Supporting Information

Direct Conversion of Primary Alcohols to 1,2-Amino Alcohols: Enantioselective Iridium-Catalyzed Carbonyl Reductive Coupling of Phthalimido-Allene *via* Hydrogen Auto-Transfer

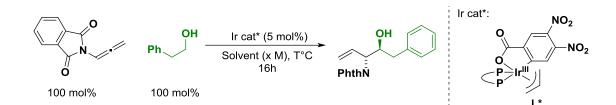
Kim Spielmann⁺, Ming Xiang⁺, Leyah A. Schwartz⁺, and Michael J. Krische^{*}

University of Texas at Austin, Department of Chemistry, Austin, TX 78712, USA

Table of Contents

General Information	S3
Spectroscopy, Spectrometry, and Data Collection	S3
Selected Optimization Experiments	S4
Synthesis of Ir-V and Ir-VI	
Synthesis of Phthalimido-Allene	S8-S11
Procedures and Spectral Data for the Coupling Products of	
Phthalimido-Allene and Alcohols 3a-3z, 3a'-3c'	S12-S99
Procedures and Spectral Data for the Elaboration of Morpholine 5a	S100-S105
Procedures and Spectral Data for the Elaboration of Amino-Acid 6m	S106-S111
Isotopic Labeling Studies	S112-S120
Single Crystal Diffraction Data for Coupling Products 3a, 3v and Ir-VI	S121-S126
Kinetic Studies	S127-S133
References	

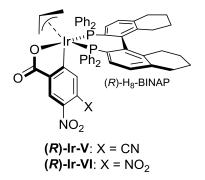
General Information


All reactions were run under an atmosphere of argon, unless otherwise indicated. Resealable pressure tubes (13x100 mm) were purchased from Fischer Scientific (catalog number 14–959–35C) and were flame dried followed by cooling in a desiccator or under a stream of argon prior to use. All commercial reagents and anhydrous solvents were used as received from vendors (Strem Chemicals, Fischer Scientific, Sigma Aldrich and Combi Blocks) without further purification. Preparative column chromatography employing Silicycle silica gel (40-63 μ m) was performed according to the method of Still.¹ Analytical thin-layer chromatography (TLC) was carried out using 0.25 mm commercial silica gel plates (Dynamic Absorbents F254). Visualization was accomplished with UV light followed by dipping in CAM, *p*-Anisaldehyde (PAA), or KMnO4 stain solution followed by heating. Specific optical rotations were recorded on an Atago AP-300 automatic polarimeter at the sodium line (589.3 nm) in CHCl₃. Solution concentrations are given in the units of 10⁻² g mL⁻¹. Racemic reactions were conducted using racemic catalyst prepared in utilizing racemic BINAP ligand.

Spectroscopy, Spectrometry, and Data Collection

Infrared spectra were recorded on a Perkin-Elmer 1600 spectrometer. High-resolution mass spectra (HRMS) were obtained on a Karatos MS9 and are reported as m/z (relative intensity). Accurate masses are reported for the molecular ion (M+H, M+Na), or a suitable fragment ion. Proton nuclear magnetic resonance (¹H NMR) spectra were recorded with a Varian INOVA (500 MHz) spectrometer equipped with a Bruker AVANCE III cryoprobe. Chemical shifts are reported in delta (δ) units, parts per million (ppm) downfield from tetramethylsilane or ppm relative to the center of the singlet at 7.26 ppm for deuteriochloroform. Data reported as multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet). Integration and coupling constants were reported in Hertz (Hz). Carbon-13 nuclear magnetic resonance (¹³C NMR) spectra were recorded with a Varian INOVA (125 MHz) spectrometer and were routinely run with broadband decoupling. Chemical shifts are reported in delta (δ) units, ppm relative to the center of the triplet at 77.16 ppm for deuteriochloroform. Fluorine-19 nuclear magnetic resonance (¹⁹F NMR) spectra were recorded with a Varian INOVA (470 MHz) spectrometer. Deuterium nuclear magnetic resonance (²H NMR) spectra were recorded in CHCl₃ solution with a Varian Gemini 500 (77 MHz) spectrometer (relaxation delay 2.00s).

Experimental Details and Spectral Data

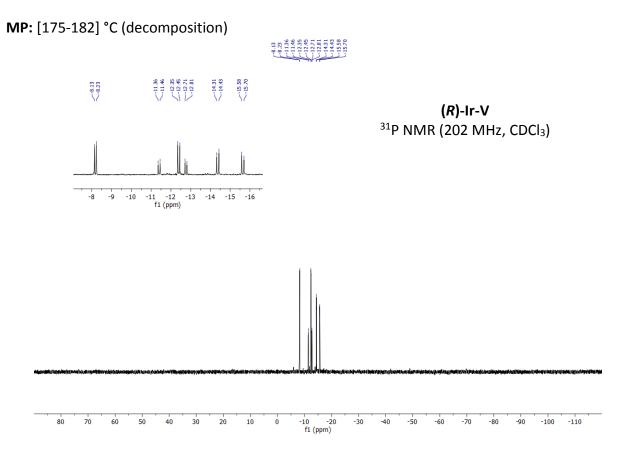

Selected Optimization Experiments

Entry	L*	Solvent (M)	Temp (°C)	Yield (%)	ee (%)	dr
1	(R)-DTBM-SEGPHOS	THF (0.2 M)	100	<10	N/D	N/D
2	(R)-Cl,MeO-BIPHEP	THF (0.2 M)	100	42	87	>20:1
3	(R)-Tol-BINAP	THF (0.2 M)	100	31	85	>20:1
4	(<i>R</i>)-H8-BINAP	THF (0.2 M)	100	69	96	>20:1
5	(<i>R</i>)-H8-BINAP	Dioxane (0.2 M)	100	68	94	>20:1
6	(<i>R</i>)-H8-BINAP	PhMe (0.2 M)	100	59	92	>20:1
7	(<i>R</i>)-H8-BINAP	THF (0.5 M)	100	60	94	>20:1
8	(<i>R</i>)-H8-BINAP	THF (0.1 M)	100	37	97	>20:1
9	(<i>R</i>)-H8-BINAP	THF (0.2 M)	90	65	96	>20:1
10	(<i>R</i>)-H8-BINAP	THF (0.2 M)	80	40	96	>20:1
11 ^a	(<i>R</i>)-H8-BINAP	THF (0.2 M)	100	71	96	>20:1

^a150 mol% of phthalimido-allene 1 and 48 h reaction time

Synthesis of Ir-V and Ir-VI

To a dried pressure tube with a magnetic stir bar under an argon atmosphere charged with Cs_2CO_3 (586 mg, 1.80 mmol, 225 mol%), the corresponding benzoic acid (1.60 mmol, 200 mol%), (*R*)-H₈-BINAP (505mg, 0.80 mmol, 100 mol%), and [Ir(cod)Cl]₂ (268 mg, 0.40 mmol, 50 mol%) was added THF (8 mL, 0.1 M) followed by allyl acetate (0.22 mL, 2.0 mmol, 250 mol%). The resulting mixture was stirred at ambient temperature for 30 min, at which point the reaction vessel was transferred to an oil bath at 80 °C. After stirring for 120 min, the reaction mixture was allowed to cool to ambient temperature. The mixture was filtered through a celite plug with the aid of THF. The filtrate was concentrated *in vacuo* and the residue subjected to column chromatography (SiO₂, 20:1 DCM:THF). The gum-like product was dissolved in a minimum volume of THF and precipitated upon rapid addition of hexanes. The product was filtered and washed with hexanes, followed by removal of trace amount of solvent *in vacuo*.

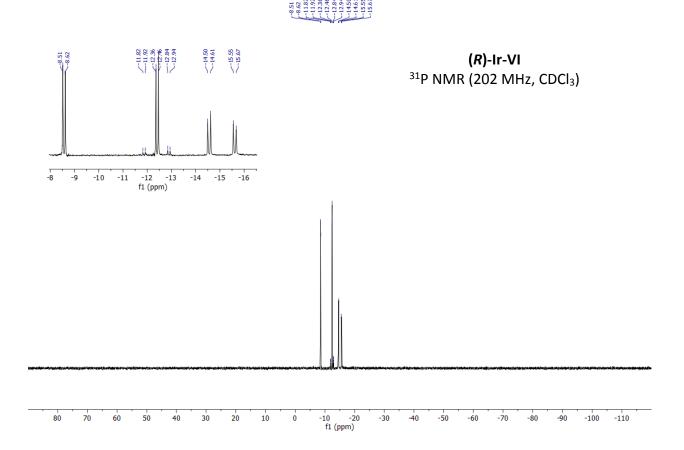

(R)-Ir-V: 4-cyano-3-nitrobenzoic acid (307 mg) was used. The title complex was obtained as light yellow powder in 85% yield (716 mg).

(*R*)-Ir-VI: 3,4-dinitrobenzoic acid (340 mg) was used. The title complex was obtained as light yellow powder in 86% yield (736 mg).

(R)-Ir-V:

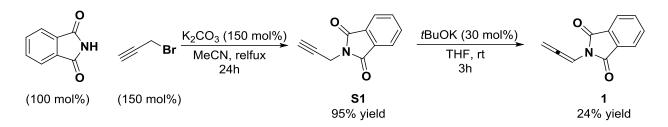
³¹P NMR (202 MHz, CDCl₃): δ -8.18 (d, *J* = 20.0 Hz), -11.41 (d, *J* = 19.9 Hz), -12.40 (d, *J* = 21.0 Hz), -12.76 (d, *J* = 19.7 Hz), -14.37 (d, *J* = 23.7 Hz), -15.64 (d, *J* = 23.7 Hz).

HRMS (H+, m/z) for C₅₅H₄₇IrN₂O₄P₂: calcd. = 1053.2690; found = 1053.2675.

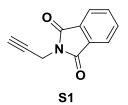


(R)-Ir-VI:

³¹P NMR (202 MHz, CDCl₃): δ -8.56 (d, J = 20.7 Hz), -11.87 (d, J = 20.1 Hz), -12.41 (d, J = 20.0 Hz), -12.89 (d, J = 19.9 Hz), -14.56 (d, J = 23.7 Hz), -15.61 (d, J = 23.7 Hz).


HRMS (H+, m/z) for C₅₄H₄₇IrN₂O₆P₂: calcd. = 1073.2588; found = 1073.2579.

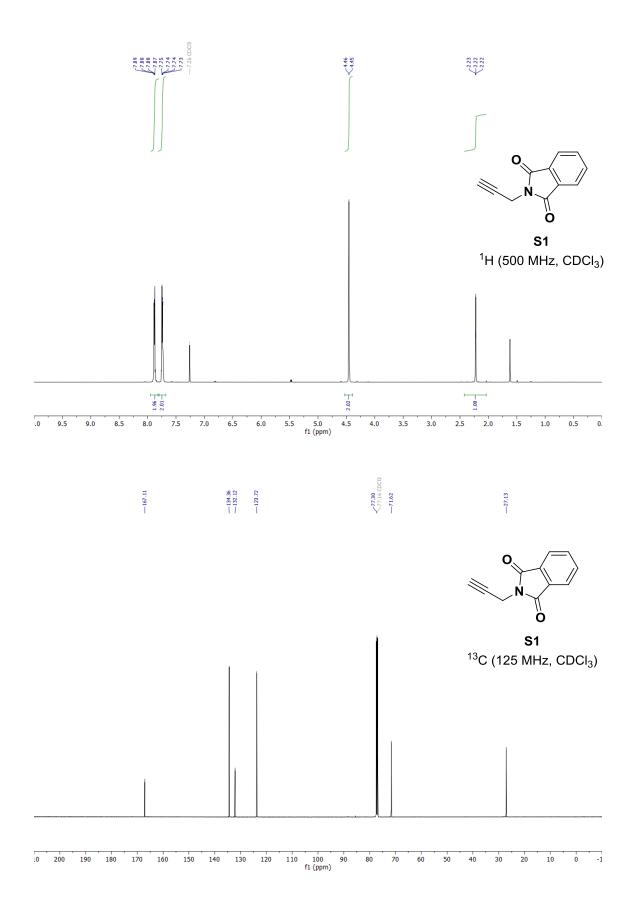
MP: [226-232] °C (decomposition)



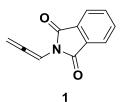
S7

Synthesis of Phthalimido-Allene 1

Synthesis of N-Propargylphthalimide (S1)


S1 can also be purchased and used from Combi-Blocks.

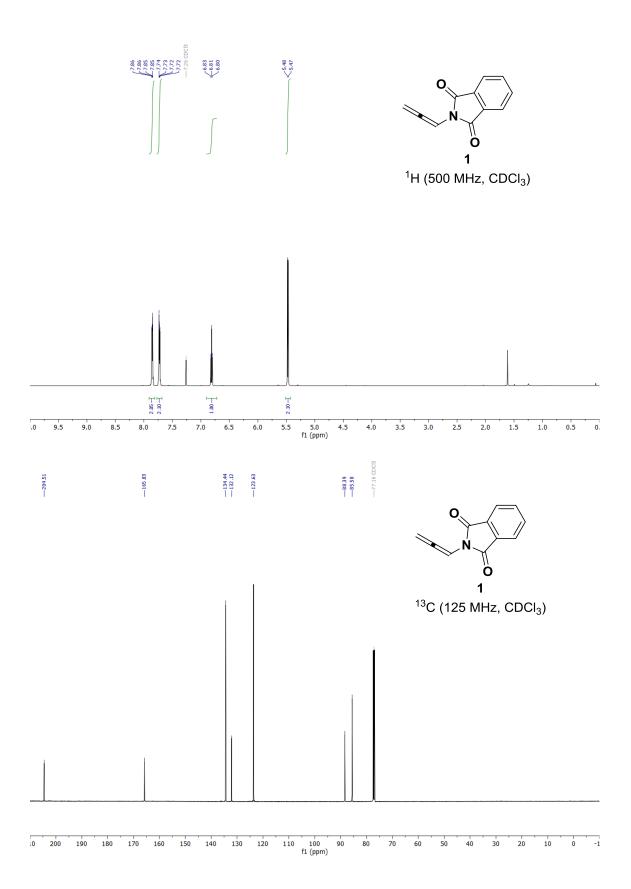
To a round-bottomed flask equipped with a magnetic stir bar under an argon atmosphere charged with phthalimide (15.2 g, 103 mmol, 100 mol%) and K_2CO_3 (21.4 g, 155 mmol, 150 mol%) in CH₃CN (250 mL) was added propargyl bromide (80% wt in PhMe, 23.0 g, 155 mmol, 150 mol%). The reaction mixture was allowed to stir for 24 hours at reflux. The hot reaction mixture was then filtered through a pad of Celite and washed with CH₃CN (3 x 15 mL). The mixture was then concentrated under reduced pressure. The residue was then solubilized in DCM, resulting in a suspension of starting material which was then filtered off through a pad of Celite. The resulting residue was concentrated under reduced pressure, dissolved in a minimum volume of DCM, and precipitated upon rapid addition of pentane. The product was filtered and washed with pentane, followed by removal of trace amount of solvent in vacuo, to provide a white solid (18.1 g, 97.8 mmol) in 95% yield.


¹**H NMR** (500 MHz, CDCl₃) δ: 7.88 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.74 (dd, *J* = 5.5, 3.0 Hz, 2H), 4.45 (d, *J* = 2.5 Hz, 1H), 2.22 (t, *J* = 2.5 Hz, 1H).

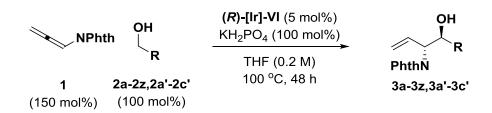
¹³**C NMR** (125 MHz, CDCl₃) δ: 167.1, 134.4, 132.1, 123.7, 77.3, 71.6, 27.1.

The spectral data recorded for the compound was in complete agreement with the literature.²

Synthesis of Phthalimido-Allene (1)

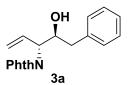


To a round-bottomed flask equipped with a magnetic stir bar under an argon atmosphere charged with N-propargylphthalimide **S1** (9.26 g, 50.0 mmol, 100 mol%) in dried THF (50 mL) was added potassium *tert*-butoxide (1.68 g, 15 mmol, 30 mol%). The reaction mixture was allowed to stir at ambient temperature for 3 hours. The reaction mixture was then filtered through a pad of Celite, washed with THF, and the solvent removed in vacuo. The residue was purified by flash column chromatography (SiO₂, 0-10% EtOAc in hexanes) to give the phthalimido-allene (2.21 g, 11.9 mmol) as a pale green crystalline solid in 24% yield.


¹**H NMR** (500 MHz, CDCl₃) δ: 7.85 (dd, J = 5.4, 3.1 Hz, 2H), 7.73 (dd, J = 5.5, 3.0 Hz, 2H), 6.81 (t, J = 6.7 Hz, 1H), 5.47 (d, J = 6.6 Hz, 1H).

¹³C NMR (125 MHz, CDCl₃) δ: 204.5, 165.8, 134.4, 133.1, 123.6, 88.4, 85.6.

The spectral data recorded for the compound was in complete agreement with the literature.³


<u>Procedures and Spectral Data for the Coupling Products of Phthalimido-Allene 1 and Alcohols</u> <u>3a-3z, 3a'-3c'</u>

General Procedure

To a dried pressure tube with a magnetic stir bar under an argon atmosphere charged with Ir-**VI** (10.7 mg, 0.01 mmol) (5 mol%), phthalimido-allene (55 mg, 0.3 mmol) (150 mol%), alcohol (0.2 mmol) (100 mol%), and KH₂PO₄ (27.2 mg, 0.2 mmol) (100 mol%) was added THF (1.0 mL) (0.2 M). The tube was sealed with a PTFE lined cap and the reaction mixture was allowed to stir for 48 hours at 100 °C. After reaching ambient temperature, the solvent was removed in vacuo and the residue was subjected to flash column chromatography (SiO₂) under the noted conditions to furnish the products **3a-3z**, **3a'-3c'**.

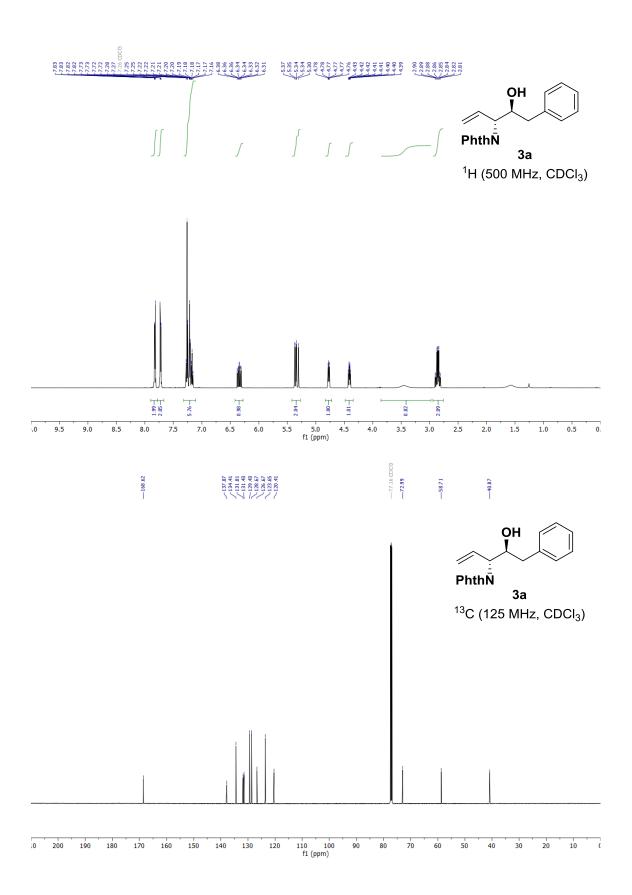
2-((3R,4S)-4-hydroxy-5-phenylpent-1-en-3-yl)isoindoline-1,3-dione (3a)

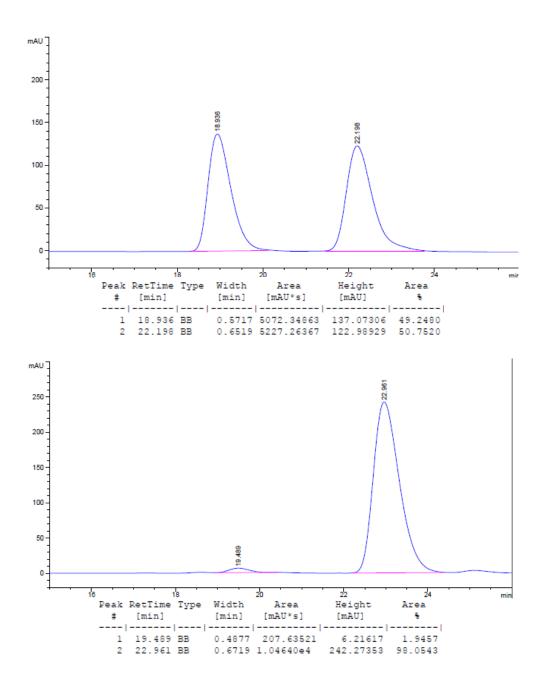
Alcohol **2a** (24.0 μ L, 0.2 mmol) was subjected to standard reaction conditions (100 °C, 48 h). Upon flash column chromatography (SiO₂, 20:80 EtOAc:hexanes), the title compound **3a** (48.8 mg, 0.16 mmol, >20:1 dr) was obtained as a light yellow solid in 80% yield.

TLC (SiO₂) R_f = 0.35 (20:80 EtOAc:hexanes)

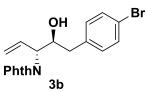
¹**H NMR** (500 MHz, CDCl₃) δ : 7.83 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.73 (dd, *J* = 5.5, 3.0 Hz, 2H), 7.28 – 7.15 (m, 5H), 6.34 (ddd, *J* = 17.1, 10.3, 7.9 Hz, 1H), 5.36 (d, *J* = 10.7 Hz, 1H), 5.32 (d, *J* = 17.1 Hz, 1H), 4.78 – 4.76 (m, 1H), 4.41 (ddd, *J* = 7.7, 5.8, 4.7 Hz, 1H), 3.45 (brs, 1H), 2.90 – 2.81 (m, 2H).

¹³C NMR (125 MHz, CDCl₃) δ: 168.6, 137.9, 134.4, 131.8, 131.4, 129.4, 128.7, 126.7, 123.7, 120.4, 73.0, 58.7, 40.9.


HRMS (Na+, m/z) for C₁₉H₁₇NO₃: calcd. = 330.1101; found = 330.1104.


FTIR (neat): 3549, 1698, 1383, 1334, 1055, 721, 703.

HPLC: (Chiralcel column OD-H, Hexane:2-PrOH = 95:5, 1.0 mL/min, 230 nm) ee = 96%.


 $[\alpha]_{D}^{34} = +56.6^{\circ} (c = 1.31, CHCl_3).$

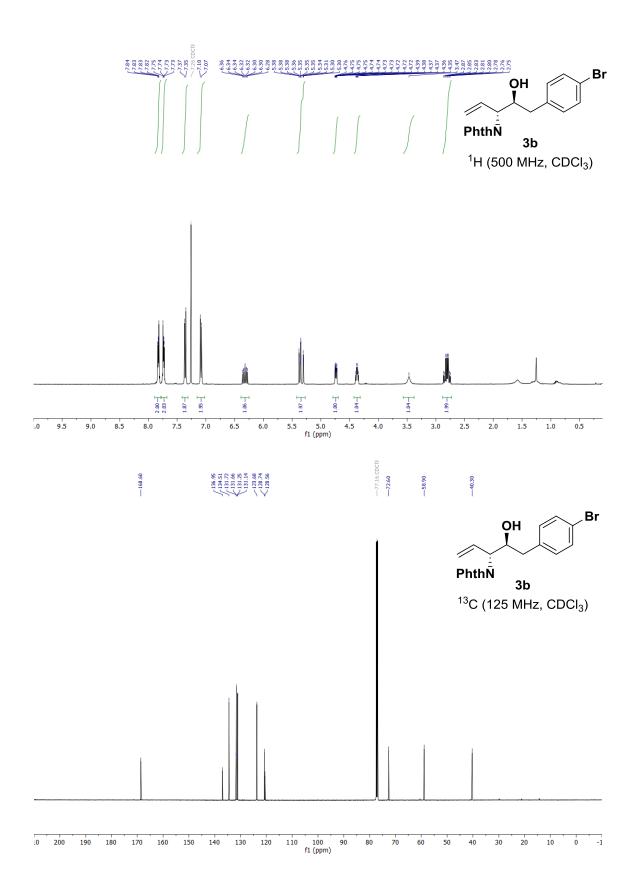
MP [121 – 126] °C

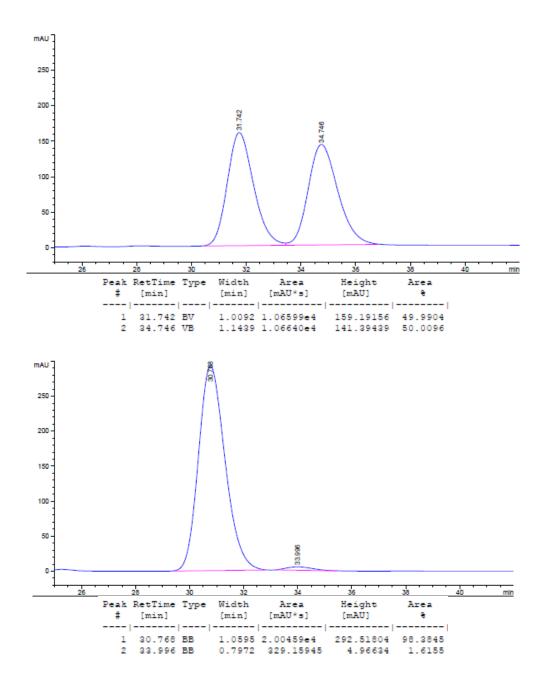
2-((3R,4S)-5-(4-bromophenyl)-4-hydroxypent-1-en-3-yl)isoindoline-1,3-dione (3b)

Alcohol **2b** (40.2 mg, 0.2 mmol) was subjected to standard reaction conditions (100 °C, 48 h). Upon flash column chromatography (SiO₂, 20:80 EtOAc:hexanes), the title compound **3b** (49.9 mg, 0.13 mmol, >20:1 dr) was obtained as a pale yellow oil in 65% yield.

