
Objectives	3	State specific objectives, including any prespecified hypotheses	Page 5
Methods			
Study design	4	Present key elements of study design early in the paper	Page 5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	Page 5-6
Participants	6	(<i>a</i>) Give the eligibility criteria, and the sources and methods of selection of participants	Page 5-6
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	Page 6-8
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	Page 6-8
Bias	9	Describe any efforts to address potential sources of bias	Page 5-8
Study size	10	Explain how the study size was arrived at	Page 5-6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	Page 8-9
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	Page 8-9
		(b) Describe any methods used to examine subgroups and interactions	Page 8-9
		(c) Explain how missing data were addressed	Page 6
		(<i>d</i>) If applicable, describe analytical methods taking account of sampling strategy	
		(e) Describe any sensitivity analyses	Page 9
Results			
Participants	13*	 (a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed (b) Give reasons for non-participation at each stage 	Page 6
Decorintizza data	1 / ৬	(c) Consider use of a flow diagram	Doct 10.1/
Descriptive data	14*	 (a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders (b) Indicate number of participants with missing data for each variable of interest 	Page 10-12
Outcome data	15*	Report numbers of outcome events or summary measures	Page 10-12
Main results	16	 (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included 	Page 10-12

		(b) Report category boundaries when continuous variables were	Page 11
		categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute	
		risk for a meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions,	Page 11-12
		and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	Page 12-13
Limitations	19	Discuss limitations of the study, taking into account sources of potential	Page 14
		bias or imprecision. Discuss both direction and magnitude of any potential	
		bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	Page 13-14
		limitations, multiplicity of analyses, results from similar studies, and other	
		relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	Page 14
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study	Page 15
		and, if applicable, for the original study on which the present article is	
		based (N)	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.