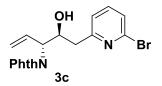
TLC (SiO₂) R_f = 0.33 (20:80 EtOAc:hexanes)

¹**H NMR** (500 MHz, CDCl₃) δ: 7.83 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.71 (dd, *J* = 5.5, 3.0 Hz, 2H), 7.36 (d, *J* = 8.3 Hz, 2H), 7.08 (d, *J* = 8.4 Hz, 2H), 6.32 (ddd, *J* = 17.1, 10.3, 7.9 Hz, 1H), 5.36 (d, *J* = 10.7 Hz, 1H), 5.33 (d, *J* = 17.0 Hz, 1H), 4.75 – 4.72 (m, 1H), 4.39 – 4.35 (m, 1H), 3.47 (brs, 1H), 2.86 – 2.75 (m, 2H).


¹³**C NMR** (125 MHz, CDCl₃) δ: 168.6, 137.0, 134.5, 131.7, 131.7, 131.3, 131.4, 123.7, 120.7, 120.6, 72.6, 58.9, 40.3.


HRMS (H+, m/z) for C₁₉H₁₆BrNO₃: calcd. = 386.0386; found = 386.0380.

FTIR (neat): 3454, 2919, 2359, 1700, 1380, 1070, 717.


HPLC: (Chiralcel column AS-H, Hexane:2-PrOH = 95:5, 1.0 mL/min, 230 nm) ee = 97%.

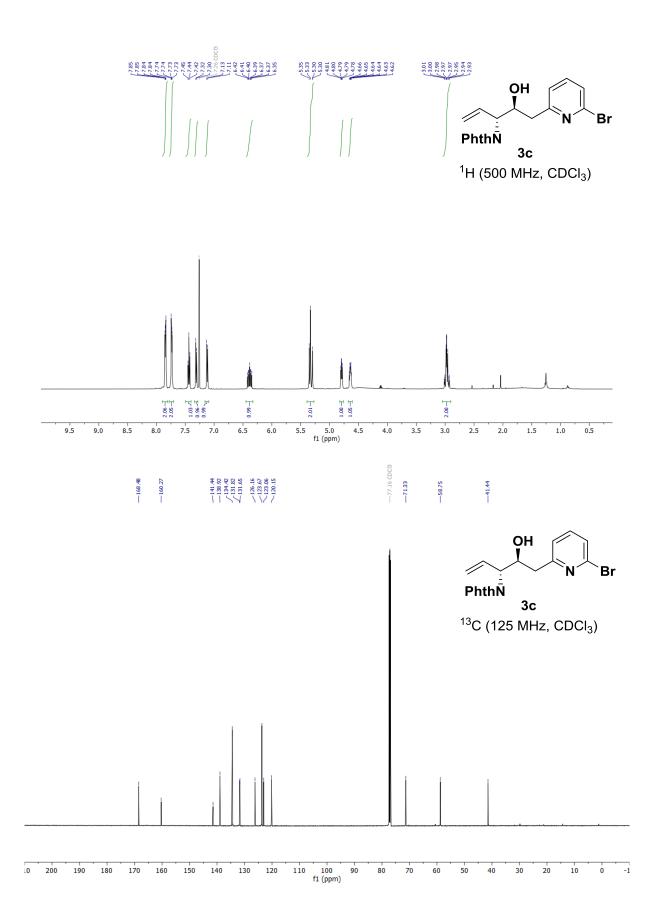
 $[\alpha]_{D}^{34} = +47.9^{\circ} (c = 0.93, CHCl_3).$

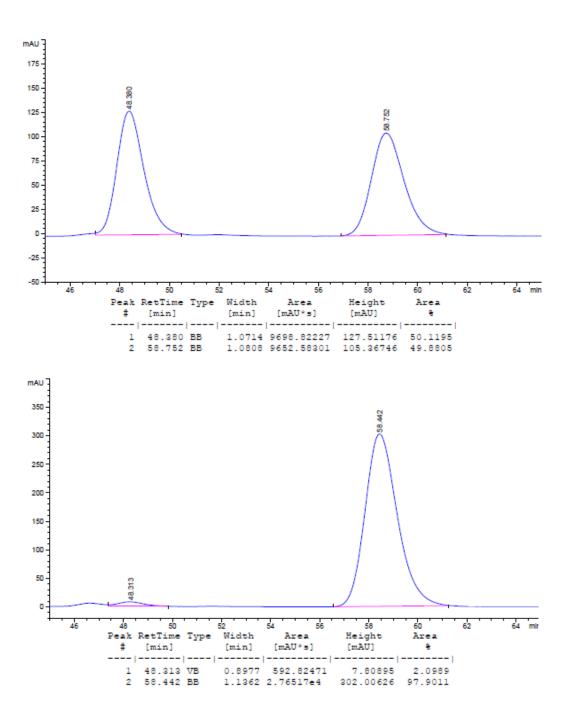
2-((3R,4S,E)-4-hydroxy-6-phenylhexa-1,5-dien-3-yl)isoindoline-1,3-dione (3c)

Alcohol **1c** (40.4 mg, 0.2 mmol) was subjected to standard reaction conditions (100 °C, 48 h). Upon flash column chromatography (SiO₂, 20:80 EtOAc:hexanes), the title compound **3c** (47.1 mg, 0.12 mmol, >20:1 dr) was obtained as a light yellow oil in 61% yield.

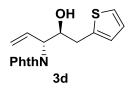
TLC (SiO₂) R_f = 0.31 (40:60 EtOAc:hexanes)

¹**H NMR** (500 MHz, CDCl₃) δ : 7.84 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.74 (dd, *J* = 5.5, 3.0 Hz, 2H), 7.44 (t, *J* = 7.7 Hz, 1H), 7.31 (d, *J* = 7.9 Hz, 1H), 7.12 (d, *J* = 7.5 Hz, 1H), 6.39 (ddd, *J* = 17.7, 10.3, 7.7 Hz, 1H), 5.35 - 5.30 (m, 2H), 4.79 (dd, *J* = 7.9, 5.3 Hz, 1H), 4.64 (dt, *J* = 8.1, 4.8 Hz, 1H), 3.01 - 2.93 (m, 2H).


¹³**C NMR** (125 MHz, CDCl₃) δ: 168.5, 160.3, 141.4, 138.9, 134.4, 131.8, 131.7, 126.2, 123.7, 123.1, 120.2, 71.3, 58.8, 41.4.


HRMS (H+, m/z) for C₁₈H₁₅BrN₂O₃: calcd. = 387.0339; found = 387.0334.

FTIR (neat): 3446, 1704, 1380, 1064, 751, 718.


HPLC: (Chiralcel column AD-H, Hexane:2-PrOH = 95:5, 1.0 mL/min, 230 nm) ee = 96%.

 $[\alpha]_D^{24} = +47.5^\circ (c = 0.80, CHCl_3).$

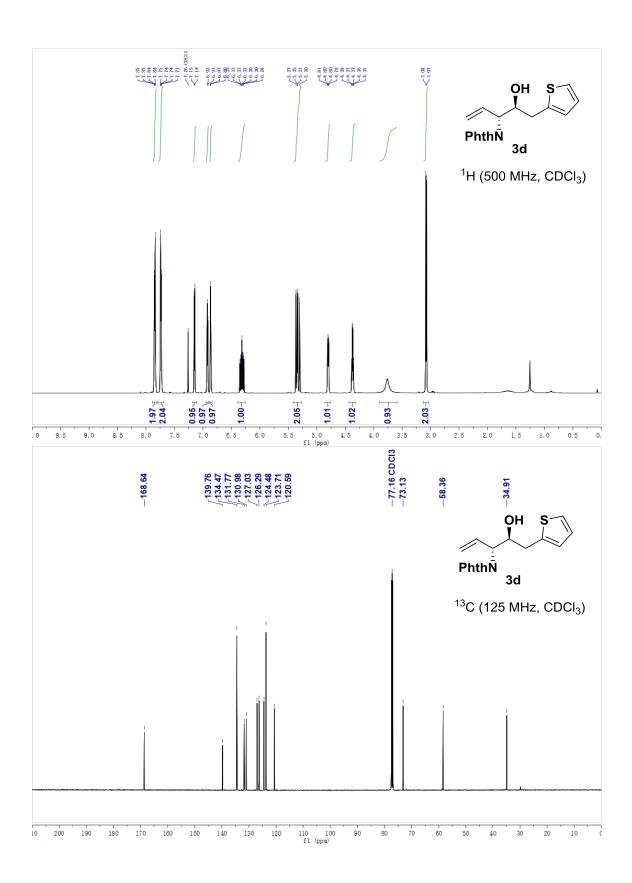
2-((3R,4S)-4-hydroxy-5-(thiophen-2-yl)pent-1-en-3-yl)isoindoline-1,3-dione (3d)

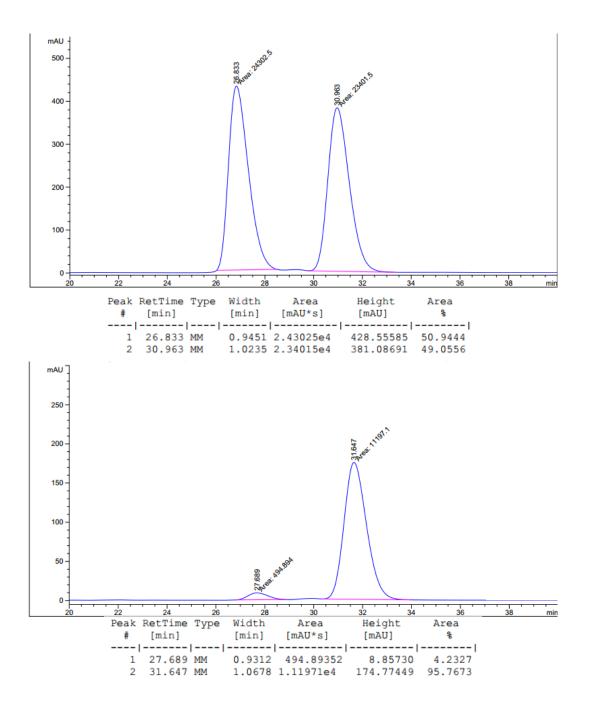
Alcohol **2d** (25.6 mg, 0.2 mmol) was subjected to standard reaction conditions (100 °C, 48 h). Upon flash column chromatography (SiO₂, 20:80 EtOAc:hexanes), the title compound **3d** (42.0 mg, 0.13 mmol, >20:1 dr) was obtained as a white solid in 67% yield.

TLC (SiO₂) R_f = 0.28 (20:80 EtOAc:hexanes)

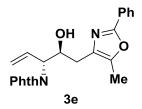
¹**H NMR** (500 MHz, CDCl₃) δ 7.84 (dd, *J* = 5.3, 3.1 Hz, 2H), 7.74 (dd, *J* = 5.4, 3.0 Hz, 2H), 7.15 (d, *J* = 5.1 Hz, 1H), 6.94 - 6.91 (m, 1H), 6.86 (d, *J* = 3.1 Hz, 1H), 6.37 - 6.27 (m, 1H), 5.34 (dd, *J* = 19.6, 13.7 Hz, 2H), 4.80 (dd, *J* = 7.8, 4.3 Hz, 1H), 4.43 - 4.32 (m, 1H), 3.76 (s, 1H), 3.08 (d, *J* = 6.6 Hz, 2H).

¹³**C NMR** (125 MHz, CDCl₃) δ 168.6, 139.8, 134.5, 131.8, 131.0, 127.0, 126.3, 124.5, 123.7, 120.6, 77.2, 73.1, 58.4, 34.9.


HRMS (Na+, m/z) for C₁₇H₁₅NO₃S: calcd. = 336.0665; found = 336.0667.


FTIR (neat): 3451, 2360, 2341, 1703, 1381, 1261, 1063, 749.

HPLC: (Chiralcel column OD-H, Hexane:2-PrOH = 95:5, 1.0 mL/min, 230 nm) ee = 92%.


 $[\alpha]_{D}^{34}$ = +72.3° (c = 0.4, CHCl₃).

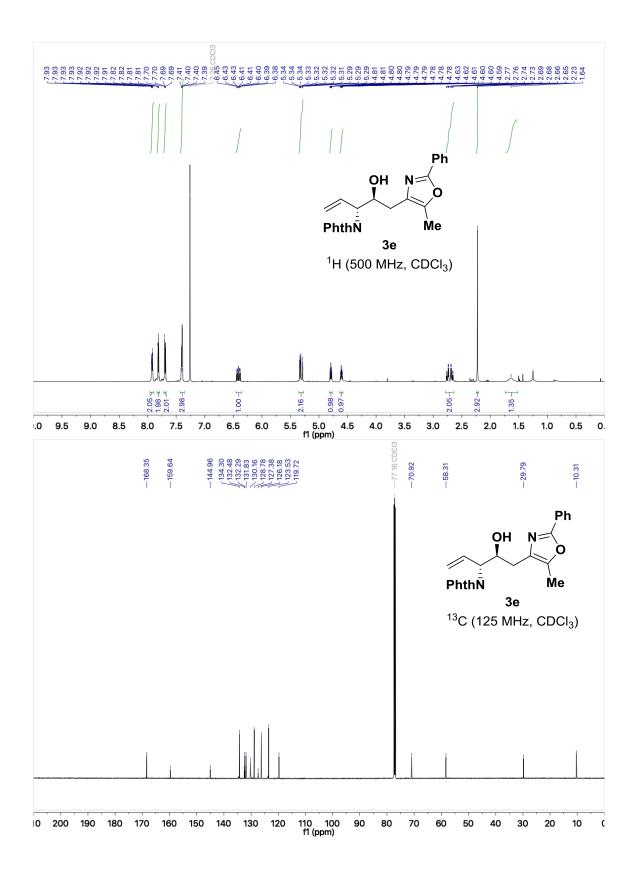
MP: [80 – 84] °C

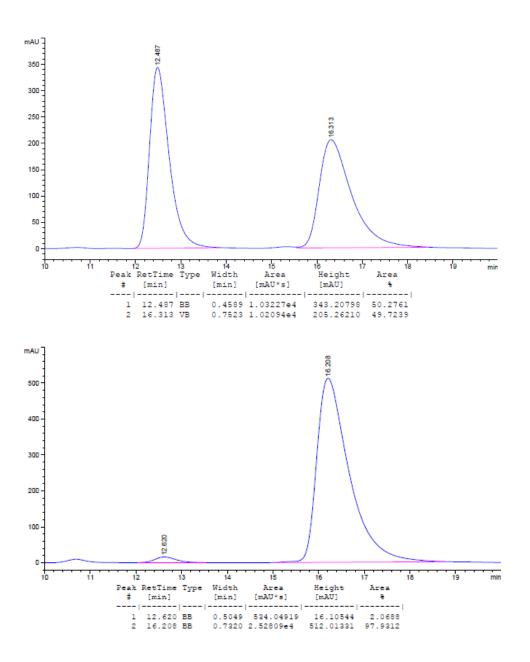
2-((3*R*,4*S*)-4-hydroxy-5-(5-methyl-2-phenyloxazol-4-yl)pent-1-en-3-yl)isoindoline-1,3-dione (3e)

Alcohol **2e** (40.6 mg, 0.2 mmol) was subjected to standard reaction conditions with 7.5 mol% catalyst (100 °C, 48 h). Upon flash column chromatography (SiO₂, 20:80 EtOAc:hexanes), the title compound **3e** (54.9 mg, 0.14 mmol, >20:1 dr) was obtained as a white solid in 71% yield.

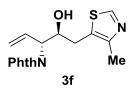
TLC (SiO₂) R_f = 0.4 (40:60 EtOAc:hexanes)

¹**H NMR** (500 MHz, CDCl₃) δ 7.93-7.91 (m, 2H), 7.82-7.81 (m, 2H), 7.70-7.69 (m, 2H), 7.42-7.39 (m, 3H), 6.41 (ddd, J = 17.1, 10.3, 7.6 Hz, 1H), 5.32 (ddt, J = 7.4, 3.0, 1.2 Hz, 2H), 4.79 (ddt, J = 7.5, 6.2, 1.1 Hz, 1H), 4.61 (td, J = 6.7, 4.9 Hz, 1H), 2.70 (ddd, J = 4.8, 15.0, 37.7 Hz, 2H), 2.23 (s, 3H), 1.64 (bs, 1H).


¹³**C NMR** (125 MHz, CDCl₃) δ 168.4, 159.6, 145.0, 134.3, 132.5, 132.3, 131.8, 130.2, 128.8, 127.4, 126.2, 123.5, 119.7, 70.9, 58.3, 29.8, 10.3.


HRMS (H+, m/z) for C₂₃H₂₁N₂O₄: calcd. = 389.1496; found = 389.1499.

FTIR (neat): 2923, 2853, 1710, 1382, 1334, 1066, 718, 692.


HPLC: (Chiralcel column OD-H, Hexane:2-PrOH = 90:10, 1.0 mL/min, 230 nm) ee = 96%.

 $[\alpha]_{D}^{34} = +23.8^{\circ} (c = 1.3, CHCl_3).$

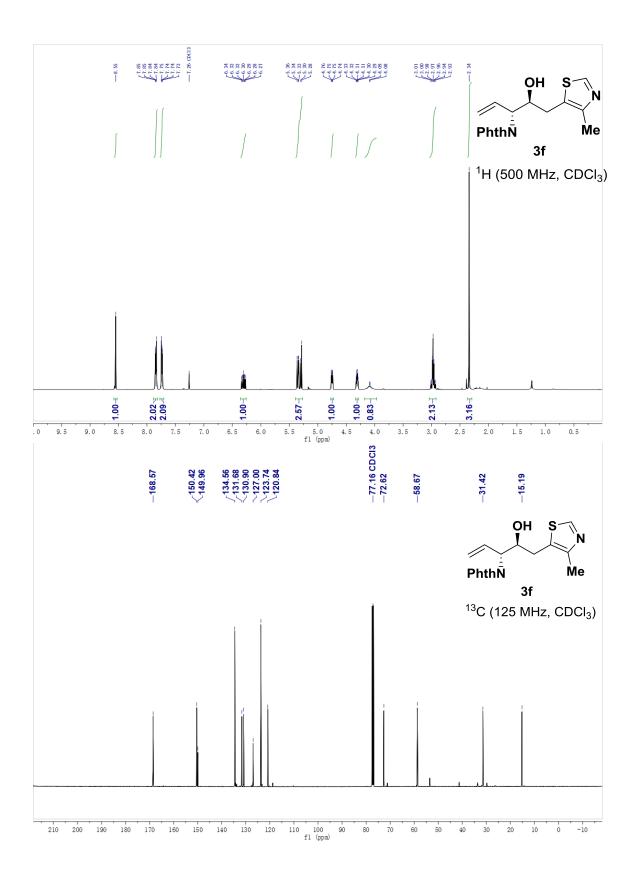
2-((3R,4S)-4-hydroxy-5-(4-methylthiazol-5-yl)pent-1-en-3-yl)isoindoline-1,3-dione (3f)

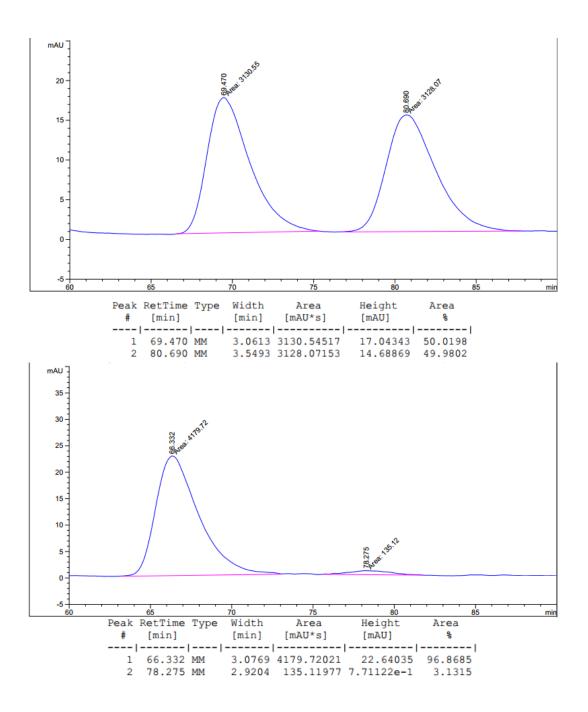
Alcohol **2f** (28.6 mg, 0.2 mmol) was subjected to standard reaction conditions with longer reaction time (100 °C, 72 h). Upon flash column chromatography (SiO₂, 50:50 EtOAc:hexanes), the title compound **3f** (47.0 mg, 0.144 mmol, >20:1 dr) was obtained as a white solid in 72% yield.

TLC (SiO₂) R_f = 0.29 (60:40 EtOAc:hexanes)

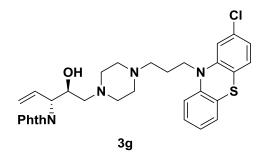
¹**H NMR** (500 MHz, CDCl₃) δ 8.55 (s, 1H), 7.84 (dd, J = 5.4, 3.1 Hz, 2H), 7.74 (dd, J = 5.4, 3.0 Hz, 2H), 6.37 – 6.24 (m, 1H), 5.41 – 5.23 (m, 2H), 4.75 (dd, J = 7.9, 4.4 Hz, 1H), 4.31 (dt, J = 7.9, 5.0 Hz, 1H), 4.09 (d, J = 6.8 Hz, 1H), 3.03 – 2.92 (m, 2H), 2.34 (s, 3H).

 $^{13}\textbf{C}$ NMR (125 MHz, CDCl₃) δ 168.6, 150.4, 150.0, 134.6, 131.7, 130.9, 127.0, 123.7, 120.8, 72.6, 58.7, 31.4, 15.2.


HRMS (H+, m/z) for C₁₇H₁₇N₂O₃S: calcd. = 329.0954; found = 329.0957.


FTIR (neat): 3724, 3004, 2360, 2341, 1706, 1275, 260, 750, 669.

HPLC: (Chiralcel column OD-H, Hexane:2-PrOH = 95:5, 1.0 mL/min, 230 nm) ee = 94%.


 $[\alpha]_{D}^{34}$ = +15.7° (c = 0.87, CHCl₃).

MP: [118-120] °C

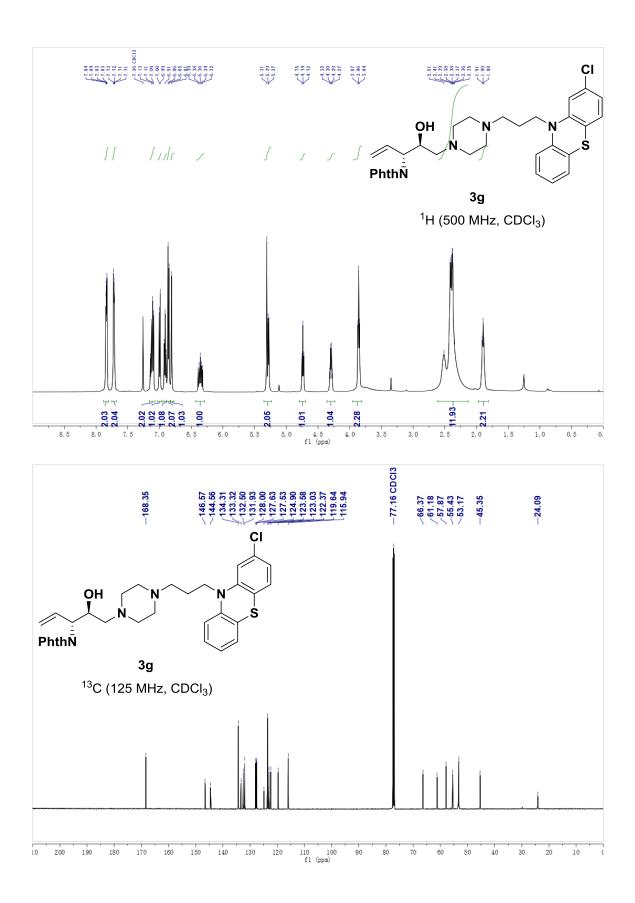
2-((3*R*,4*S*)-5-(4-(3-(2-chloro-10H-phenothiazin-10-yl)propyl)piperazin-1-yl)-4-hydroxypent-1en-3-yl)isoindoline-1,3-dione (3g)

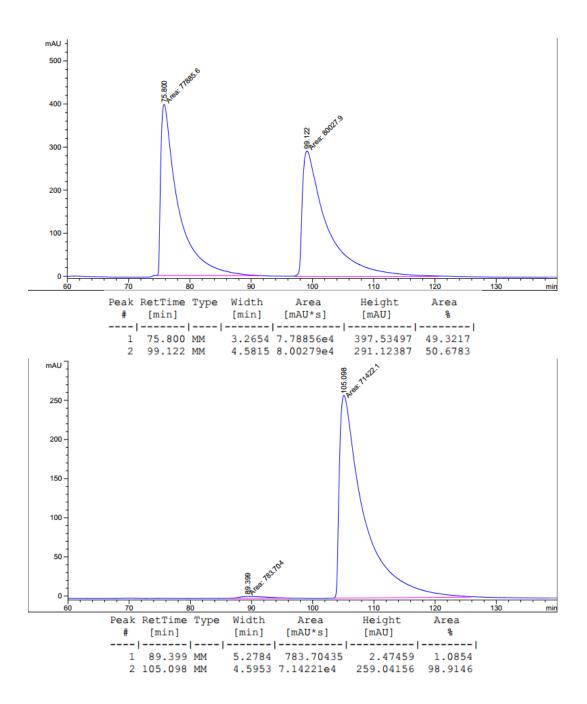
Alcohol **2g** (80.8 mg, 0.2 mmol) was subjected to standard reaction conditions with 7.5 mol% catalyst (100 °C, 48 h). Upon flash column chromatography (SiO₂, 100% EtOAc), the title compound **3g** (68.3 mg, 0.116 mmol, >20:1 dr) was obtained as a pale yellow solid in 58% yield.

TLC (SiO₂) R_f = 0.3 (100% EtOAc)

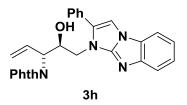
¹**H NMR** (500 MHz, CDCl₃) δ : 7.84 (dd, *J* = 5.1, 3.1 Hz, 2H), 7.72 (dd, *J* = 5.2, 3.0 Hz, 2H), 7.12 (dd, *J* = 16.8, 8.0 Hz, 2H), 7.00 (d, *J* = 8.1 Hz, 1H), 6.91 (t, *J* = 7.5 Hz, 1H), 6.86 (d, *J* = 8.1 Hz, 2H), 6.81 (s, 1H), 6.42 - 6.30 (m, 1H), 5.35 - 5.24 (m, 2H), 4.74 (t, *J* = 7.3 Hz, 1H), 4.30 (dd, *J* = 13.4, 7.0 Hz, 1H), 3.86 (t, *J* = 6.7 Hz, 2H), 2.51 (s, 2H), 2.48 - 2.27 (m, 10H), 2.00 - 1.79 (m, 2H).

¹³**C NMR** (125 MHz, CDCl₃) δ: 168.4, 146.6, 144.6, 134.3, 133.3, 132.5, 131.9, 128.0, 127.6, 127.5, 124.9, 123.6, 123.0, 122.4, 119.6, 115.9, 77.2, 66.4, 61.2, 57.9, 55.4, 53.2, 45.4, 24.1.


HRMS (H+, m/z) for C₃₂H₃₃ClN₄O₃S: calcd. = 589.2035; found = 589.2038.


FTIR (neat): 3452, 2940, 2815, 1769, 1708, 1566, 1458, 1382, 1127, 749.

HPLC: (Chiralcel column AD-H, Hexane:2-PrOH = 90:10, 1.0 mL/min, 230 nm) ee = 98%.


 $[\alpha]_{D}^{24} = +34.0^{\circ} (c = 0.80, CHCl_{3}).$

MP: [63-66] °C

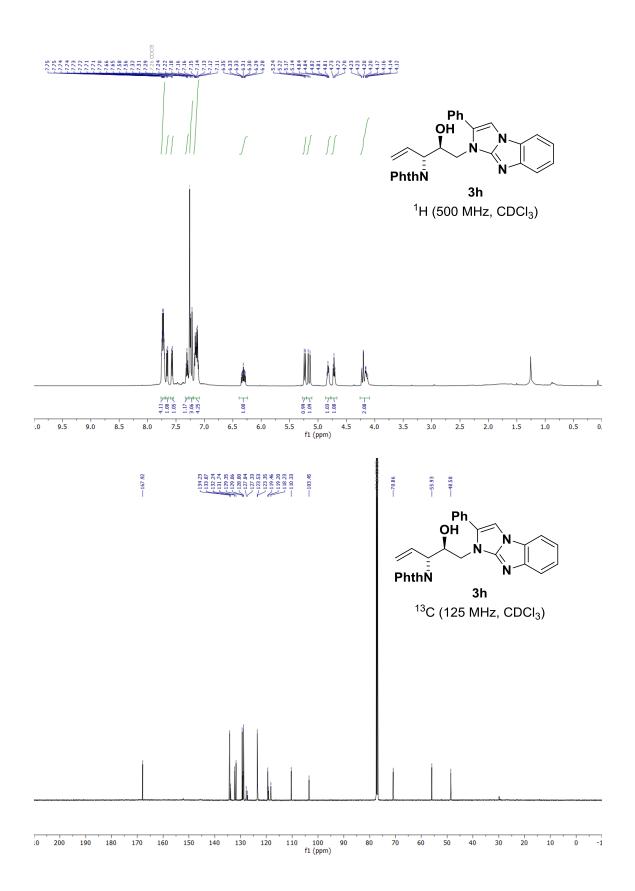
2-((3*R*,4*S*)-4-hydroxy-5-(2-phenyl-1*H*-benzo[*d*]imidazo[1,2-*a*]imidazol-1-yl)pent-1-en-3-yl)isoindoline-1,3-dione (3h)

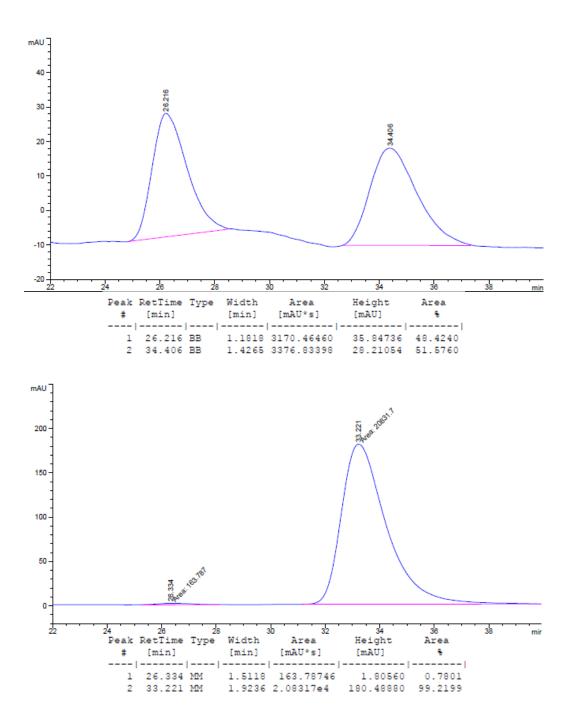
Alcohol **2h** (55.4 mg, 0.2 mmol) was subjected to standard reaction conditions with 7.5 mol% catalyst (100 °C, 48 h). Upon flash column chromatography (SiO₂, 30:70 EtOAc:Toluene), the title compound **3h** (52.7 mg, 0.114 mmol, >20:1 dr) was obtained as a pale yellow solid in 57% yield.

TLC (SiO₂) R_f = 0.38 (30:70 EtOAc:Toluene)

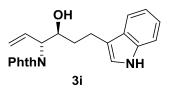
¹**H NMR** (500 MHz, CDCl₃) δ : 7.75 – 7.70 (m, 4H), 7.66 (d, *J* = 8.1 Hz, 1H), 7.57 (d, *J* = 8.0 Hz, 1H), 7.31 (t, *J* = 7.7 Hz, 1H), 7.24 – 7.22 (m, 3H), 7.18 – 7.11 (m, 4H), 6.31 (ddd, *J* = 17.4, 10.3, 7.2 Hz, 1H), 5.23 (d, *J* = 10.3 Hz, 1H), 5.16 (d, *J* = 17.2 Hz, 1H), 4.84 – 4.81 (m, 1H), 4.72 (t, *J* = 7.7 Hz, 1H), 4.23 – 4.12 (m, 1H).

¹³C NMR (125 MHz, CDCl₃) δ: 167.9, 134.2, 133.9, 133.2, 131.7, 129.4, 129.1, 128.8, 127.8, 127.3, 123.5, 123.4, 119.5, 119.2, 118.2, 110.3, 103.5, 70.9, 55.9, 48.6.


HRMS (Na+, *m*/z) for C₂₈H₂₂N₄O₃: calcd. = 485.1584; found = 485.1592.


FTIR (neat): 2922, 1708, 1635, 1558, 1380, 1239, 1066, 740, 718.

HPLC: (Chiralcel column OD-H, Hexane:2-PrOH = 90:10, 1.0 mL/min, 230 nm) ee = 98%.


 $[\alpha]_{D}^{34} = +3.4^{\circ} (c = 1.18, CHCl_{3}).$

MP [63 – 65] °C

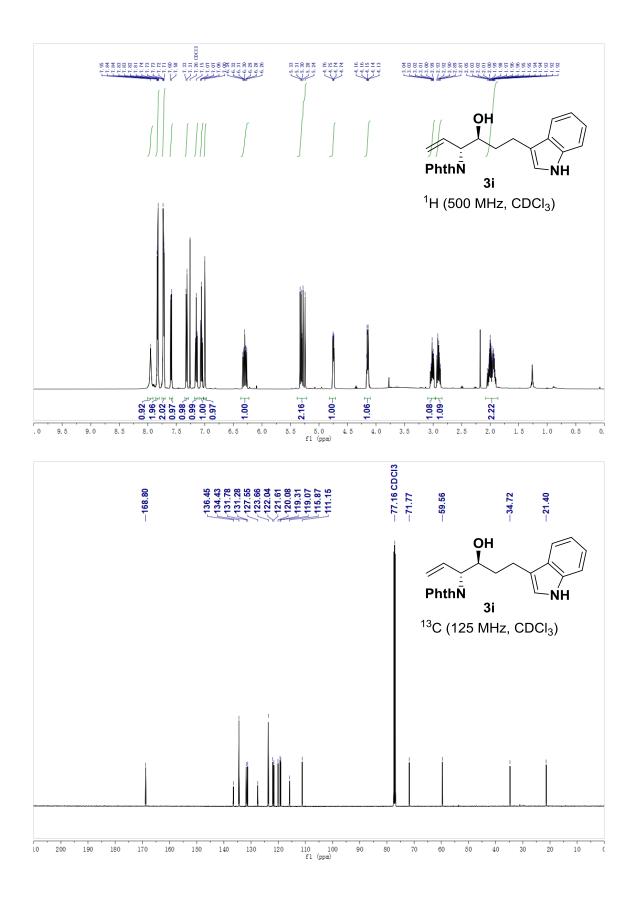
2-((3R,4S,E)-7-(benzyloxy)-4-hydroxyhepta-1,5-dien-3-yl)isoindoline-1,3-dione (3i)

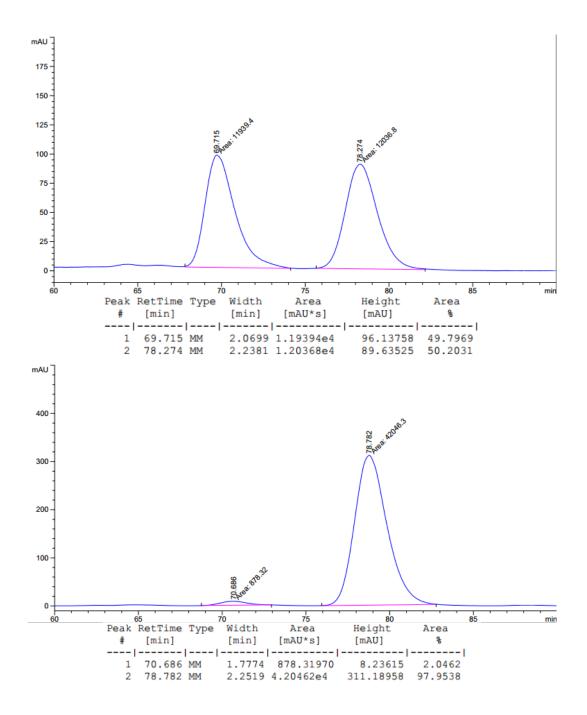
Alcohol **1i** (35.0 mg, 0.2 mmol) was subjected to standard reaction conditions (100 °C, 48 h) with 7.5 mol% Ir-**VI**. Upon flash column chromatography (SiO₂, 30:80 EtOAc:hexanes), the title compound **3i** (53.9 mg, 0.15 mmol, >20:1 dr) was obtained as a yellow solid in 75% yield.

TLC (SiO₂) R_f = 0.28 (30:80 EtOAc:hexanes)

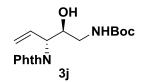
¹**H NMR** (500 MHz, CDCl₃) δ : 7.95 (s, 1H), 7.83 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.72 (dd, *J* = 5.5, 3.0 Hz, 2H), 7.59 (d, *J* = 7.9 Hz, 1H), 7.32 (d, *J* = 8.1 Hz, 1H), 7.17 – 7.12 (m, 1H), 7.06 (dd, *J* = 11.0, 3.9 Hz, 1H), 7.00 (s, 1H), 6.30 (ddd, *J* = 17.9, 10.3, 7.7 Hz, 1H), 5.34 – 5.23 (m, 2H), 4.75 (dd, *J* = 7.7, 3.8 Hz, 1H), 4.17 – 4.12 (m, 1H), 3.01 (td, *J* = 8.8, 4.3 Hz, 1H), 2.95 – 2.86 (m, 1H), 2.06 – 1.90 (m, 2H).

¹³**C NMR** (125 MHz, CDCl₃) δ: 168.8, 136.5, 134.4, 131. 8, 131.3, 127.5, 123.7, 122.0, 121.6, 120.1, 119.3, 119.1, 115.9, 111.2, 77.2, 71.8, 59.6, 34.7, 21.4.


HRMS (Na+, *m*/z) for C₂₂H₂₀N₂O₃: calcd. = 383.1366; found = 383.1376.


FTIR (neat): 3335, 1708, 1639, 1274, 1263, 764, 734, 703.

HPLC: (Chiralcel column ADH, Hexane:2-PrOH = 90:10, 1.0 mL/min, 230 nm) ee = 96%.


 $[\alpha]_D^{24} = 68.0^\circ (c = 0.37, CHCl_3).$

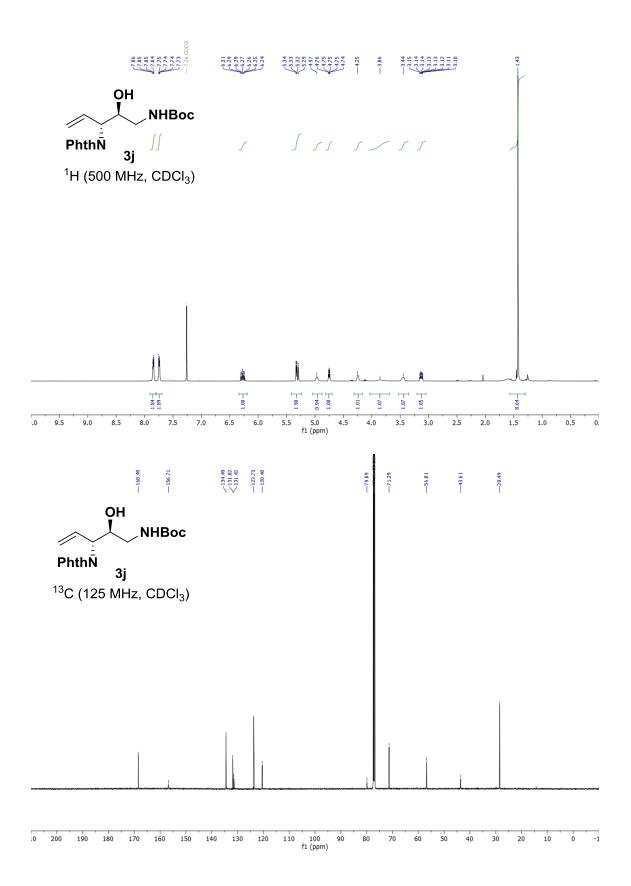
MP:80-85 °C

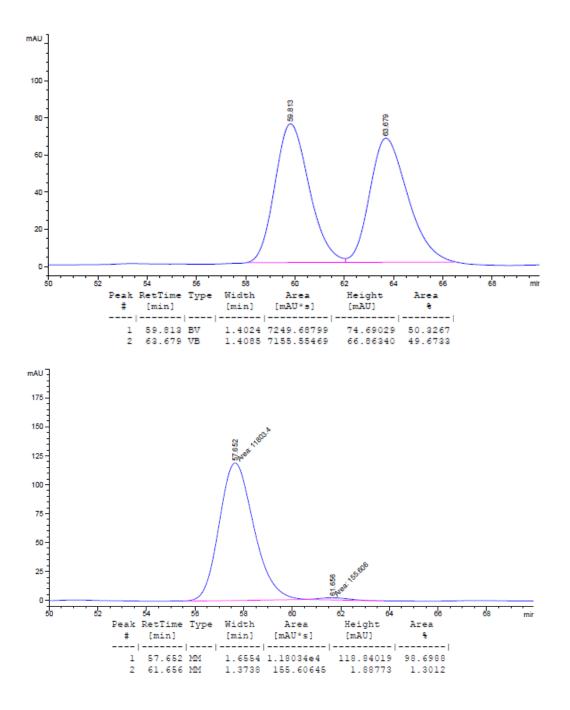
tert-butyl ((25,3R)-3-(1,3-dioxoisoindolin-2-yl)-2-hydroxypent-4-en-1-yl)carbamate (3j)

Alcohol **2j** (32.2 mg, 0.2 mmol) was subjected to standard reaction conditions (100 °C, 48 h). Upon flash column chromatography (SiO₂, 30:70 EtOAc:hexanes), the title compound **3j** (45.1 mg, 0.13 mmol, >20:1 dr) was obtained as a pale yellow oil in 66% yield.

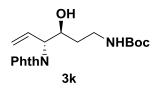
TLC (SiO₂) R_f = 0.32 (30:70 EtOAc:hexanes)

¹**H NMR** (500 MHz, CDCl₃) δ: 7.85 (dd, J = 5.4, 3.1 Hz, 2H), 7.74 (dd, J = 5.5, 3.0 Hz, 2H), 6.27 (ddd, J = 17.1, 10.3, 7.9 Hz, 1H), 5.33 (d, J = 10.7 Hz, 1H), 5.31 (d, J = 17.1 Hz, 1H), 4.97 (brs, 1H), 4.76 – 4.74 (m, 1H), 4.25 (brs, 1H), 3.86 (brs, 1H), 3.46 – 3.40 (m, 1H), 3.15 – 3.10 (m, 1H), 1.43 (brs, 9H).


¹³C NMR (125 MHz, CDCl₃) δ: 168.5 (2C), 156.7, 134.5 (2C), 131.8 (2C), 131.4, 123.7 (2C), 120.4, 79.9, 71.3, 56.8, 43.6, 28.5 (3C).


HRMS (Na+, m/z) for C₁₈H₂₂N₂O₅: calcd. = 369.1421; found = 369.1427.

FTIR (neat): 3372, 2978, 1704, 1513, 1381, 1165, 1060


HPLC: (Chiralcel column AD-H, Hexane:2-PrOH = 95:5, 1.0 mL/min, 230 nm) ee = 97%.

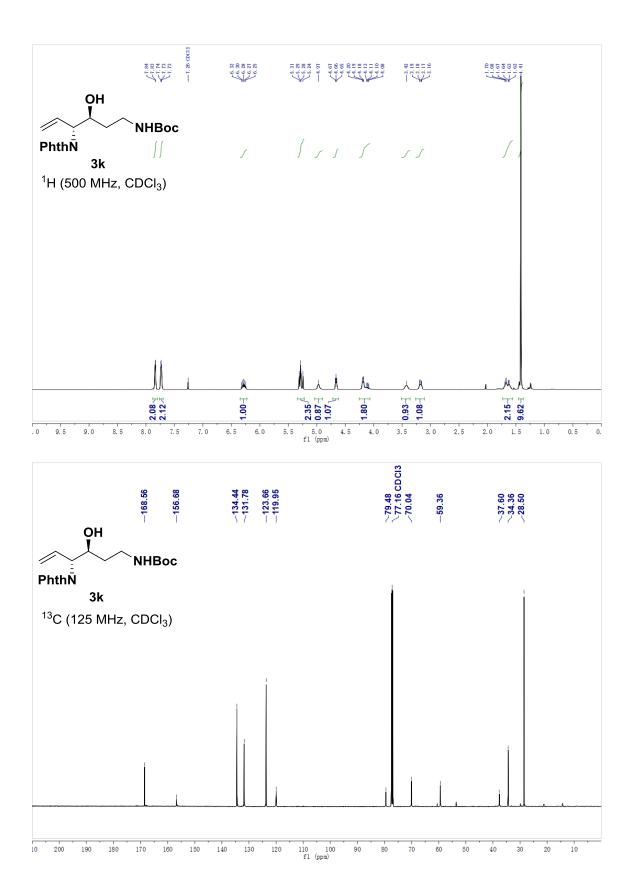
 $[\alpha]_{D}^{34} = +30.6^{\circ} (c = 0.98, CHCl_{3}).$

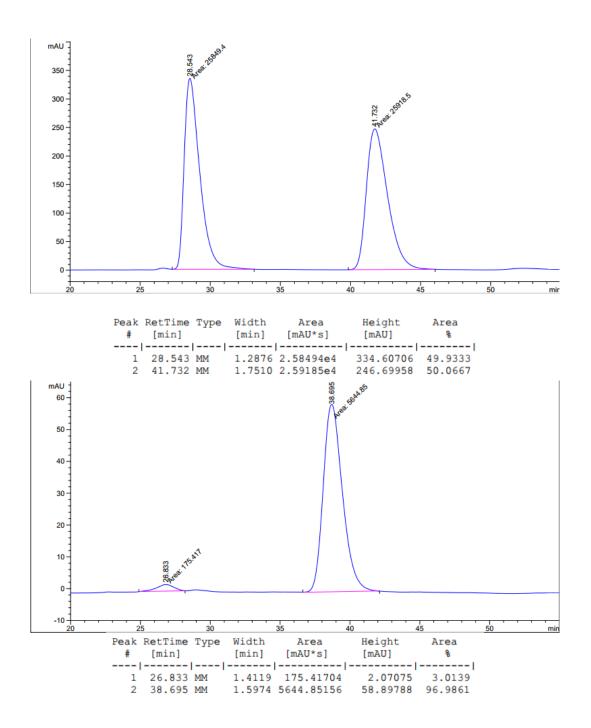
tert-butyl ((3*S*,4*R*)-4-(1,3-dioxoisoindolin-2-yl)-3-hydroxyhex-5-en-1-yl)carbamate (3k)

Alcohol **2k** (35.0 mg, 0.2 mmol) was subjected to standard reaction conditions (100 °C, 48 h). Upon flash column chromatography (SiO₂, 40:60 EtOAc:hexanes), the title compound **3k** (43.2 mg, 0.12 mmol, >20:1 dr) was obtained as a pale yellow oil in 60% yield.

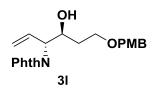
TLC (SiO₂) R_f = 0.29 (50:50 EtOAc:hexanes)

¹**H NMR** (500 MHz, CDCl₃) δ : 7.84 (d, *J* = 3.2 Hz, 2H), 7.77 – 7.69 (m, 2H), 6.35 – 6.22 (m, 1H), 5.28 (dd, *J* = 19.2, 13.9 Hz, 2H), 4.97 (s, 1H), 4.70 – 4.63 (m, 1H), 4.22 – 4.16 (m, 2H), 3.42 (s, 1H), 3.17 (dd, *J* = 13.0, 5.1 Hz, 1H), 1.73 – 1.56 (m, 2H), 1.41 (s, 9H).


¹³C NMR (125 MHz, CDCl₃) δ: 168.6, 156.7, 134.4, 131.8, 123.7, 120.0, 79.5, 70.0, 59.4, 37.6, 34.4, 28.5.


HRMS (H+, m/z) for C₁₉H₂₄N₂O₅: calcd. = 361.1758; found = 361.1756.

FTIR (neat): 3363, 2360, 2340, 1635, 1274, 1263, 763, 748.


HPLC: (Chiralcel column OD-H, Hexane:2-PrOH = 95:5, 1.0 mL/min, 230 nm) ee = 94%.

 $[\alpha]_{D}^{34} = +44.9^{\circ} (c = 0.67, CHCl_3).$

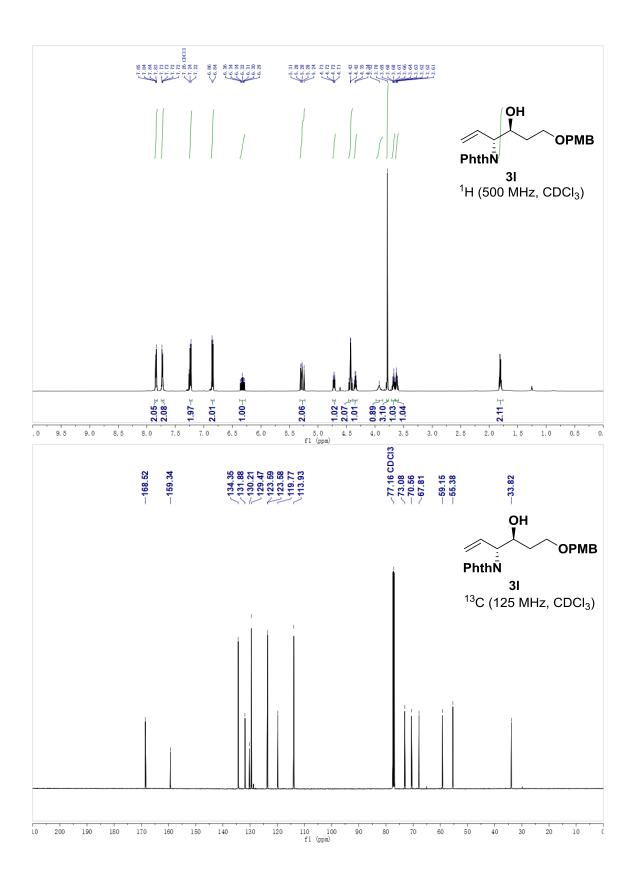
2-((3R,4S)-4-hydroxy-6-((4-methoxybenzyl)oxy)hex-1-en-3-yl)isoindoline-1,3-dione (3l)

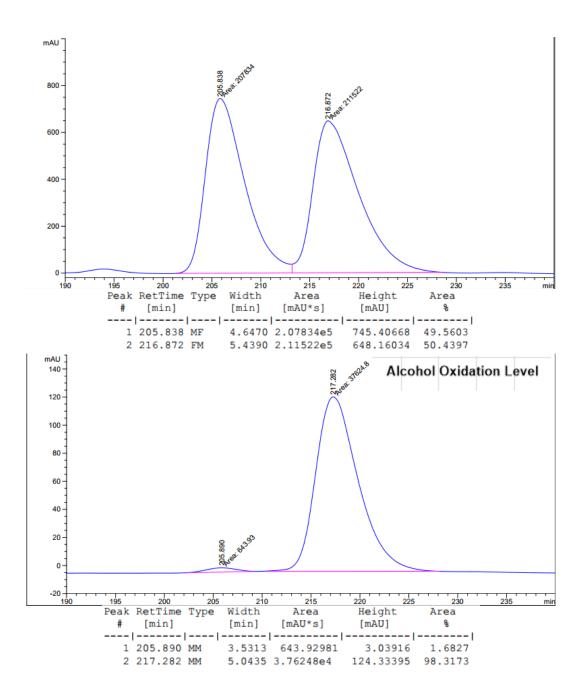
Alcohol Oxidation level: Alcohol **2l** (39.2 mg, 0.2 mmol) was subjected to standard reaction conditions (100 °C, 48 h). Upon flash column chromatography (SiO₂, 30:70 EtOAc:hexanes), the title compound **3l** (54.2 mg, 0.142 mmol, >20:1 dr) was obtained as a colorless oil in 71% yield.

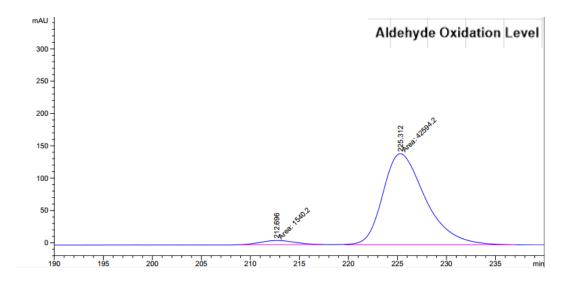
Aldehyde Oxidation level: dehydro-**2l** (38.8 mg, 0.2 mmol) was subjected to standard reaction conditions (100 °C, 48 h) with 7.5% catalyst of Ir-**VI** and 300 mol% 2-PrOH (36.0 mg). Upon flash column chromatography (SiO₂, 30:70 EtOAc:hexanes), the title compound **3l** (47.3 mg, 0.124 mmol, >20:1 dr) was obtained as a colorless oil in 62% yield.

TLC (SiO₂) R_f = 0.28 (30:70 EtOAc:hexanes)

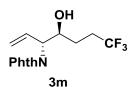
¹**H NMR** (500 MHz, CDCl₃) δ : 7.84 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.73 (dd, *J* = 5.4, 3.0 Hz, 2H), 7.23 (d, *J* = 8.5 Hz, 2H), 6.85 (d, *J* = 8.6 Hz, 2H), 6.38 – 6.28 (m, 1H), 5.32 – 5.23 (m, 2H), 4.72 (dd, *J* = 7.0, 6.2 Hz, 1H), 4.46 – 4.39 (m, 2H), 4.35 (dd, *J* = 12.1, 5.8 Hz, 1H), 3.92 (s, 1H), 3.78 (s, 3H), 3.71 – 3.65 (m, 1H), 3.64 – 3.58 (m, 1H), 1.85 – 1.77 (m, 2H).


¹³C NMR (125 MHz, CDCl₃) δ: 168.5, 159.3, 134.4, 131.9, 130.2, 129.5, 123.6, 123.6, 119.8, 113.9, 77.2, 73.1, 70.6, 67.8, 59.2, 55.4, 33.8.


HRMS (Na+, m/z) for C₂₂H₂₃NO₅: calcd. = 404.1468; found = 404.1476.


FTIR (neat): 3404, 1770, 1709, 1513, 1382, 1265, 1085, 733, 703.

HPLC: (Chiralcel column AD-H, Hexane:2-PrOH = 96:4, 1.0 mL/min, 230 nm) ee = 96%.


 $[\alpha]_{D}^{34} = +32.5^{\circ} (c = 0.83, CHCl_3).$

2-((3R,4S)-7,7,7-trifluoro-4-hydroxyhept-1-en-3-yl)isoindoline-1,3-dione (3m)

Alcohol **2m** (25.6 mg, 0.2 mmol) was subjected to standard reaction conditions with 7.5% mol of (R)-**Ir-VI** (100 °C, 48 h). Upon flash column chromatography (SiO₂, 15:85 EtOAc:hexanes), the title compound **3m** (47.0 mg, 0.15 mmol, >20:1 dr) was obtained as a white solid in 75% yield.

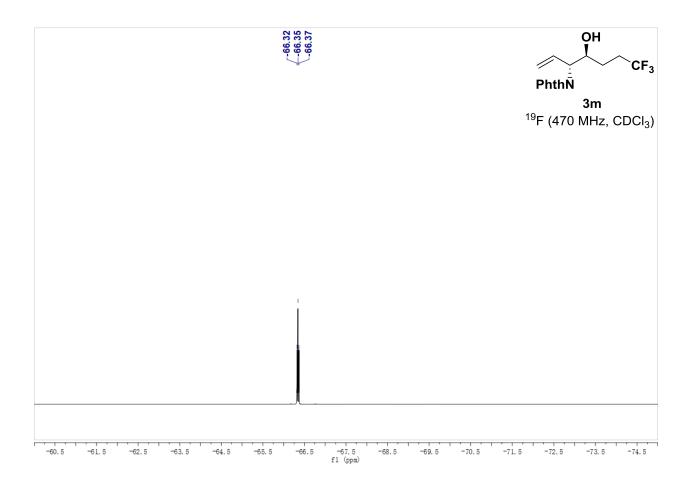
TLC (SiO₂) R_f = 0.28 (15:85 EtOAc:hexanes)

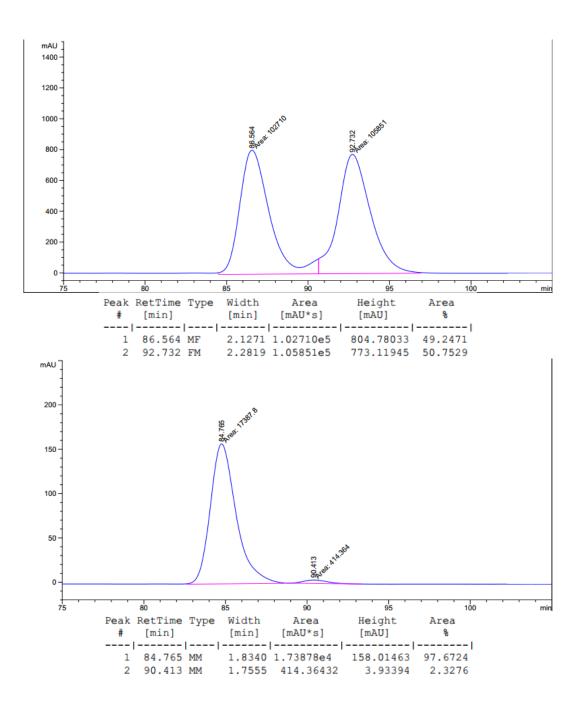
¹**H NMR** (500 MHz, CDCl₃) δ: 7.86 (dd, J = 5.4, 3.1 Hz, 2H), 7.76 (dd, J = 5.4, 3.0 Hz, 2H), 6.32 – 6.18 (m, 1H), 5.46 – 5.26 (m, 2H), 4.67 (dd, J = 8.0, 3.8 Hz, 1H), 4.21 – 4.00 (m, 1H), 3.80 (s, 1H), 2.57 – 2.33 (m, 1H), 2.27 – 2.10 (m, 1H), 1.83 – 1.72 (m, 2H).

¹³**C NMR** (125 MHz, CDCl₃) δ: 168.7, 134.6, 131.7, 130.6, 123.8, 121.1, 77.2, 70.8, 59.6, 30.34 (q, *J* = 29.0 Hz), 26.8, 26.8.

¹⁹**F NMR** (470 MHz, CDCl₃) δ: -66.4 (t, *J* = 10.9 Hz).

HRMS (H+, m/z) for C₁₅H₁₄F₃NO₃: calcd. = 314.0999; found = 314.1001.


FTIR (neat): 3346, 2360, 2341, 1704, 1382, 1275, 1137, 749.


HPLC: (Chiralcel column AD-H, Hexane:2-PrOH = 97:3, 1.0 mL/min, 230 nm) ee = 94%.

 $[\alpha]_{D}^{24} = +40.5^{\circ} (c = 0.74, CHCl_{3}).$

MP [60 – 64] °C

2-((15,2R)-1-cyclopropyl-1-hydroxybut-3-en-2-yl)isoindoline-1,3-dione (3n)

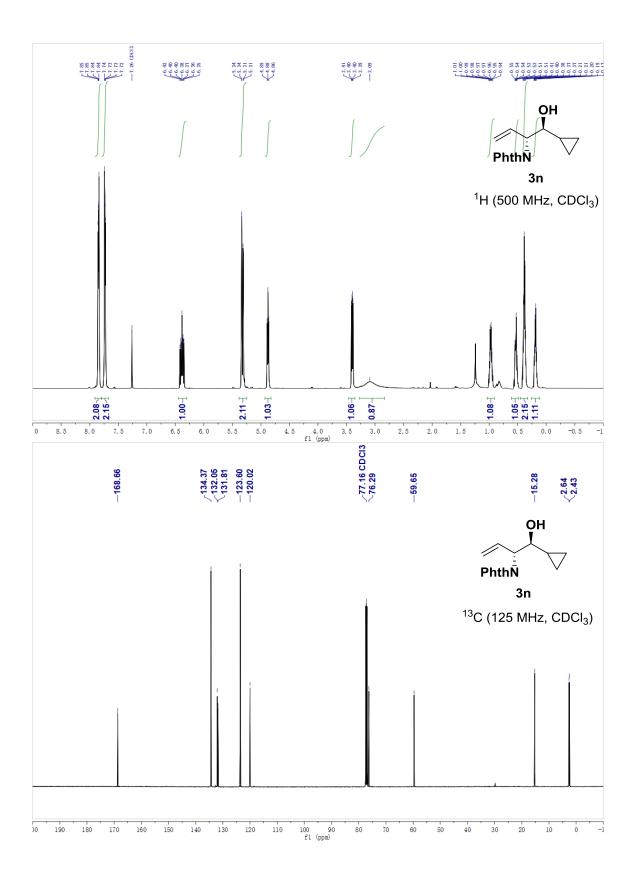
3n

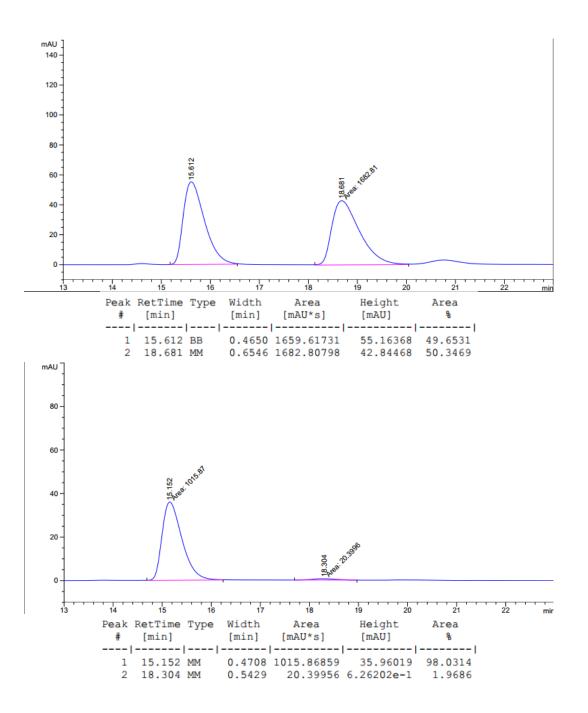
Alcohol **2n** (14.4 mg, 0.2 mmol) was subjected to standard reaction conditions using 5 mol% of (R)-**Ir-V** as catalyst (100 °C, 48 h). Upon flash column chromatography (SiO₂, 40:60 EtOAc:hexanes), the title compound **3n** (29.8 mg, 0.16 mmol, >20:1 dr) was obtained as a pale yellow solid in 58% yield.

TLC (SiO₂) R_f = 0.28 (20:80 EtOAc:hexanes)

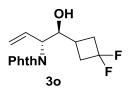
¹**H NMR** (500 MHz, CDCl₃) δ : 7.85 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.73 (dd, *J* = 5.4, 3.1 Hz, 2H), 6.38 (ddd, *J* = 17.6, 9.9, 7.9 Hz, 1H), 5.32 (dd, *J* = 13.7, 2.3 Hz, 2H), 4.93 – 4.79 (m, 1H), 3.40 (dd, *J* = 8.7, 5.8 Hz, 1H), 3.09 (s, 1H), 1.09 – 0.91 (m, 1H), 0.61 – 0.48 (m, 1H), 0.44 – 0.31 (m, 2H), 0.23 – 0.11 (m, 1H).

¹³**C NMR** (125 MHz, CDCl₃) δ: 168.7, 134.4, 132.1, 131.8, 123.6, 120.0, 77.2, 76.3, 59.7, 15.3, 2.6, 2.4.


HRMS (Na+, m/z) for C₁₅H₁₅NO₃: calcd. = 280.0944; found = 280.0946.


FTIR (neat): 3363, 2359, 2340, 1711, 1264, 1085, 733, 703.

HPLC: (Chiralcel column OD-H, Hexane:2-PrOH = 95:5, 1.0 mL/min, 230 nm) ee = 96%.


 $[\alpha]_{D}^{24} = +20.4^{\circ} (c = 1.10, CHCl_{3}).$

MP [55 – 60] °C

2-((1S,2R)-1-cyclopropyl-1-hydroxybut-3-en-2-yl)isoindoline-1,3-dione (30)

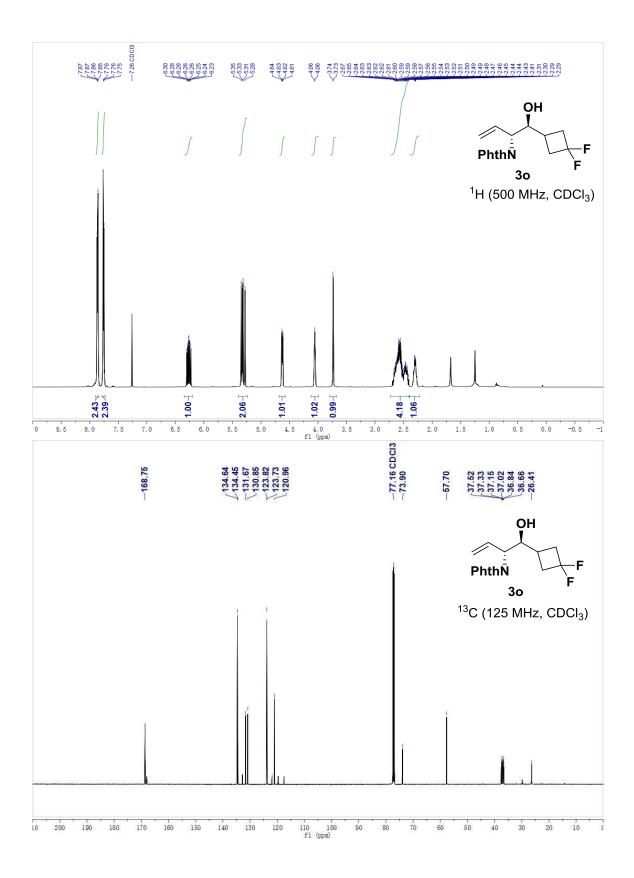
Alcohol **2o** (24.4 mg, 0.2 mmol) was subjected to standard reaction conditions with longer reaction time (100 °C, 72 h). Upon flash column chromatography (SiO₂, 20:80 EtOAc:hexanes), the title compound **3o** (37.5 mg, 0.122 mmol, >20:1 dr) was obtained as a white solid in 61% yield.

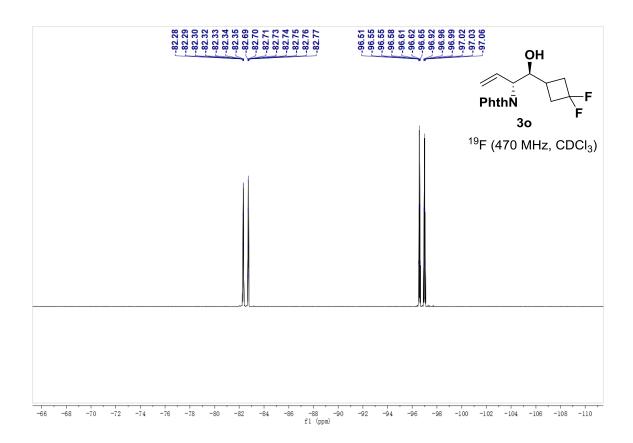
TLC (SiO₂) R_f = 0.26 (20:80 EtOAc:hexanes)

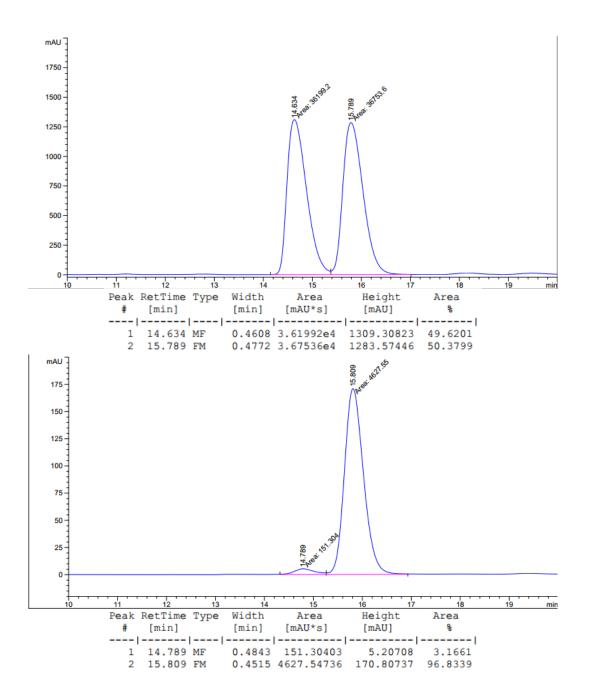
¹**H NMR** (500 MHz, CDCl₃) δ : 7.86 (dd, *J* = 5.4, 3.0 Hz, 2H), 7.76 (dd, *J* = 5.4, 3.0 Hz, 2H), 6.26 (ddd, *J* = 17.2, 10.2, 8.2 Hz, 1H), 5.32 (dd, *J* = 20.1, 13.7 Hz, 2H), 4.63 (dd, *J* = 8.1, 4.1 Hz, 1H), 4.06 (d, *J* = 4.2 Hz, 1H), 3.73 (d, *J* = 2.1 Hz, 1H), 2.72 – 2.38 (m, 4H), 2.30 (dd, *J* = 8.0, 3.6 Hz, 1H).

¹³**C NMR** (125 MHz, CDCl₃) δ: 168.8, 134.6, 134.5, 131. 7, 130.8, 123.8, 123.7, 121.0, 77.2, 73.9, 57.7, 37.3 (m), 36.8 (m), 26.4.

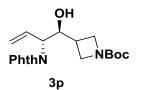
¹⁹**F NMR** (470 MHz, CDCl₃) δ: -82.3 (tt, *J* = 12.0, 5.9 Hz), -82.7 (ddt, *J* = 17.6, 11.9, 5.8 Hz), -96.6 (m), -97.0 (m).


HRMS (Na+, m/z) for C₁₆H₁₅F₂NO₃: calcd. = 330.0912; found = 330.0916.


FTIR (neat): 3469, 2631, 2340, 1705, 1382, 1296, 1265, 1070, 763.


HPLC: (Chiralcel column OD-H, Hexane:2-PrOH = 95:5, 1.0 mL/min, 230 nm) ee = 94%.

 $[\alpha]_{D}^{34}$ = +14.0° (c = 0.87, CHCl₃).


MP [78 – 80] °C

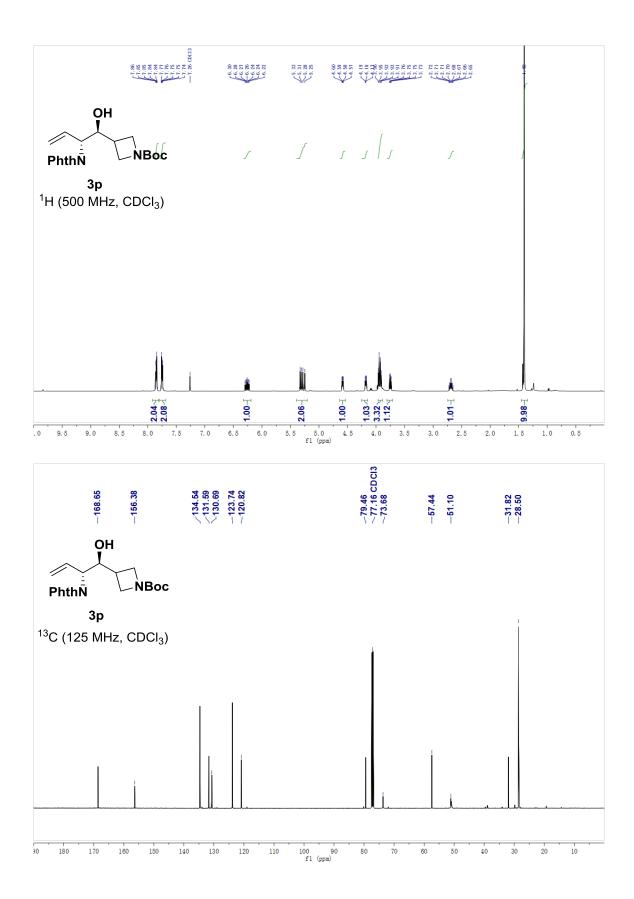
tert-butyl 3-((1*S*,2*R*)-2-(1,3-dioxoisoindolin-2-yl)-1-hydroxybut-3-en-1-yl)azetidine-1carboxylate (3p)

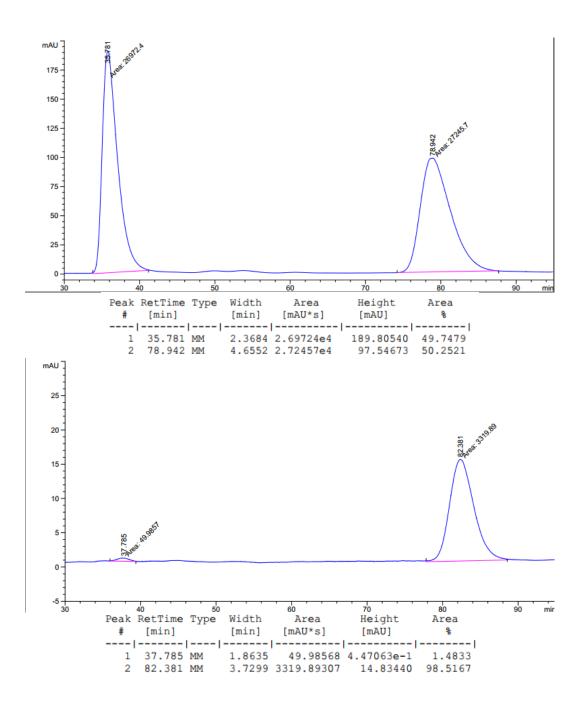
Alcohol **2p** (37.4 mg, 0.2 mmol) was subjected to standard reaction conditions (100 °C, 48 h). Upon flash column chromatography (SiO₂, 30:70 EtOAc:hexanes), the title compound **3p** (49.9 mg, 0.134 mmol, >20:1 dr) was obtained as a light yellow solid in 67% yield.

TLC (SiO₂) R_f = 0.20 (30:70 EtOAc:hexanes)

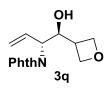
¹**H NMR** (500 MHz, CDCl₃) δ: 7.85 (dd, J = 5.4, 3.1 Hz, 2H), 7.75 (dd, J = 5.4, 3.0 Hz, 2H), 6.30 – 6.21 (m, 1H), 5.29 (dd, J = 26.8, 13.7 Hz, 2H), 4.59 (dd, J = 8.1, 3.8 Hz, 1H), 4.18 (dd, J = 7.6, 3.8 Hz, 1H), 3.97 – 3.91 (m, 3H), 3.75 (dd, J = 8.5, 5.9 Hz, 1H), 2.74 – 2.64 (m, 1H), 1.40 (s, 9H).

 $^{13}\mathbf{C}$ NMR (125 MHz, CDCl₃) δ : 168.6, 156.4, 134.5, 131.6, 130.7, 123.7, 120.8, 79.5, 77.2, 73.7, 57.4, 51.1, 31.8, 28.5.


HRMS (K+, m/z) for C₂₀H₂₄N₂O₅: calcd. = 411.1317; found = 411.1323.


FTIR (neat): 3362, 2360, 2341, 1706, 1275, 1260, 764, 750.

HPLC: (Chiralcel column OD-H, Hexane:2-PrOH = 95:5, 1.0 mL/min, 230 nm) ee = 97%.


 $[\alpha]_D^{34} = +27.7^\circ (c = 0.64, CHCl_3).$

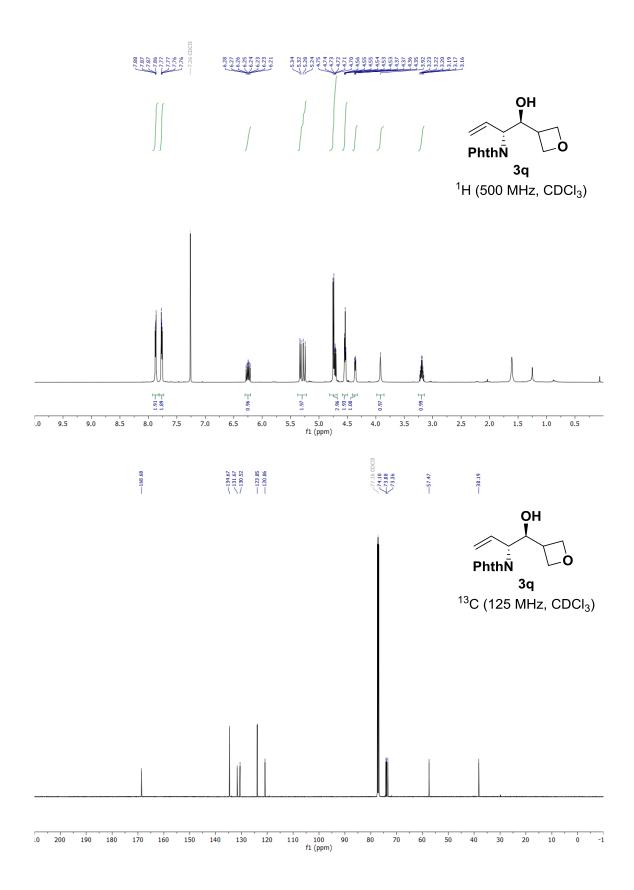
MP [90 – 93] °C

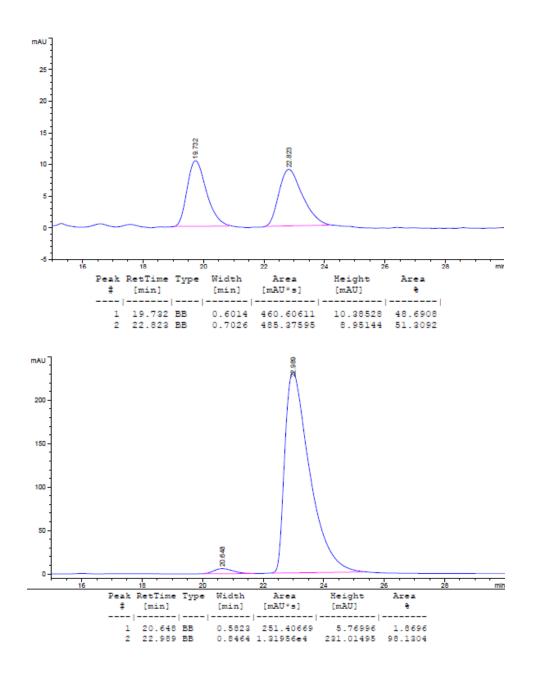
2-((1S,2R)-1-hydroxy-1-(oxetan-3-yl)but-3-en-2-yl)isoindoline-1,3-dione (3q)

Alcohol **2q** (17.6 mg, 0.2 mmol) was subjected to standard reaction conditions (100 °C, 48 h). Upon flash column chromatography (SiO₂, 30:70 EtOAc:hexanes), the title compound **3q** (43.0 mg, 0.16 mmol, >20:1 dr) was obtained as a pale yellow oil in 79% yield.

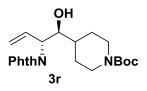
TLC (SiO₂) R_f = 0.28 (30:70 EtOAc:hexanes)

¹**H NMR** (500 MHz, CDCl₃) δ : 7.86 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.76 (dd, *J* = 5.5, 3.0 Hz, 2H), 6.24 (ddd, *J* = 17.1, 10.3, 7.9 Hz, 1H), 5.32 (d, *J* = 10.7 Hz, 1H), 5.26 (d, *J* = 17.1 Hz, 1H), 4.75 (d, *J* = 7.1 Hz, 2H), 4.71 (dd, *J* = 8.1, 6.1 Hz, 1H), 4.56 – 4.53 (m, 2H), 4.36 (dd, *J* = 8.0, 3.5 Hz, 1H), 3.92 (brs, 1H), 3.23 – 3.15 (m, 1H).


¹³**C NMR** (125 MHz, CDCl₃) δ: 168.7, 134.7, 131.7, 130.5, 123.9, 120.9, 74.1, 73.9, 73.4, 57.5, 38.2.


HRMS (Na+, m/z) for C₁₅H₁₅NO₄: calcd. = 296.0893; found = 296.0901.

FTIR (neat): 3408, 2959, 2880, 1703, 1380, 973, 718.


HPLC: (Chiralcel column OD-H, Hexane:2-PrOH = 90:10, 1.0 mL/min, 230 nm) ee = 96%.

 $[\alpha]_{D}^{34} = +38.7^{\circ} (c = 0.92, CHCl_3).$

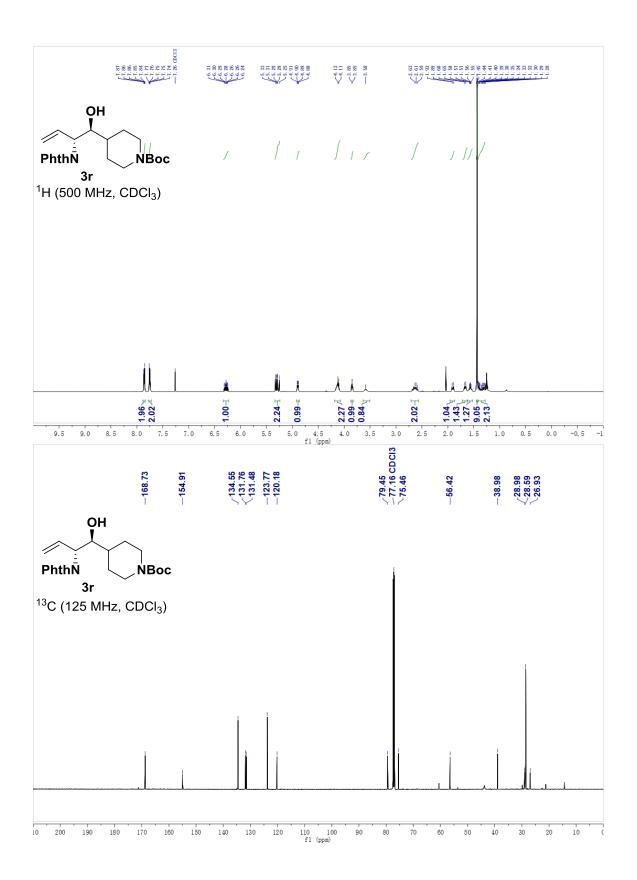
tert-butyl 4-((1*S*,2*R*)-2-(1,3-dioxoisoindolin-2-yl)-1-hydroxybut-3-en-1-yl)piperidine-1-carboxylate (3r)

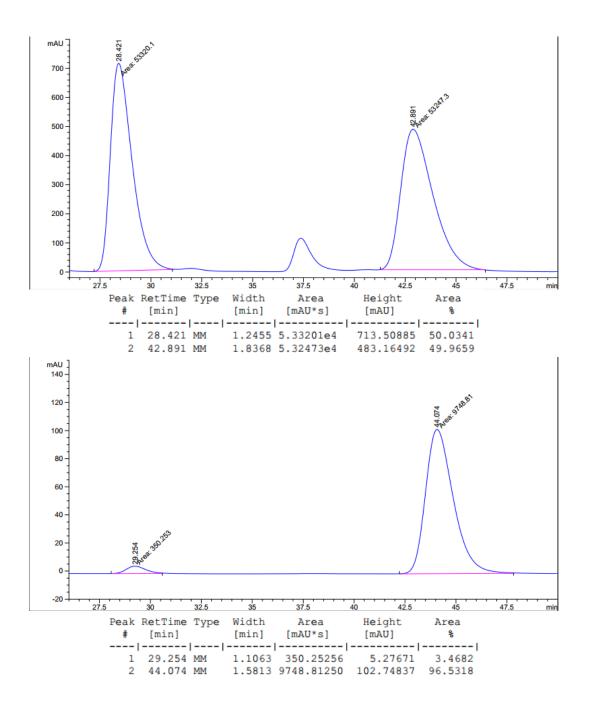
Alcohol **2r** (40.3 mg, 0.2 mmol) was subjected to standard reaction conditions (100 °C, 48 h). Upon flash column chromatography (SiO₂, 25:75 EtOAc:hexanes), the title compound **3r** (56.0 mg, 0.14 mmol, >20:1 dr) was obtained as white solid in 70% yield.

TLC (SiO₂) R_f = 0.30 (30:70 EtOAc:hexanes)

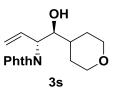
¹**H NMR** (500 MHz, CDCl₃) δ: 7.86 (dd, J = 5.4, 3.0 Hz, 2H), 7.75 (dd, J = 5.4, 3.0 Hz, 2H), 6.33 – 6.23 (m, 1H), 5.34 – 5.23 (m, 2H), 4.89 (dd, J = 7.6, 4.2 Hz, 1H), 4.18 – 4.08 (m, 2H), 3.85 (dd, J = 6.0, 4.4 Hz, 1H), 3.58 (s, 1H), 2.71 – 2.56 (m, 2H), 1.90 (d, J = 13.2 Hz, 1H), 1.67 (d, J = 12.7 Hz, 1H), 1.61 – 1.52 (m, 1H), 1.44 (s, 9H), 1.41 – 1.28 (m, 2H).

¹³C NMR (125 MHz, CDCl₃) δ: 168.7, 154.9, 134.6, 131.8, 131.5, 123.8, 120.2, 79.5, 77.2, 75.5, 56.4, 39.0, 29.0, 28.6, 26.9.


HRMS (K+, m/z) for C₂₂H₂₈N₂O₅: calcd. = 439.1630; found = 439.1629.


FTIR (neat): 3725, 2989, 2360, 2341, 1707, 1275, 1260, 764, 749, 668.

HPLC: (Chiralcel column OD-H, Hexane:2-PrOH = 93:7, 1.0 mL/min, 230 nm) ee = 93%.


 $[\alpha]_{D}^{34}$ = +12.6° (c = 0.85, CHCl₃).

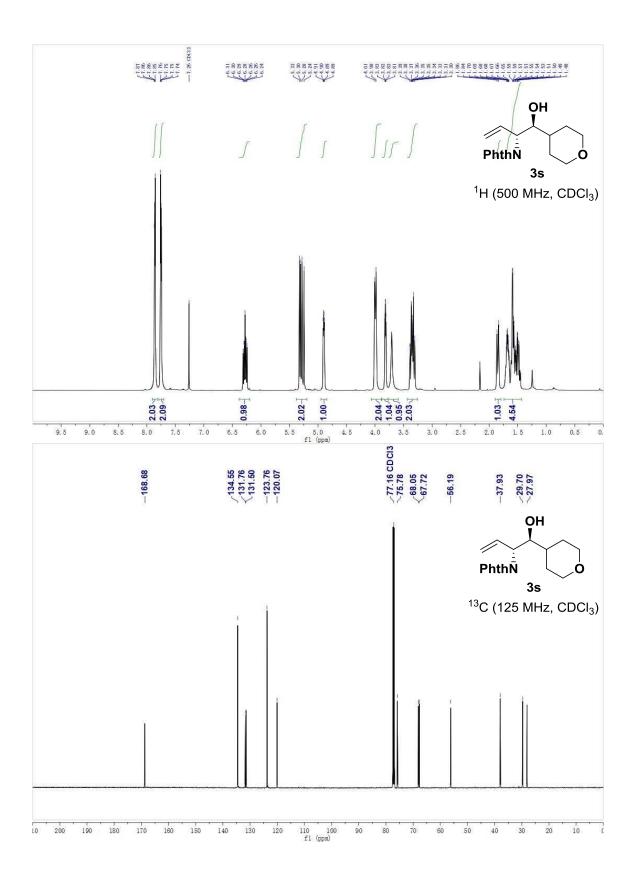
MP [102 – 106] °C

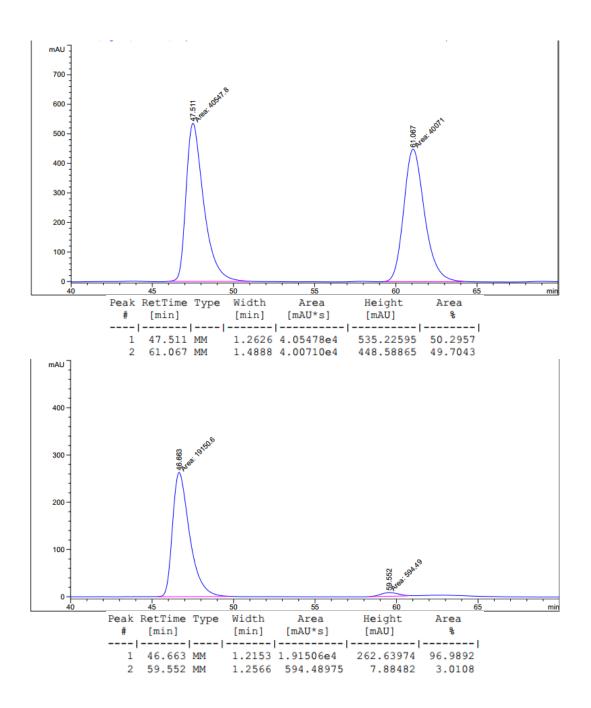
2-((1*S*,2*R*)-1-hydroxy-1-(tetrahydro-2H-pyran-4-yl)but-3-en-2-yl)isoindoline-1,3-dione (3s)

Alcohol **2s** (23.2 mg, 0.2 mmol) was subjected to standard reaction conditions with 7.5 mol% catalyst (100 °C, 48 h). Upon flash column chromatography (SiO₂, 30:70 EtOAc:hexanes), the title compound **3s** (47.6 mg, 0.158 mmol, >20:1 dr) was obtained as colorless oil in 79% yield.

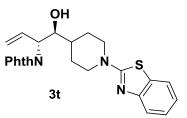
TLC (SiO₂) R_f = 0.24 (30:70 EtOAc:hexanes)

¹**H NMR** (500 MHz, CDCl₃) δ : 7.86 (dd, *J* = 5.3, 3.1 Hz, 2H), 7.75 (dd, *J* = 5.3, 3.0 Hz, 2H), 6.28 (ddd, *J* = 17.6, 10.2, 7.7 Hz, 1H), 5.29 (dd, *J* = 26.4, 13.7 Hz, 2H), 4.90 (dd, *J* = 7.4, 3.8 Hz, 1H), 3.99 (d, *J* = 11.8 Hz, 2H), 3.82 (dd, *J* = 6.3, 4.0 Hz, 1H), 3.71 (s, 1H), 3.40 – 3.28 (m, 2H), 1.85 (d, *J* = 13.3 Hz, 1H), 1.72 – 1.43 (m, 4H).


¹³**C NMR** (125 MHz, CDCl₃) δ: 168.7, 134.6, 131.8, 131.5, 123.8, 120.1, 77.2, 75. 8, 68.1, 67.7, 56.2, 37.9, 29.7, 28.0.


HRMS (H+, m/z) for C₁₇H₁₉NO₄: calcd. = 302.1387; found = 302.1392.

FTIR (neat): 2987, 2360, 2341, 1705, 1383, 1266, 1079, 731.


HPLC: (Chiralcel column AD-H, Hexane:2-PrOH = 95:5, 1.0 mL/min, 230 nm) ee = 94%.

 $[\alpha]_D^{24} = +42.7^\circ (c = 0.70, CHCl_3).$

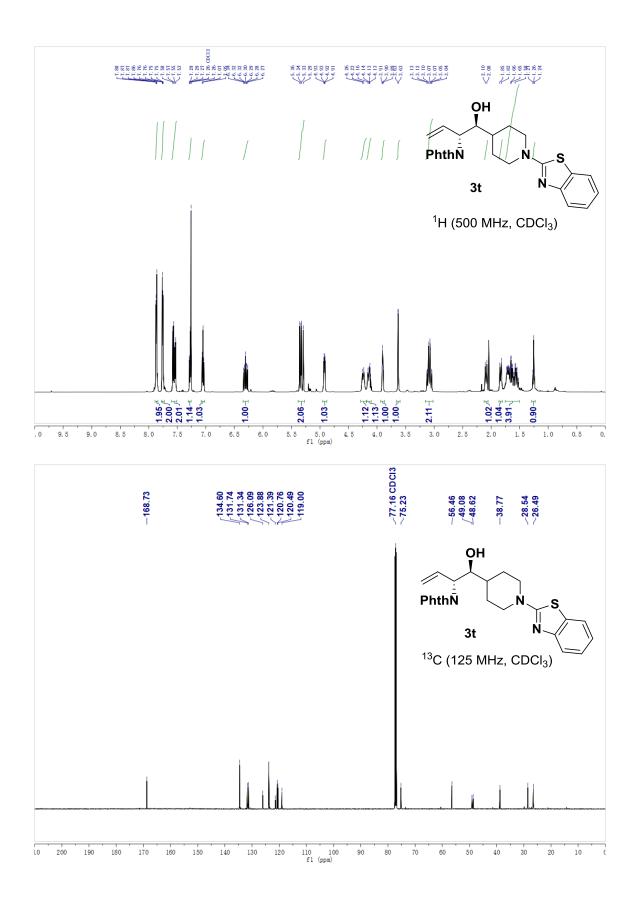
2-((1*S*,2*R*)-1-(1-(benzo[*d*]thiazol-2-yl)piperidin-4-yl)-1-hydroxybut-3-en-2-yl)isoindoline-1,3dione (3t)

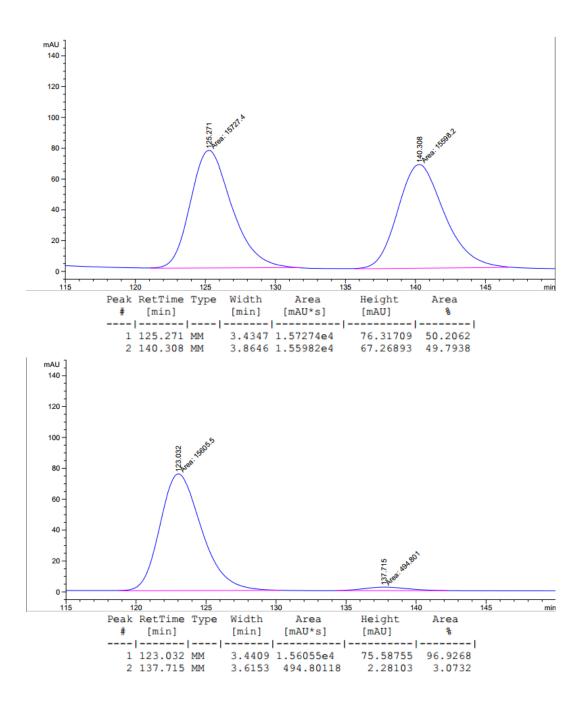
Alcohol **2t** (49.7 mg, 0.2 mmol) was subjected to standard reaction conditions (100 °C, 48 h). Upon flash column chromatography (SiO₂, 30:70 EtOAc:hexanes), the title compound **3t** (58.0 mg, 0.134 mmol, >20:1 dr) was obtained as a light yellow solid in 67% yield.

TLC (SiO₂) R_f = 0.30 (30:70 EtOAc:hexanes)

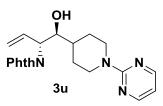
¹**H NMR** (500 MHz, CDCl₃) δ : 7.87 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.76 (dd, *J* = 5.5, 3.0 Hz, 2H), 7.56 (dd, *J* = 17.4, 7.9 Hz, 2H), 7.28 (d, *J* = 7.2 Hz, 1H), 7.05 (t, *J* = 7.6 Hz, 1H), 6.30 (ddd, *J* = 17.8, 10.3, 7.8 Hz, 1H), 5.33 (dd, *J* = 19.2, 13.7 Hz, 2H), 4.92 (dd, *J* = 7.6, 4.2 Hz, 1H), 4.24 (d, *J* = 12.4 Hz, 1H), 4.14 (dd, *J* = 9.7, 7.3 Hz, 1H), 3.90 (t, *J* = 6.1 Hz, 1H), 3.63 (d, *J* = 2.4 Hz, 1H), 3.15 – 3.03 (m, 2H), 2.09 (d, *J* = 13.2 Hz, 1H), 1.84 (d, *J* = 12.5 Hz, 1H), 1.74 – 1.51 (m, 4H), 1.26 (t, *J* = 7.1 Hz, 1H).

¹³C NMR (125 MHz, CDCl₃) δ: 168.7, 134.6, 131.7, 131.3, 126.1, 123.9, 121.4, 120.8, 120.5, 119.0, 77.2, 75.2, 56.5, 49.1, 48.6, 38.8, 28.5, 26.5.


HRMS (H+, m/z) for C₂₄H₂₃N₃O₃S: calcd. = 434.1533; found = 434.1534.


FTIR (neat): 2923, 2360, 2341, 1705, 1356, 1275, 763, 750.

HPLC: (Chiralcel column AD-H, Hexane:2-PrOH = 95:5, 1.0 mL/min, 230 nm) ee = 94%.


 $[\alpha]_{D}^{34} = +52.0^{\circ} (c = 0.72, CHCl_{3}).$

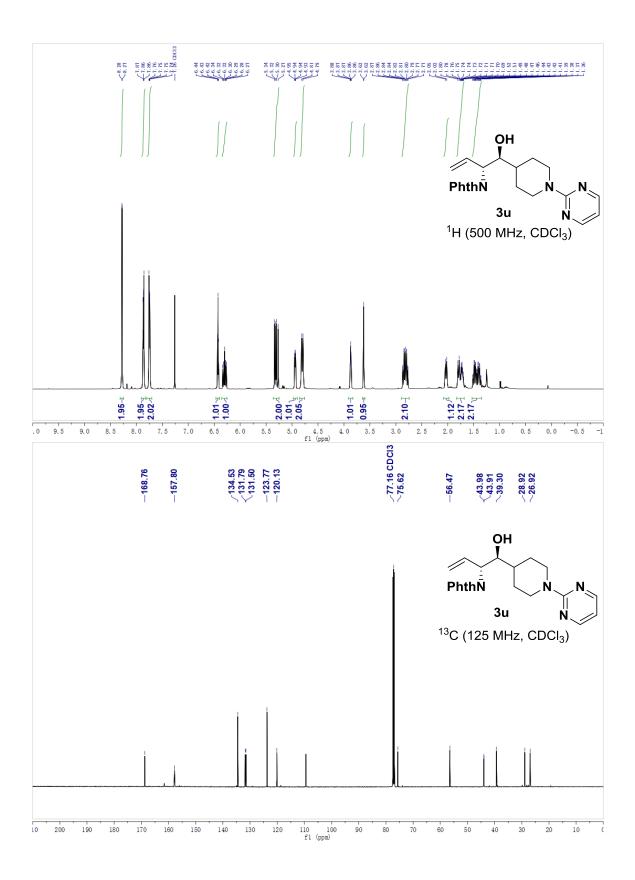
MP [80 – 84] °C

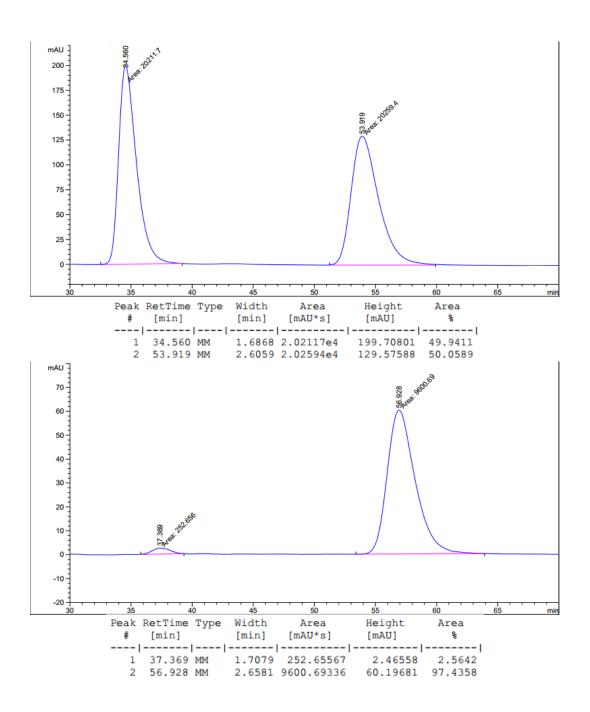
2-((1*S*,2*R*)-1-hydroxy-1-(1-(pyrimidin-2-yl)piperidin-4-yl)but-3-en-2-yl)isoindoline-1,3-dione (3u)

Alcohol **2u** (38.6 mg, 0.2 mmol) was subjected to standard reaction conditions (100 °C, 48 h) using 7.5 mol% of (R)-Ir-**VI**. Upon flash column chromatography (SiO₂, 30:70 EtOAc:hexanes), the title compound **3u** (54.5 mg, 0.144 mmol, >20:1 dr) was obtained as a pale yellow oil in 72% yield.

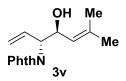
TLC (SiO₂) R_f = 0.2 (30:70 EtOAc:hexanes)

¹**H NMR** (500 MHz, CDCl₃) δ : 8.28 (d, *J* = 4.7 Hz, 2H), 7.86 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.75 (dd, *J* = 5.4, 3.0 Hz, 2H), 6.43 (t, *J* = 4.7 Hz, 1H), 6.36 – 6.24 (m, 1H), 5.31 (dd, *J* = 20.9, 13.7 Hz, 2H), 4.94 (dd, *J* = 7.5, 4.1 Hz, 1H), 4.80 (d, *J* = 12.0 Hz, 2H), 3.90 – 3.83 (m, 1H), 3.62 (d, *J* = 2.4 Hz, 1H), 2.82 (dtd, *J* = 15.5, 13.1, 2.5 Hz, 2H), 2.03 (d, *J* = 13.1 Hz, 1H), 1.79 (d, *J* = 12.8 Hz, 1H), 1.72 (tt, *J* = 6.8, 4.2 Hz, 1H), 1.44 (dddd, *J* = 29.0, 25.0, 12.6, 4.3 Hz, 2H).


¹³C NMR (125 MHz, CDCl₃) δ: 168.8, 157.8, 134.5, 131.8, 131.5, 123.8, 120.1, 77.2, 75.6, 56.5, 44.0, 43.9, 39.3, 28.9, 26.9.


HRMS (Na+, *m*/z) for C₂₁H₂₂N₄O₃: calcd. = 401.1584; found = 401.1594.

FTIR (neat): 3356, 1707, 1587, 1264, 1073, 976, 733, 703.


HPLC: (Chiralcel column OD-H, Hexane:2-PrOH = 95:5, 1.0 mL/min, 230 nm) ee = 95%.

 $[\alpha]_{D}^{34}$ = +35.5° (c = 0.77, CHCl₃).

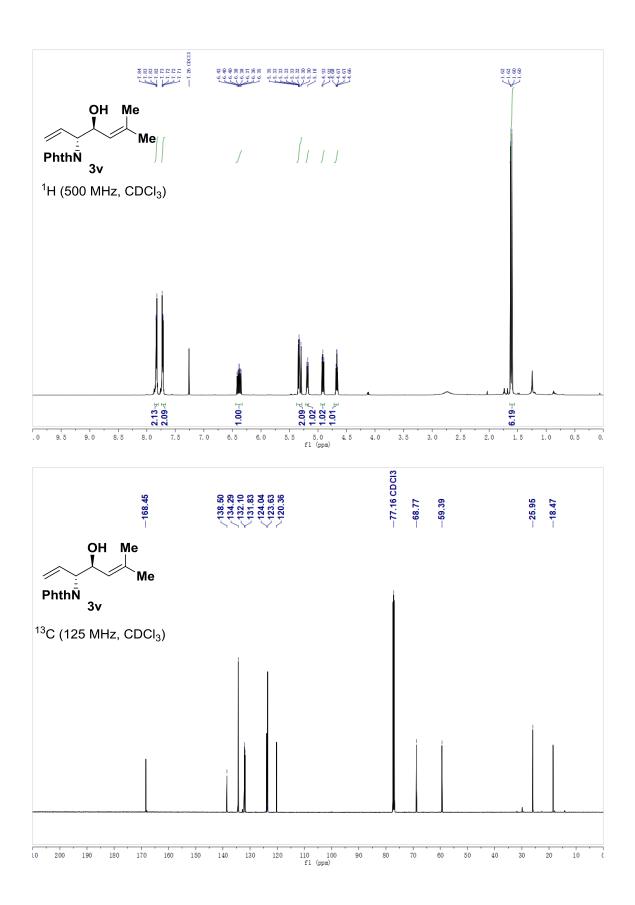
2-((3R,4S)-4-hydroxy-6-methylhepta-1,5-dien-3-yl)isoindoline-1,3-dione (3v)

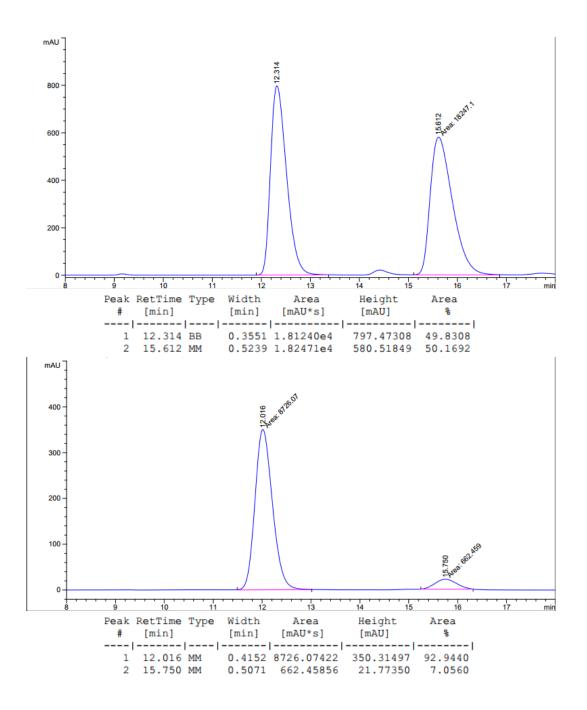
Alcohol 2v (17.2 mg, 0.2 mmol) was subjected to standard reaction conditions (100 °C, 48 h). Upon flash column chromatography (SiO₂, 20:80 EtOAc:hexanes), the title compound 3v (38.0 mg, 0.14 mmol, >20:1 dr) was obtained as a light yellow solid in 70% yield.

TLC (SiO₂) R_f = 0.2 (20:80 EtOAc:hexanes)

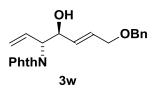
¹**H NMR** (500 MHz, CDCl₃) δ : 7.83 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.72 (dd, *J* = 5.5, 3.0 Hz, 2H), 6.38 (ddd, *J* = 17.2, 10.4, 7.8 Hz, 1H), 5.32 (ddd, *J* = 15.1, 10.6, 3.6 Hz, 2H), 5.22 – 5.13 (m, 1H), 4.91 (dd, *J* = 8.9, 6.8 Hz, 1H), 4.67 (dd, *J* = 7.7, 6.8 Hz, 1H), 1.61 (dd, *J* = 11.3, 0.9 Hz, 6H).

¹³C NMR (125 MHz, CDCl₃) δ: 168.5, 138.5, 134.3, 132.1, 131.8, 124.0, 123.6, 120.4, 77.2, 68.8, 59.4, 25.9, 18.5.


HRMS (Na+, *m*/*z*) for C₁₆H₁₇NO₃: calcd. = 294.1101; found = 294.1108.


FTIR (neat): 2988, 2358, 2340, 1769, 1703, 764, 733.

HPLC: (Chiralcel column OD-H, Hexane:2-PrOH = 95:5, 1.0 mL/min, 230 nm) ee = 86%.


 $[\alpha]_{D}^{34} = +46.3^{\circ} (c = 0.62 \text{ CHCl}_{3}).$

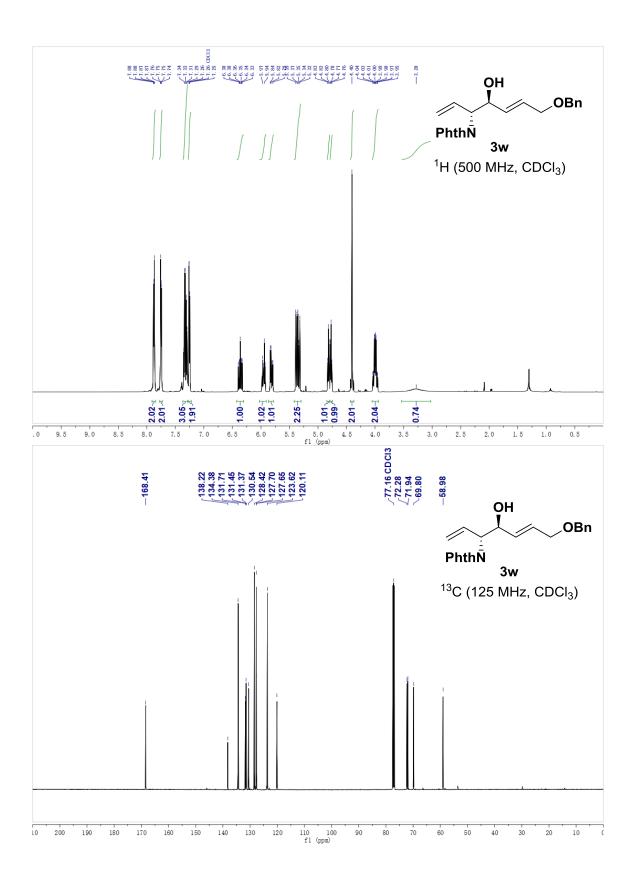
MP [78-82] °C

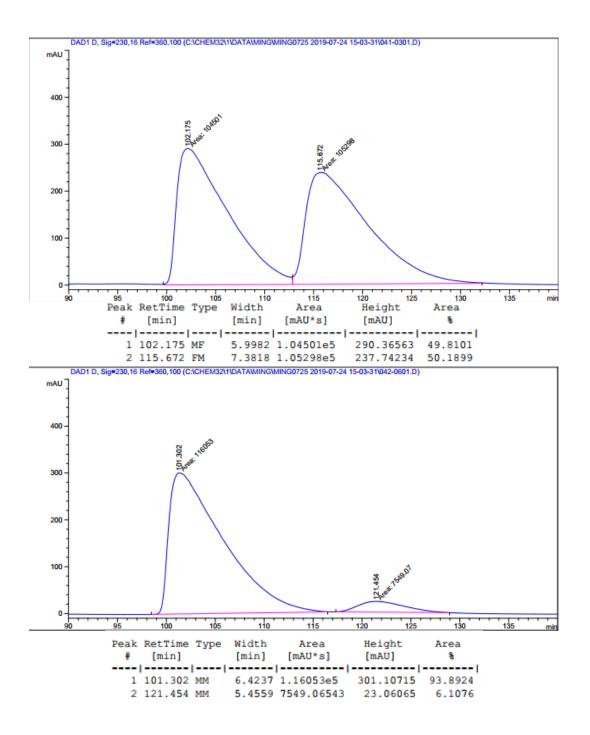
2-((3R,4S,E)-7-(benzyloxy)-4-hydroxyhepta-1,5-dien-3-yl)isoindoline-1,3-dione (3w)

Alcohol **1w** (35.6 mg, 0.2 mmol) was subjected to standard reaction conditions (100 °C, 48 h). Upon flash column chromatography (SiO₂, 20:80 EtOAc:hexanes), the title compound **3w** (50 mg, 0.138 mmol, >20:1 dr) was obtained as a light yellow oil in 69% yield.

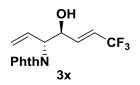
TLC (SiO₂) R_f = 0.30 (30:80 EtOAc:hexanes)

¹**H NMR** (500 MHz, CDCl₃) δ : 7.87 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.75 (dd, *J* = 5.5, 3.0 Hz, 2H), 7.36 – 7.29 (m, 3H), 7.27 – 7.24 (m, 2H), 6.36 (ddd, *J* = 17.5, 10.3, 7.3 Hz, 1H), 5.95 (dd, *J* = 13.3, 7.7 Hz, 1H), 5.81 (dd, *J* = 15.5, 6.6 Hz, 1H), 5.41 – 5.31 (m, 2H), 4.79 (dt, *J* = 23.1, 6.2 Hz, 2H), 4.40 (s, 2H), 4.00 (qd, *J* = 13.0, 5.6 Hz, 2H), 3.28 (s, 1H).


¹³**C NMR** (125 MHz, CDCl₃) δ: 168.4, 138.2, 134.4, 131.7, 131.5, 131.4, 130.5, 128.4, 127.7, 127.7, 123.6, 120.1, 77.2, 72.3, 71.9, 69.8, 59.0.


HRMS (Na+, m/z) for C₂₂H₂₁NO₄: calcd. = 386.1363; found = 386.1361.

FTIR (neat): 2988, 2358, 2340, 1769, 1703, 1383, 1264, 764.


HPLC: (Chiralcel column OJ-H, Hexane:2-PrOH = 95:5, 1.0 mL/min, 230 nm) ee = 86%.

 $[\alpha]_D^{24} = 75.2^\circ (c = 0.37, CHCl_3).$

2-((3R,4S,E)-7,7,7-trifluoro-4-hydroxyhepta-1,5-dien-3-yl)isoindoline-1,3-dione (3x)

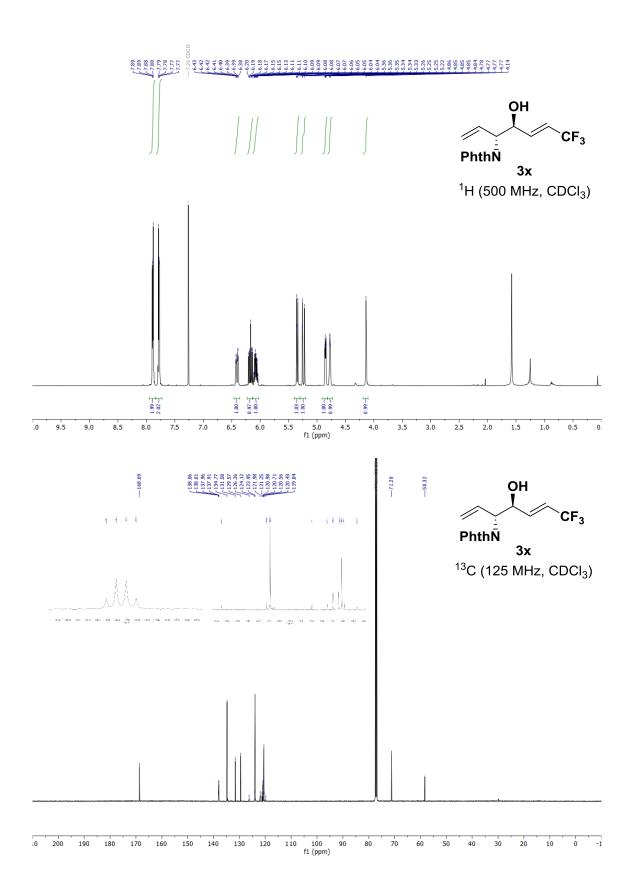
Alcohol **2x** (25.2 mg, 0.2 mmol) was subjected to standard reaction conditions (100 °C, 48 h) using 7.5 mol% of (R)-Ir-**VI**. Upon flash column chromatography (SiO₂, 20:80 EtOAc:hexanes), the title compound **3x** (38.1 mg, 0.12 mmol, >20:1 dr) was obtained as a light yellow solid in 61% yield.

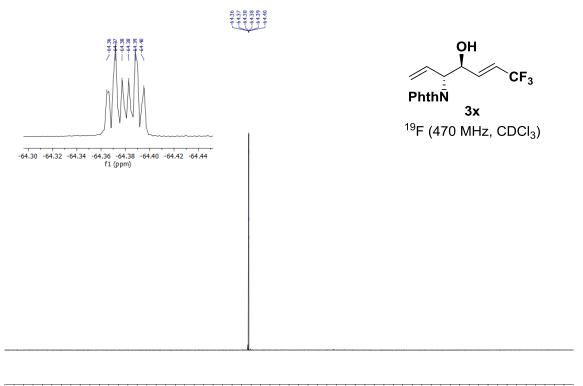
TLC (SiO₂) R_f = 0.40 (20:80 EtOAc:hexanes)

¹**H NMR** (500 MHz, CDCl₃) δ : 7.86 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.78 (dd, *J* = 5.5, 3.0 Hz, 2H), 6.41 (ddq, *J* = 15.6, 4.3, 2.2 Hz, 1H), 6.17 (ddd, *J* = 17.0, 10.4, 6.7 Hz, 1H), 6.11 – 6.04 (m, 1H), 5.35 (d, *J* = 10.7 Hz, 1H), 5.23 (d, *J* = 17.0 Hz, 1H), 4.86 – 4.84 (m, 1H), 4.78 – 4.76 (m, 1H), 4.15 (brs, 1H).

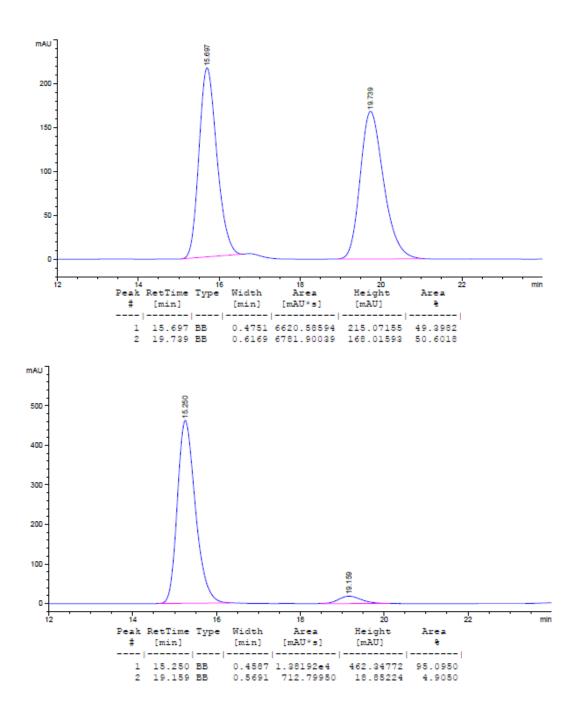
¹³**C NMR** (125 MHz, CDCl₃) δ: 168.7, 138.0 (q, *J* = 6.3 Hz), 134.8, 131.6, 129.6, 124.0, 123.0 (q, *J* = 270 Hz), 120.9 (q, *J* = 121 Hz), 120.6, 71.2, 58.3.

¹⁹**F NMR** (470 MHz, CDCl₃) δ: -64.4 (dt, J = 6.8, 2.6 Hz).

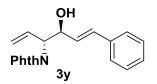

HRMS (Na+, m/z) for C₁₅H₁₂F₃NO₃: calcd. = 334.0665; found = 334.0661.


FTIR (neat): 3456, 3333, 2359, 1687, 1330, 1077, 712.

HPLC: (Chiralcel column AS-H, Hexane:2-PrOH = 95:5, 1.0 mL/min, 230 nm) ee = 90%.


 $[\alpha]_D^{34} = +38.6^\circ (c = 1.18, CHCl_3).$

MP [109 – 112] °C



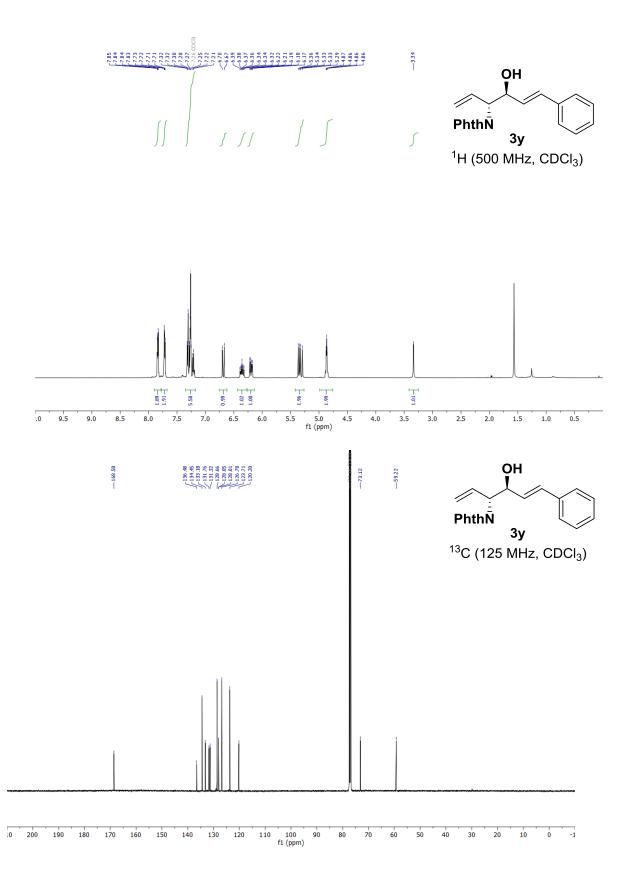
) -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -1! f1 (ppm)

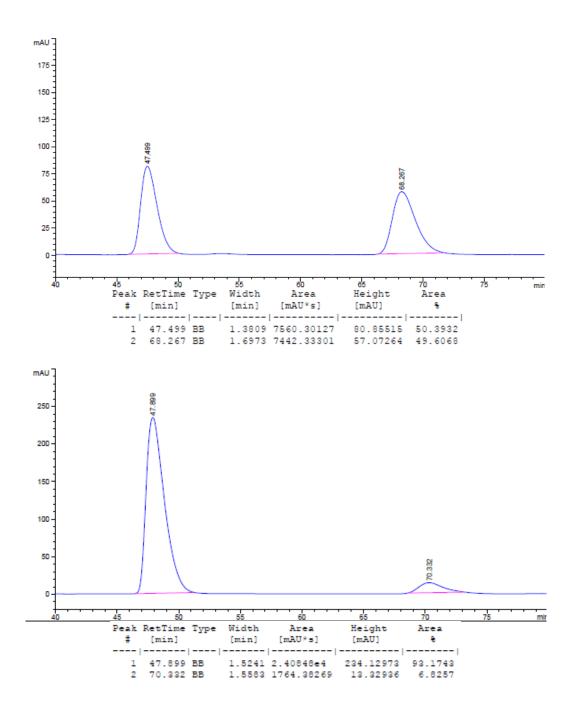
2-((3R,4S,E)-4-hydroxy-6-phenylhexa-1,5-dien-3-yl)isoindoline-1,3-dione (3y)

Alcohol **1y** (27 mg, 0.2 mmol) was subjected to standard reaction conditions (100 $^{\circ}$ C, 48 h). Upon flash column chromatography (SiO₂, 20:80 EtOAc:hexanes), the title compound **3y** (45 mg, 0.14 mmol, >20:1 dr) was obtained as a light yellow oil in 71% yield.

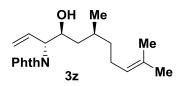
TLC (SiO₂) R_f = 0.35 (20:80 EtOAc:hexanes)

¹**H NMR** (500 MHz, CDCl₃) δ: 7.84 (dd, J = 5.4, 3.1 Hz, 2H), 7.72 (dd, J = 5.5, 3.0 Hz, 2H), 7.32 – 7.29 (m, 5H), 6.69 (d, J = 15.8 Hz, 1H), 6.36 (ddd, J = 17.0, 10.4, 6.7 Hz, 1H), 6.20 (dd, J = 15.9, 6.2 Hz, 1H), 5.35 (d, J = 10.7 Hz, 1H), 5.31 (d, J = 17.0 Hz, 1H), 4.89 – 4.84 (m, 2H), 3.34 (s, 1H).


¹³C NMR (125 MHz, CDCl₃) δ: 168.6, 136.5, 134.5, 133.2, 131.8, 131.3, 128.7, 128.1, 128.0, 126.8, 123.7, 120.2, 73.1, 59.2.


HRMS (Na+, m/z) for C₂₀H₁₇NO₃: calcd. = 342.1101; found = 342.1106.

FTIR (neat): 3456, 3333, 2359, 1687, 1330, 1077, 712.

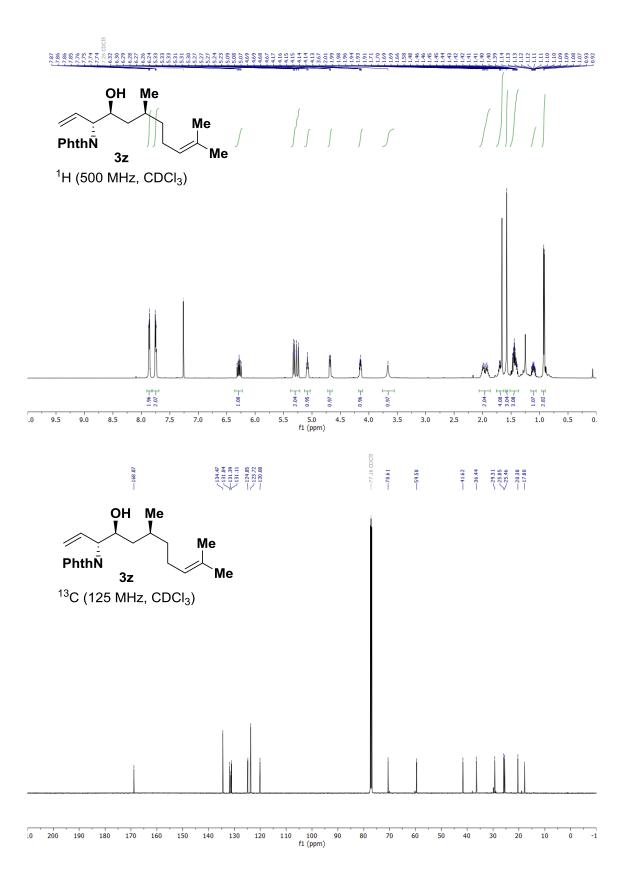

HPLC: (Chiralcel column OD-H, Hexane:2-PrOH = 95:5, 1.0 mL/min, 230 nm) ee = 86%.

 $[\alpha]_{D}^{24} = -7.9^{\circ}$ (c = 0.95, CHCl₃).

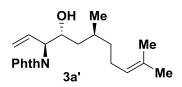
2-((3R,4S,6S)-4-hydroxy-6,10-dimethylundeca-1,9-dien-3-yl)isoindoline-1,3-dione (3z)

Alcohol **1z** (31.2 mg, 0.2 mmol) was subjected to standard reaction conditions (100 °C, 48 h). Upon flash column chromatography (SiO₂, 10:90 EtOAc:hexanes), the title compound **3z** (41.7 mg, 0.12 mmol, 10:1 dr) was obtained as a pale yellow oil in 62% yield.

TLC (SiO₂) R_f = 0.47 (20:80 EtOAc:hexanes)


¹**H NMR** (500 MHz, CDCl₃) δ : 7.86 (dd, J = 5.4, 3.1 Hz, 2H), 7.75 (dd, J = 5.5, 3.0 Hz, 2H), 6.28 (ddd, J = 17.6, 10.4, 7.8 Hz, 1H), 5.32 (d, J = 10.7 Hz, 1H), 5.26 (d, J = 17.3 Hz, 1H), 5.08 (t, J = 7.0 Hz, 1H), 4.68 (dd, J = 7.8, 3.4 Hz, 1H), 4.15 (ddd, J = 8.6, 5.2, 3.5 Hz, 1H), 3.67 (brs, 1H), 2.04 – 1.88 (m, 1H), 1.73 – 1.66 (m, 1H), 1.66 (s, 3H), 1.58 (s, 3H), 1.50 – 1.39 (m, 3H), 1.15 – 1.07 (m, 1H), 0.92 (d, J = 6.7 Hz, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ: 168.9, 134.5, 131.8, 131.4, 131.1, 124.9, 123.7, 120.1, 70.6, 59.6, 41.6, 36.4, 29.3, 25.9, 25.5, 20.4, 17.8.


HRMS (Na+, m/z) for C₂₁H₂₇NO₃: calcd. = 364.1883; found = 364.1882.

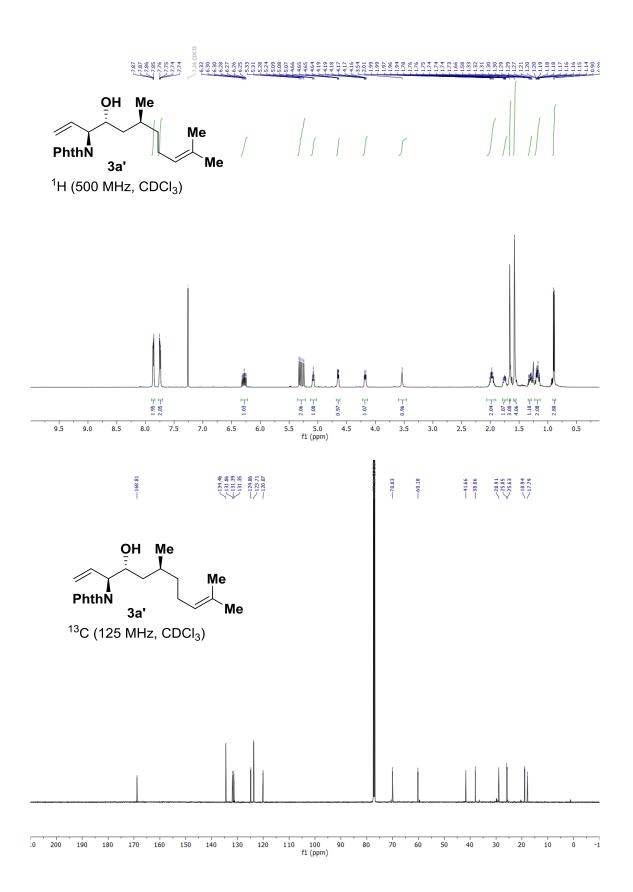
FTIR (neat): 3466, 2921, 1704, 1380, 1065, 719.

 $[\alpha]_{D}^{34} = +39.5^{\circ} (c = 1.37, CHCl_{3}).$

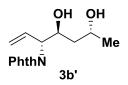
2-((3S,4R,6S)-4-hydroxy-6,10-dimethylundeca-1,9-dien-3-yl)isoindoline-1,3-dione (3a')

Alcohol **2a'** (31.2 mg, 0.2 mmol) was subjected to standard reaction conditions (100 °C, 48 h) using 5 mol% of (*S*)-Ir-IV. Upon flash column chromatography (SiO₂, 10:90 EtOAc:hexanes), the title compound **3a'** (43.1 mg, 0.13 mmol, 13:1 dr) was obtained as a pale yellow oil in 64% yield.

TLC (SiO₂) R_f = 0.47 (20:80 EtOAc:hexanes)


¹**H NMR** (500 MHz, CDCl₃) δ : 7.86 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.75 (dd, *J* = 5.5, 3.0 Hz, 2H), 6.28 (ddd, *J* = 17.6, 10.4, 7.8 Hz, 1H), 5.32 (d, *J* = 10.7 Hz, 1H), 5.27 (d, *J* = 17.3 Hz, 1H), 5.08 (t, *J* = 7.1 Hz, 1H), 4.65 (dd, *J* = 7.8, 3.9 Hz, 1H), 4.18 (ddd, *J* = 10.3, 3.7 Hz, 1H), 3.54 (brs, 1H), 2.03 – 1.93 (m, 2H), 1.77 – 1.72 (m, 1H), 1.66 (s, 3H), 1.58 (brs, 4H), 1.34 – 1.28 (m, 1H), 1.21 – 1.14 (m, 2H), 0.90 (d, *J* = 6.7 Hz, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ: 168.8, 134.5, 131.9, 131.4, 131.4, 124.9, 123.7, 120.1, 70.0, 60.2, 41.7, 38.0, 27.9, 25.9, 25.6, 18.9, 17.8.


HRMS (Na+, m/z) for C₂₁H₂₇NO₃: calcd. = 364.1883; found = 364.1883.

FTIR (neat): 3454, 2923, 1703, 1381, 1066, 719.

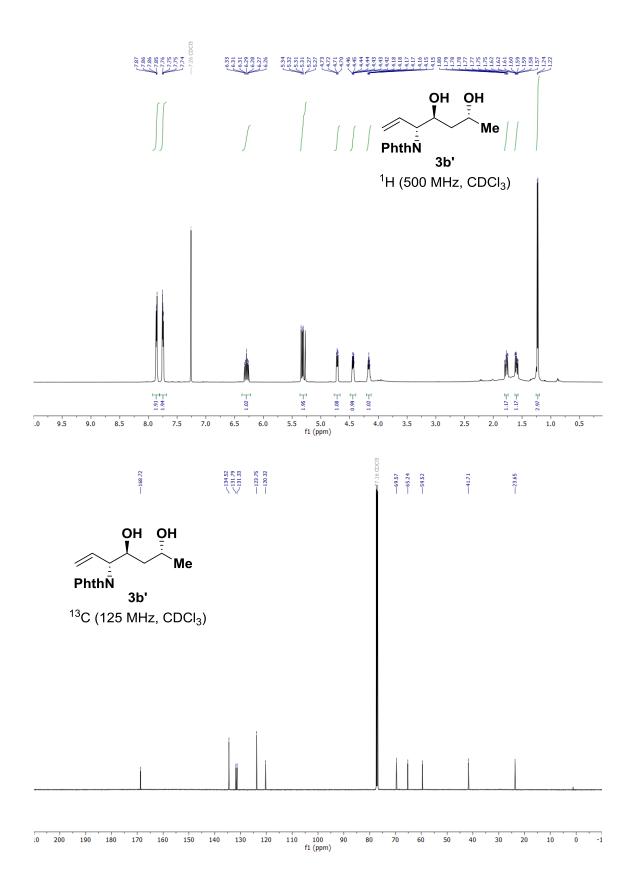
 $[\alpha]_{D}^{34} = -18.2^{\circ} (c = 1.44, CHCl_3).$

2-((3R,4S,6R)-4,6-dihydroxyhept-1-en-3-yl)isoindoline-1,3-dione (3b')

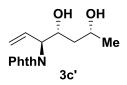
Alcohol **2b'** (18.0 mg, 0.2 mmol) was subjected to standard reaction conditions (100 $^{\circ}$ C, 48 h) using 7.5 mol% of (*R*)-**Ir-VI**. Upon flash column chromatography (SiO₂, 50:50 EtOAc:hexanes), the title compound **3b'** (39.6 mg, 0.14 mmol, 20:1 dr) was obtained as a white solid in 72% yield.

TLC (SiO₂) R_f = 0.38 (50:50 EtOAc:hexanes)

¹**H NMR** (500 MHz, CDCl₃) δ : 7.86 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.76 (dd, *J* = 5.5, 3.0 Hz, 2H), 6.30 (ddd, *J* = 17.6, 10.4, 7.7 Hz, 1H), 5.33 (d, *J* = 10.7 Hz, 1H), 5.29 (d, *J* = 17.3 Hz, 1H), 4.71 (dd, *J* = 7.8, 4.4 Hz, 1H), 4.44 (dt, *J* = 9.8, 3.4 Hz, 1H), 4.20 – 4.13 (m, 1H), 1.77 (ddd, *J* = 14.3, 9.6, 2.9 Hz, 1H), 1.77 (ddd, *J* = 14.3, 8.4, 3.1 Hz, 1H), 1.23 (d, *J* = 6.3 Hz, 3H).


¹³C NMR (125 MHz, CDCl₃) δ : 168.7, 134.5, 131.8, 131.3, 123.8, 120.3, 69.6, 65.2, 59.5, 41.7, 23.7.

HRMS (Na+, m/z) for C₁₅H₁₇NO₄: calcd. = 298.1050; found = 298.1054.


FTIR (neat): 3457, 3378, 2963, 2359, 1693, 1386, 988, 890, 711.

 $[\alpha]_D^{34} = +56.9^\circ (c = 1.30, CHCl_3).$

MP [123 – 127] °C

2-((3S,4R,6R)-4,6-dihydroxyhept-1-en-3-yl)isoindoline-1,3-dione (3c')

Alcohol **2c'** (18 mg, 0.2 mmol) was subjected to standard reaction conditions (100 °C, 48 h) using 7.5 mol% of (*S*)-Ir-IV. Upon flash column chromatography (SiO₂, 50:50 EtOAc:hexanes), the title compound **3c'** (36.3 mg, 0.13 mmol, 20:1 dr) was obtained as a white solid in 66% yield.

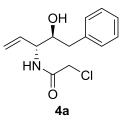
TLC (SiO₂) R_f = 0.38 (50:50 EtOAc:hexanes)

¹**H NMR** (500 MHz, CDCl₃) δ : 7.86 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.75 (dd, *J* = 5.5, 3.0 Hz, 2H), 6.27 (ddd, *J* = 17.6, 10.4, 7.7 Hz, 1H), 5.34 (d, *J* = 10.7 Hz, 1H), 5.28 (d, *J* = 17.3 Hz, 1H), 4.67 (dd, *J* = 7.8, 3.8 Hz, 1H), 4.35 (dt, *J* = 10.9, 3.1 Hz, 1H), 4.10 – 4.03 (m, 1H), 1.72 (ddd, *J* = 14.2, 10.8, 9.4 Hz, 1H), 1.77 (dt, *J* = 14.2, 2.5 Hz, 1H), 1.19 (d, *J* = 6.3 Hz, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ : 168.8, 134.6, 131.8, 130.9, 123.8, 120.4, 73.4, 68.2, 59.8, 42.0, 23.8.

HRMS (Na+, *m*/*z*) for C₁₅H₁₇NO₄: calcd. = 298.1050; found = 298.1053.

FTIR (neat): 3197, 2966, 2360, 1699, 1381, 1323, 1073, 713.


 $[\alpha]_D^{34} = -76.1^\circ (c = 0.90, CHCl_3).$

MP [108 – 111] °C

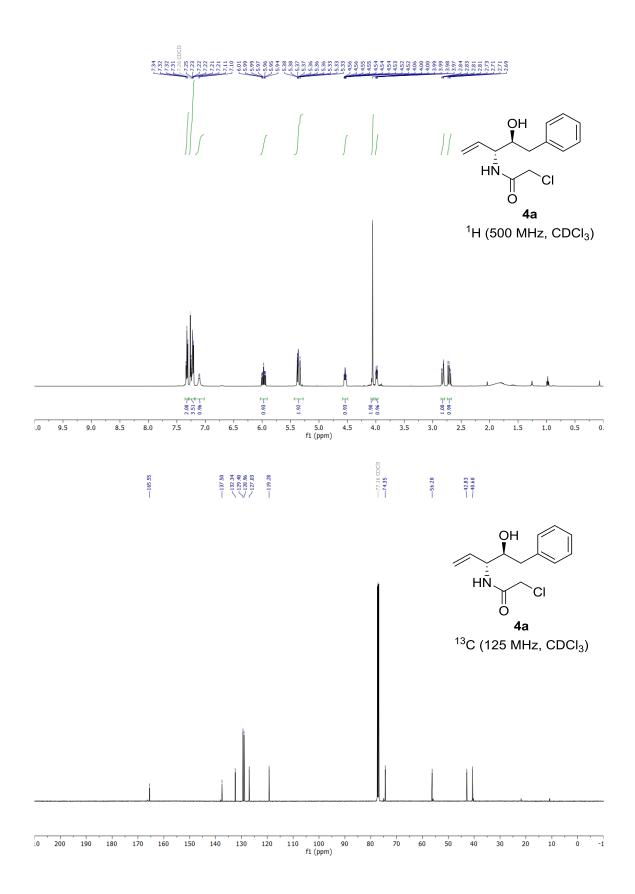
Procedures and Spectral Data for the Elaboration of Morpholine 5a

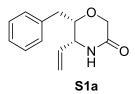
2-chloro-N-((3R,4S)-4-hydroxy-5-phenylpent-1-en-3-yl)acetamide (4a)

To a round bottom flask charged with coupling product 3a (92.2 mg, 0.3 mmol, 100 mol%) was added a solution of $N_2H_4 \bullet H_2O$ in DCM and MeOH (4:6:2, 12 mL) and the reaction mixture was stirred at room temperature for 6 hours. The reaction mixture was diluted with water (5 mL) and the mixture was transferred to a separatory funnel. The aqueous layer was extracted with DCM (6 x 10 mL). The combined organic extracts were washed with a saturated solution of sodium bicarbonate followed by brine. The solution was dried (MgSO₄), filtered, and the solvent was removed in vacuo. The residue was then dissolved in DCM (2 mL, 0.15 M) and triethylamine added (81 µL, 0.6 mmol, 200 mol%). The reaction was stirred at -10 °C for 5 minutes and chloroacetyl chloride added dropwise (24 µL, 0.6 mmol, 200 mol%). The reaction mixture was stirred at -10 °C for 30 minutes and then guenched by addition of a saturated solution of ammonium chloride. The mixture was then diluted with EtOAc and the mixture transferred to a separatory funnel. The phases were separated and the organic layer was washed with saturated solutions of ammonium chloride and sodium bicarbonate followed by brine. The solution was dried (MgSO₄), filtered, and the solvent was removed *in vacuo*. The residue was subjected to flash column chromatography (SiO₂, 60:40 EtOAC:hexanes) to yield the title compound **4a** (62.4 mg, 0.25 mmol, >20:1 dr) as a white solid in 82% yield.

TLC (SiO₂) R_f = 0.28 (60:40 EtOAc:hexanes)

¹**H NMR** (500 MHz, CDCl₃) δ : 7.34 – 7.31 (m, 2H), 7.26 – 7.20 (m, 3H), 7.10 (d, *J* = 7.7 Hz, 1H), 5.97 (ddd, *J* = 17.3, 10.5, 7.0 Hz, 1H), 5.38 – 5.33 (m, 2H), 4.56 – 4.52 (m, 2H), 4.06 (brs, 2H), 3.99 (dt, *J* = 9.4, 3.7 Hz, 1H), 2.82 (dd, *J* = 13.8, 4.2 Hz, 1H), 2.71 (dt, *J* = 13.8, 9.4 Hz, 1H), 1.19 (d, *J* = 6.3 Hz, 3H).


¹³C NMR (125 MHz, CDCl₃) δ: 168.6, 137.5, 132.3, 129.4, 129.0, 127.0, 119.3, 74.4, 56.3, 42.8, 40.7.


HRMS (Na+, m/z) for C₁₃H₁₆ClNO₂: calcd. = 276.0762; found = 276.0767.

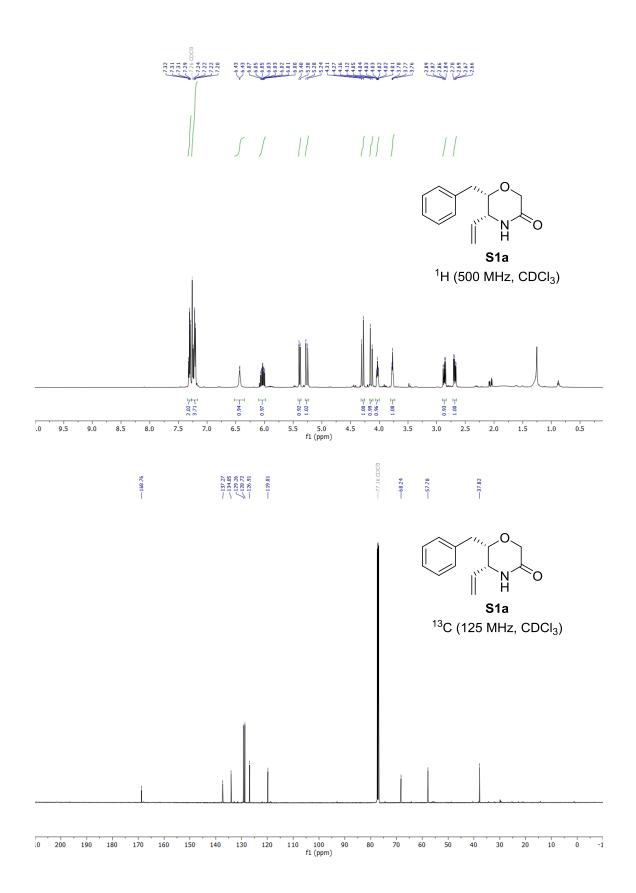
FTIR (neat): 3289, 2918, 1640, 1533, 1267, 1053, 936, 752, 699.

 $[\alpha]_{D}^{34} = +37.1^{\circ} (c = 0.93, CHCl_3).$

MP [81 – 85] °C

To a flame dried round bottomed flask charged with **4a** (52.7 mg, 0.21 mmol, 100 mol%) in THF (0.084 M) was added DMF (0.5 mL). The reaction mixture was stirred at 0 °C for 5 minutes before addition of NaH (60% w/w, 21 mg, 0.52 mmol, 250 mol%). The mixture was then stirred at 0 °C for 40 minutes. Saturated solution of ammonium chloride and EtOAC were then added and the reaction mixture transferred to a separatory funnel. The phases were separated and the organic phase washed with saturated solutions of ammonium chloride and sodium bicarbonate followed by brine. The solution was dried (MgSO₄), filtered, and the solvent was removed *in vacuo*. The residue was subjected to flash column chromatography (SiO₂, 70:30 EtOAC:hexanes) to yield the title compound **S1a** (33.6 mg, 0.15 mmol, >20:1 dr) as a pale-yellow oil in 74% yield.

TLC (SiO₂) R_f = 0.42 (80:20 EtOAc:hexanes)


¹**H NMR** (500 MHz, CDCl₃) δ : 7.32 – 7.29 (m, 2H), 7.26 – 7.20 (m, 3H), 6.42 (brs, 1H), 5.97 (ddd, J = 17.4, 10.1, 7.9 Hz, 1H), 5.39 (d, J = 10.2 Hz, 1H), 5.26 (d, J = 17.1 Hz, 1H), 4.29 (d, J = 16.9 Hz, 1H), 4.14 (d, J = 16.9 Hz, 1H), 4.05 – 4.01 (m, 1H), 3.78 – 3.75 (m, 1H), 2.87 (dd, J = 14.3, 8.0 Hz, 1H), 2.68 (dd, J = 14.3, 5.9 Hz, 1H).

¹³**C NMR** (125 MHz, CDCl₃) δ : 168.8, 137.3, 134.1, 129.3, 128.7, 126.9, 119.8, 68.2, 57.8, 37.8.

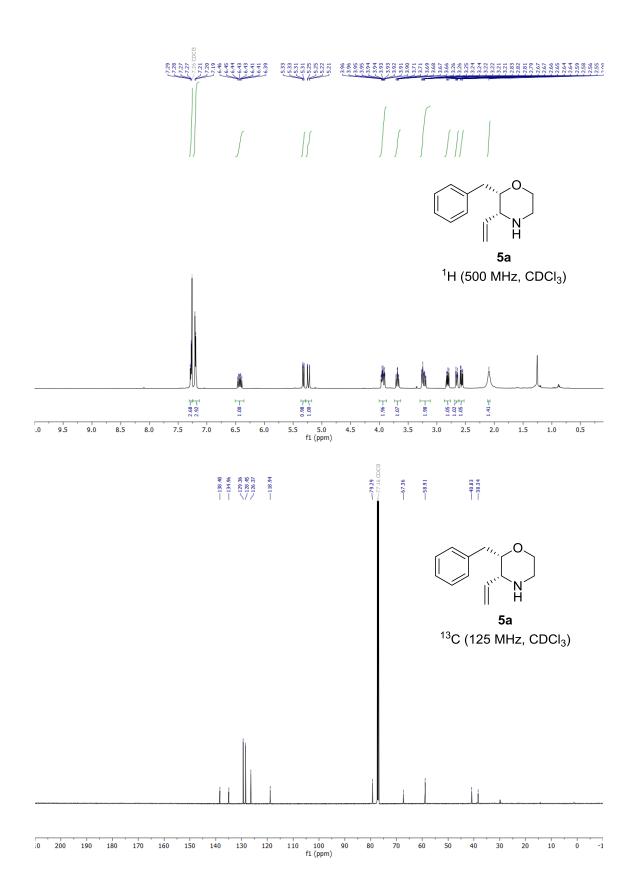
HRMS (H+, *m*/*z*) for C₁₃H₁₅NO₂: calcd. = 218.1176; found = 218.1175.

FTIR (neat): 3217, 3028, 2923, 1668, 1420, 1112, 740, 699.

 $[\alpha]_D^{34} = +64.8^\circ (c = 1.18, CHCl_3).$

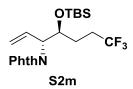
To a flame dried round bottomed flask charged with LiAlH₄ (20 mg, 0.30 mmol, 300 mol%) in THF (0.05 M) was added **S1a** (21.7 mg, 0.1 mmol, 100 mol%) in THF (0.05 M) at 0 °C. The reaction mixture was stirred reflux for 6 hours. Water (30 μ L), NaOH (10% aq. Solution, 30 μ L), and MgSO4 added to the reaction mixture. The resulting mixture was filtered over a celite plug, washed with MeOH, and the solvent removed *in vacuo*. The residue was subjected to flash column chromatography (SiO₂, 95:5 DCM:MeOH) to yield the title compound **5a** (14.6 mg, 0.07 mmol, >20:1 dr) as a pale-yellow oil in 72% yield.

TLC (SiO₂) R_f = 0.22 (95:5 DCM:MeOH)


¹**H** NMR (500 MHz, CDCl₃) δ : 7.29 – 7.26 (m, 2H), 7.21 – 7.19 (m, 3H), 6.43 (dt, *J* = 17.1, 9.6 Hz, 1H), 5.33 (d, *J* = 9.7 Hz, 1H), 5.24 (d, *J* = 17.3 Hz, 1H), 3.96 (ddd, *J* = 8.4, 6.0, 2.6 Hz, 1H), 3.93 (dt, *J* = 11.5, 3.0 Hz, 1H), 3.69 (td, *J* = 11.1, 2.8 Hz, 1H), 3.25 (dd, *J* = 8.8, 2.7 Hz, 1H), 3.21 (td, *J* = 11.4, 3.6 Hz, 1H), 2.81 (dd, *J* = 14.3, 8.0 Hz, 1H), 2.66 (dt, *J* = 12.2, 2.8 Hz, 1H), 2.57 (dd, *J* = 14.2, 6.0 Hz, 1H), 2.09 (brs, 1H).

¹³C NMR (125 MHz, CDCl₃) δ: 138.2, 134.2, 129.4, 128.5, 126.4, 119.6, 79.1, 67.1, 58.7, 40.6, 38.3.

HRMS (H+, m/z) for C₁₃H₁₇NO: calcd. = 204.1383; found = 204.1387.


FTIR (neat): 2921, 2854, 1454, 1085, 923, 698.

 $[\alpha]_D^{34} = -8.2^\circ (c = 0.79, CHCl_3).$

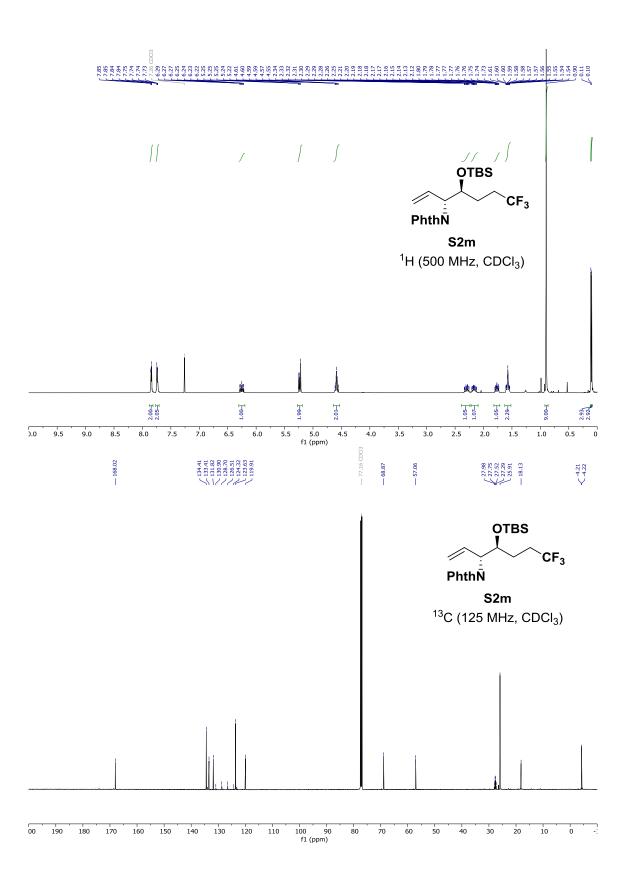
Procedures and Spectral Data for the Elaboration of Amino-Acid 6m

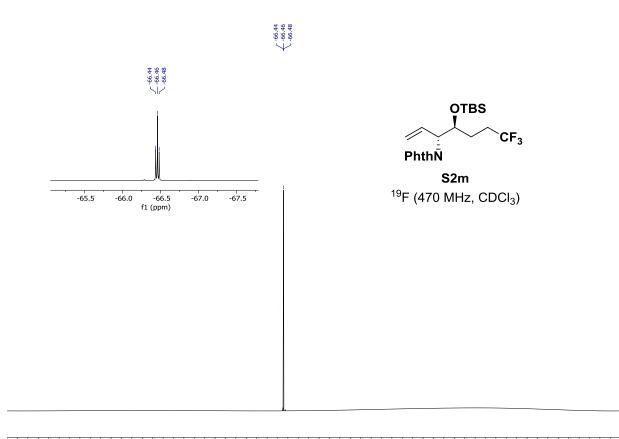
2-((3*R*,4*S*)-4-((tert-butyldimethylsilyl)oxy)-7,7,7-trifluorohept-1-en-3-yl)isoindoline-1,3-dione (S2m)

To a solution of alcohol **3m** (50.0 mg, 0.117 mmol, 100 mol%) in dried DMF (220 μ L) was added Et₃N (82 μ L, 0.585 mmol, 500 mol%), TBSCI (44.0 mg, 0.293 mmol, 250 mol%) and 4- (dimethylamino)pyridine (2.9 mg, 0.0232 mmol, 20 mol%). The reaction was heated to 45 °C for 48 h. The contents were diluted with CH₂Cl₂ (2 mL) and washed with H₂O (2 mL). The aqueous layer was extracted with CH₂Cl₂ (2 x 5 mL), and the combined organic phases were washed with brine (2 mL), dried (Na₂SO₄), filtered and the solvent was removed in vacuo. The residue was subjected to flash chromatography on silica (EtOAc:hexanes 10:90) to furnish the title compound **S2m** (43.5 mg, 0.102 mmol) in 87% yield as a clear oil.

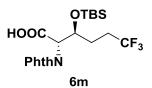
TLC (SiO₂) R_f = 0.26 (10:90 EtOAc:hexanes)

¹**H NMR** (500 MHz, CDCl₃) δ : 7.85 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.74 (dd, *J* = 5.4, 3.0 Hz, 2H), 6.25 (ddd, *J* = 17.2, 10.1, 7.2 Hz, 1H), 5.25 - 5.22 (m, 2H), 4.62 - 4.55 (m, 2H), 2.35 - 2.24 (m, 1H), 2.21 - 2.10 (m, 1H), 1.80 - 1.73 (m, 1H), 1.61 - 1.54 (m, 1H), 0.90 (s, 9H), 0.11 (s, 3H), 0.10 (s, 3H).


¹³**C NMR** (125 MHz, CDCl₃) δ: 168.0, 134.4, 133.4, 131.8, 127.6 (q, *J* = 275.8 Hz), 123.6, 120.0, 68.9, 57.1, 27.6 (q, *J* = 29.0 Hz), 25.9, 18.1, -4.2, -4.2.


¹⁹**F NMR** (470 MHz, CDCl₃) δ: -66.5 (t, *J* = 10.8 Hz).

HRMS (Na+, *m*/z) for C₂₁H₂₈F₃NO₃Si: calcd. = 450.1683; found =450.1686.


FTIR (neat): 2956, 2931, 2858, 1716, 1379, 1254, 1060, 834, 717.

 $[\alpha]_{D}^{24} = +52.2^{\circ} (c = 1.13, CHCl_{3}).$

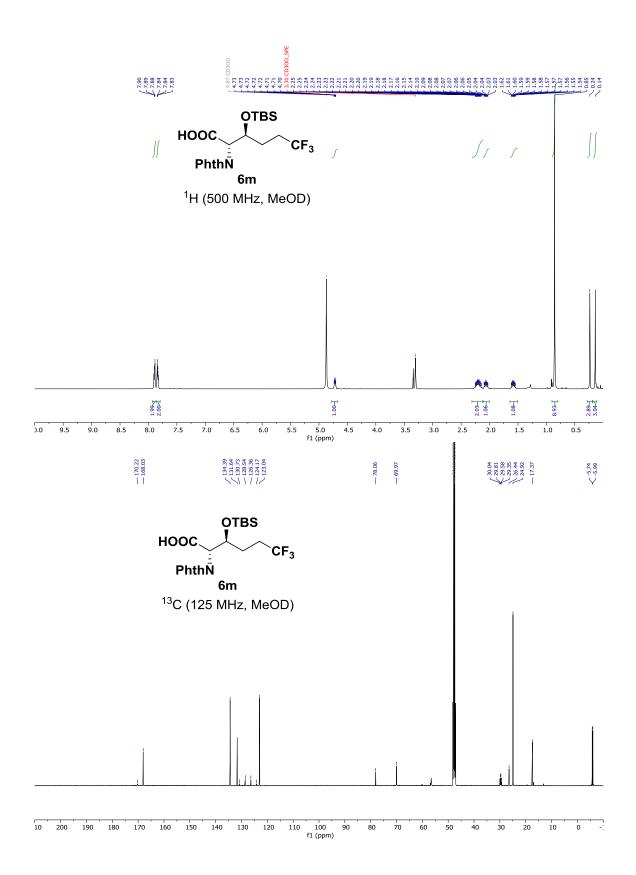
0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 fl (ppm) (2*S*,3*S*)-3-((tert-butyldimethylsilyl)oxy)-2-(1,3-dioxoisoindolin-2-yl)-6,6,6-trifluorohexanoic acid (6m)

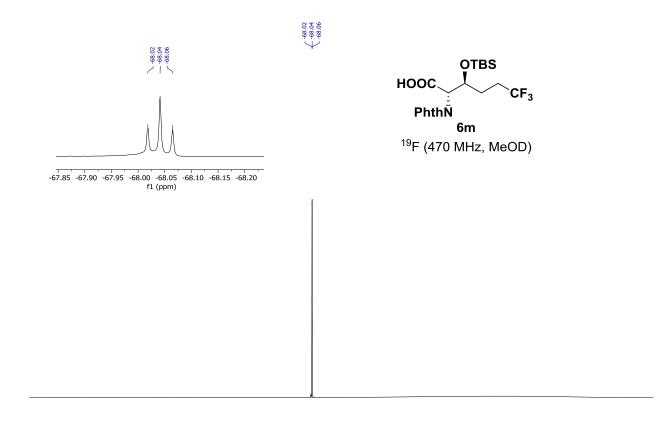
To a stirred solution of **S2a** (100.0 mg, 0.230 mmol, 100 mol%), in 0.650 mL CCl₄, 0.650 mL CH₃CN, and 1.0 mL H₂O was added NaIO₄ (201.2 mg, 0.940 mmol, 400 mol%). After all the NaIO₄ had dissolved, RuCl₃.H₂O (4.8 mg, 0.023 mmol, 10 mol%) was added, and the reaction mixture was stirred vigorously for 24 h at 25 °C. The contents were diluted with DCM (5 mL) and washed with H₂O (5 mL). The aqueous layer was extracted with DCM (3 x 5 mL), and the combined organic phases were washed with brine (5 mL), dried (Na₂SO₄), filtered and the solvent was removed in vacuo. The residue was subjected to flash chromatography on silica (Hexanes/MeOH 90:10) to furnish the title compound **6a** (59.2 mg, 0.136 mmol) in 59% yield as a white solid.

TLC (SiO₂) R_f = 0.22 (10:90 MeOH:DCM)

¹**H NMR** (500 MHz, MeOD) δ: 7.89 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.83 (dd, *J* = 5.4, 3.0 Hz, 2H), 4.73 – 4.70 (m, 1H), 2.28 – 2.13 (m, 2H), 2.10 – 2.03 (m, 1H), 1.62 – 1.54 (m, 1H), 0.85 (s, 9H), 0.23 (s, 3H), 0.14 (s, 3H).

¹³**C NMR** (125 MHz, MeOD) δ: 170.2, 168.0, 134.4, 131.6, 127.3 (q, *J* = 275.8 Hz), 122.9, 78.1, 70.0, 30.0 (q, *J* = 29.0 Hz), 26.4, 24.9, 17.4, -5.7, -6.0.

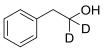

¹⁹**F NMR** (470 MHz, MeOD) δ: -68.0 (t, *J* = 10.8 Hz).


HRMS (Na+, *m/z*) for C₂₀H₂₆F₃NO₅Si: calcd. = 468.1425; found = 468.1425.

FTIR (neat): 2935, 2360, 1720, 1385, 1253, 1066, 835, 777, 721.

 $[\alpha]_D^{24} = -31.1^\circ (c = 1.83, CHCl_3).$

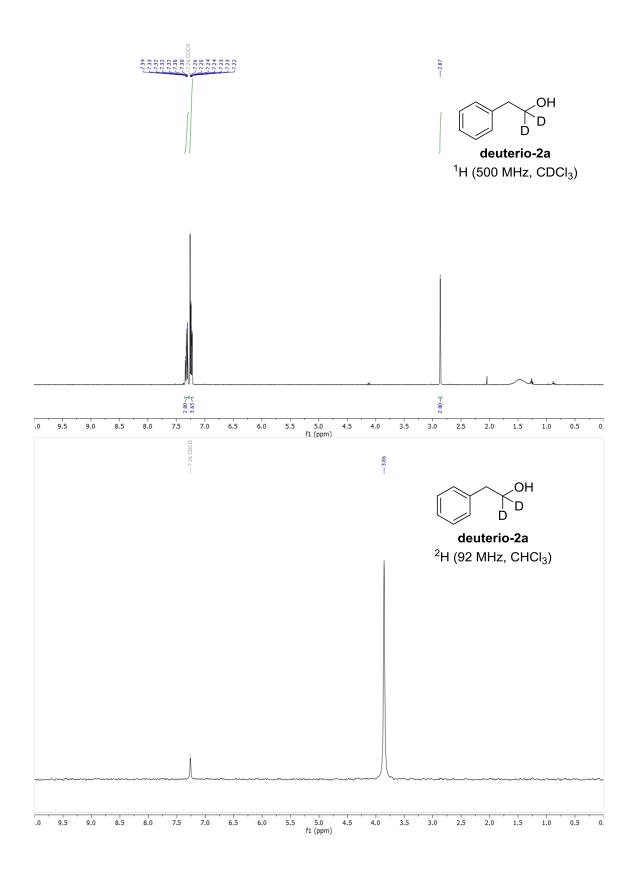
MP [62 – 65] °C



0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 f1 (ppm)

Isotopic Labeling Studies

2-phenylethan-1,1-d₂-1-ol (deuterio-2a)


deuterio-2a

The title compound was synthesized over one step from 2-phenylacetic acid following literature procedures.⁴

¹H NMR (500 MHz, CDCl₃) δ : 7.34 – 7.30 (m, 2H), 7.26 – 7.22 (m, 3H), 2.86 (brs, 2H)

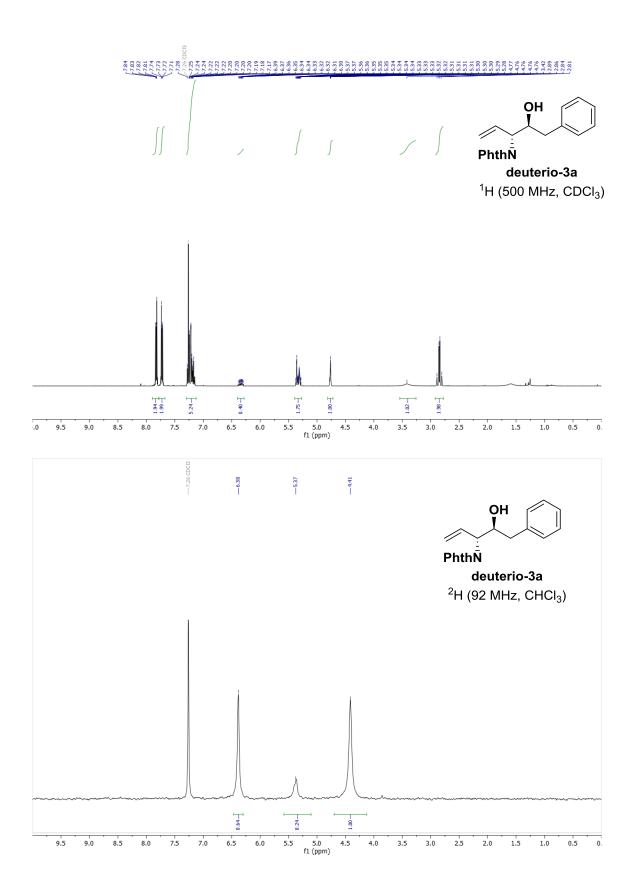
²H NMR (92 MHz, CHCl₃) δ : 3.86 (brs, 2D)

HRMS (H+, *m*/*z*) for C₈H₈D₂O: calcd. = 124.0857; found = 124.0861.

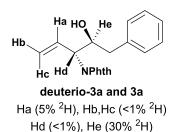
2-((3*R*,4*S*)-4-hydroxy-5-phenylpent-1-en-3-yl)isoindoline-1,3-dione-d (deuterio-3a)

Ha HO He Hb NPhth Hc Hd

deuterio-3a Ha (60% ²H), Hb,Hc (25% ²H) Hd (<1%), He (>99% ²H)


Alcohol **deuterio-2a** (24.0 μ L, 0.2 mmol) was subjected to standard reaction conditions (100 °C, 48 h). Upon flash column chromatography (SiO₂, 20:80 EtOAc:hexanes), the title compound **deuterio-3a** (41.8 mg, 0.14 mmol, >20:1 dr) was obtained as a light yellow solid in 68% yield.

TLC (SiO₂) R_f = 0.35 (20:80 EtOAc:hexanes)


¹**H NMR** (500 MHz, CDCl₃) δ: 7.83 (dd, J = 5.4, 3.1 Hz, 2H), 7.73 (dd, J = 5.5, 3.0 Hz, 2H), 7.28 – 7.15 (m, 5H), 6.39 – 6.30 (m, 0.4H), 5.37 – 5.28 (m, 1.75H), 4.78 – 4.76 (m, 1H), 3.42 (brs, 1H), 2.89 – 2.81 (m, 2H).

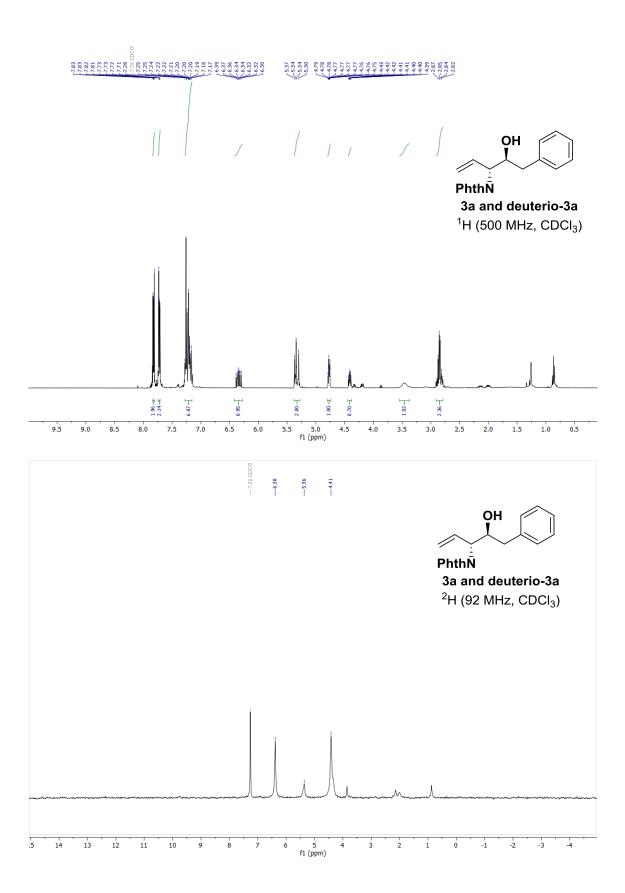
²H NMR (92 MHz, CHCl₃) δ: 6.38 (brs, 0.6D), 5.37 (brs, 0.25D), 4.41 (brs, 1D).

HRMS (H+, m/z) for C₁₉H₁₅D₂NO₃: calcd. = 310.1407; found = 310.1416.

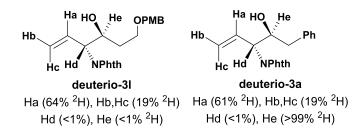
Competition experiment:

A mix of Alcohol **2a** (120 μ L, 1.0 mmol) and Alcohol **deuterio-2a** (120.0 μ L, 1.0 mmol) was subjected to standard reaction conditions (100 °C, 48 h). Upon flash column chromatography (SiO₂, 20:80 EtOAc:hexanes), title compounds **deuterio-3a** and **3a** (31.9 mg, 0.10 mmol, >20:1 dr) was obtained as a light yellow solid in 52% yield.

TLC (SiO₂) R_f = 0.35 (20:80 EtOAc:hexanes)


¹**H NMR** (500 MHz, CDCl₃) δ : 7.83 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.73 (dd, *J* = 5.5, 3.0 Hz, 2H), 7.28 – 7.15 (m, 5H), 6.39 – 6.30 (m, 0.85H), 5.37 – 5.28 (m, 1.95H), 4.78 – 4.76 (m, 1H), 4.41 (ddd, *J* = 7.8, 5.9, 4.7 Hz, 0.7H), 3.42 (brs, 1H), 2.89 – 2.81 (m, 2H).

²H NMR (92 MHz, CHCl₃) δ: 6.38 (brs, 1D), 5.37 (brs, 1D), 4.41 (brs, 1D).


HRMS (Na+, m/z) for C₁₉H₁₇NO₃: calcd. = 330.1101; found = 330.1105.

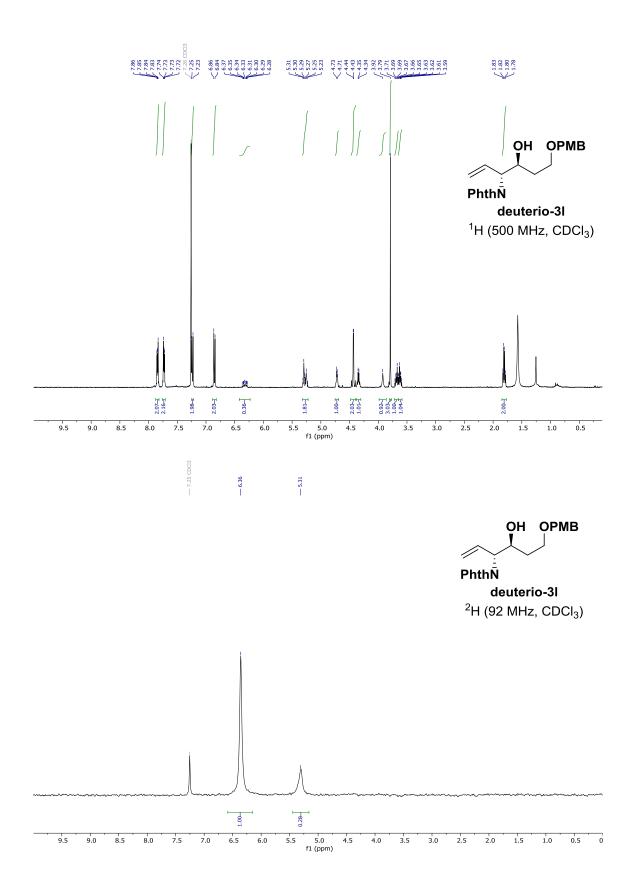
HRMS (Na+, m/z) for C₁₉H₁₆DNO₃: calcd. = 331.1163; found = 331.1164.

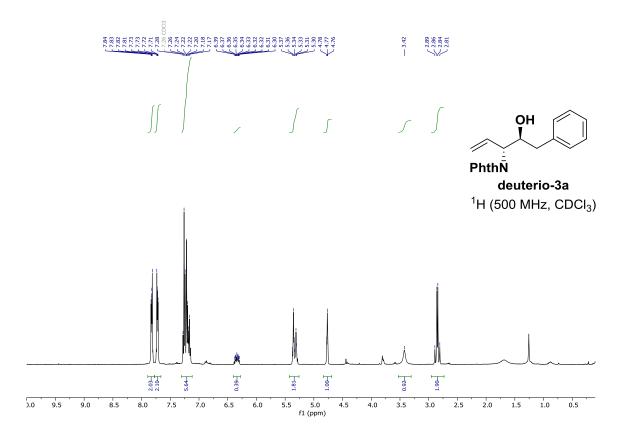
HRMS (Na+, m/z) for C₁₉H₁₅D₂NO₃: calcd. = 332.1226; found = 332.1226.

Intermolecular competition experiment:

A mix of **dehydro-2l** (19 mg, 0.1 mmol) and Alcohol **deuterio-2a** (12 μ L, 0.1 mmol) was subjected to standard reaction conditions (100 °C, 48 h). Upon flash column chromatography (SiO₂, 20:80 EtOAc:hexanes), title compounds **deuterio-3a** (13.0 mg, 0.042 mmol, 21% yield) and **deuterio-3l** (21.3 mg, 0.056 mmol, 28% yield) were obtained as a light yellow solid and pale yellow oil respectively.

TLC (SiO₂) R_{f-deutreio-3a} = 0.35 (20:80 EtOAc:hexanes)

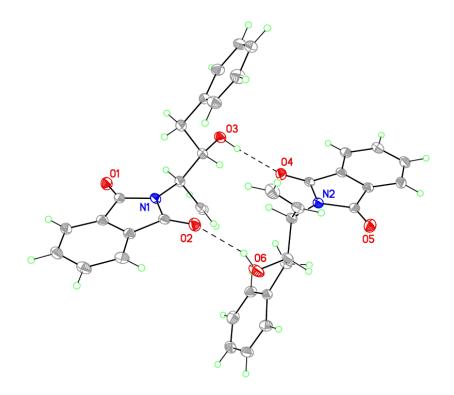

TLC (SiO₂) R_{f-deuterio-3I} = 0.28 (30:70 EtOAc:hexanes)


Deuterio-3I:

¹**H NMR** (500 MHz, CDCl3) δ : 7.84 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.73 (dd, *J* = 5.4, 3.0 Hz, 2H), 7.23 (d, *J* = 8.5 Hz, 2H), 6.85 (d, *J* = 8.6 Hz, 2H), 6.38 – 6.28 (m, 0.4H), 5.32 – 5.23 (m, 1.90H), 4.74 – 4.69 (m, 1H), 4.46 – 4.39 (m, 2H), 4.35 (dd, *J* = 12.1, 5.8 Hz, 1H), 3.92 (s, 1H), 3.78 (s, 3H), 3.71 – 3.65 (m, 1H), 3.64 – 3.58 (m, 1H), 1.85 – 1.77 (m, 2H).

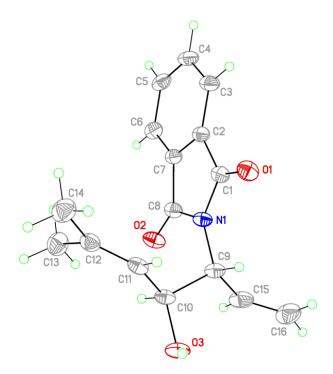
²H NMR (92 MHz, CHCl₃) δ: 6.36 (brs, 1D), 5.31 (brs, 1D)

HRMS (Na+, *m*/z) for C₂₂H₂₂DNO₅: calcd. = 405.1531; found = 405.1530.



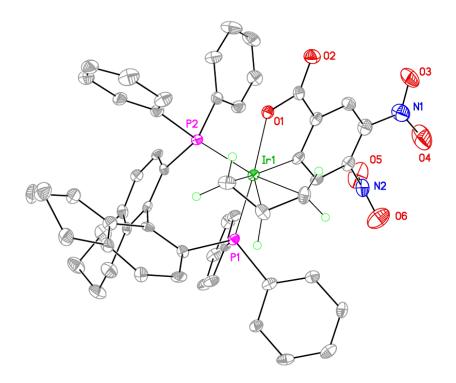
Single Crystal Diffraction Data for Coupling Product 3a

Empirical formula	C19 H17 N O3		
Formula weight	307.33		
Temperature	100(2) K		
Wavelength	1.54184 Å		
Crystal system	triclinic		
Space group	P 1		
Unit cell dimensions	a = 7.6636(2) Å	$\alpha = 86.249(2)^{\circ}.$	
	b = 9.5929(2) Å	$\beta = 76.166(2)^{\circ}.$	
	c = 10.8499(2) Å	$\gamma = 79.110(2)^{\circ}.$	
Volume	760.39(3) Å ³		
Z	2		
Density (calculated)	1.342 Mg/m^3		
Absorption coefficient	0.738 mm ⁻¹		
F(000)	324		
Crystal size	0.34 x 0.12 x 0.065 mm ³		
Theta range for data collection	4.197 to 75.699°.		
Index ranges	-9<=h<=9, -11<=k<=12, -13<=l<=13		
Reflections collected	26510		
Independent reflections	5735 [R(int) = 0.0395]		
Completeness to theta = 67.684°	99.7 %		
Absorption correction	Gaussian and multi-scan		
Max. and min. transmission	1.00 and 0.534		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	5735 / 3 / 433		
Goodness-of-fit on F ²	1.048		
Final R indices [I>2sigma(I)]	R1 = 0.0357, wR2 = 0.0952		
R indices (all data)	R1 = 0.0367, wR2 = 0.0961		
Absolute structure parameter	0.04(10)		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.175 and -0.218 e.Å ⁻³		


Figure 1. View of H-bound dimer formed in **3a** showing the heteroatom labeling scheme. Displacement ellipsoids are scaled to the 50% probability level. Dashed lines are indicative of an H-bonding interaction.

Single Crystal Diffraction Data for Coupling Product 3v

Empirical formula	C16 H17 N O3		
Formula weight	271.30		
Temperature	100(2) K		
Wavelength	1.54184 Å		
Crystal system	monoclinic		
Space group	P 21		
Unit cell dimensions	a = 8.3815(2) Å	$\alpha = 90^{\circ}$.	
	b = 22.4250(2) Å	β=117.675(2)°.	
	c = 8.6781(2) Å	$\gamma = 90^{\circ}.$	
Volume	1444.49(5) Å ³		
Z	4		
Density (calculated)	1.248 Mg/m ³		
Absorption coefficient	0.702 mm ⁻¹		
F(000)	576		
Crystal size	0.31 x 0.18 x 0.11 mm ³		
Theta range for data collection	3.943 to 76.170°.		
Index ranges	-10<=h<=10, -28<=k<=28, -1	0<=h<=10, -28<=k<=28, -10<=l<=10	
Reflections collected	33708		
Independent reflections	5984 [R(int) = 0.0393]		
Completeness to theta = 67.684°	100.0 %		
Absorption correction	Gaussian and multi-scan		
Max. and min. transmission	1.00 and 0.713		
Refinement method	Full-matrix least-squares on F	2	
Data / restraints / parameters	5984 / 1 / 389		
Goodness-of-fit on F ²	1.020		
Final R indices [I>2sigma(I)]	R1 = 0.0372, wR2 = 0.1006		
R indices (all data)	R1 = 0.0378, wR2 = 0.1026		
Absolute structure parameter	-0.09(6)		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.385 and -0.211 e.Å ⁻³		


Figure 2. View of **3v** showing the atom labeling scheme. Displacement ellipsoids are scaled to the 50% probability level.

Single Crystal Diffraction Data for Ir-VI

Empirical formula	C58 H55 Ir N2 O7 P2		
Formula weight	1146.18		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	orthorhombic		
Space group	P 21 21 21		
Unit cell dimensions	a = 14.339(2) Å	α= 90°.	
	b = 17.764(2) Å	$\beta = 90^{\circ}$.	
	c = 18.920(3) Å	$\gamma = 90^{\circ}$.	
Volume	4819.4(11) Å ³		
Z	4		
Density (calculated)	1.580 Mg/m^3		
Absorption coefficient	2.896 mm ⁻¹		
F(000)	2320		
Crystal size	0.220 x 0.110 x 0.100 mm ³		
Theta range for data collection	2.293 to 28.413°.		
Index ranges	-19<=h<=19, -23<=k<=23, -25<=l<=25		
Reflections collected	67534		
Independent reflections	12021 [R(int) = 0.0906]		
Completeness to theta = 25.242°	99.9 %		
Absorption correction	Numerical		
Max. and min. transmission	1.00 and 0.759		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	12021 / 420 / 631		
Goodness-of-fit on F ²	1.024		
Final R indices [I>2sigma(I)]	R1 = 0.0377, wR2 = 0.0773		
R indices (all data)	R1 = 0.0489, wR2 = 0.0806		
Absolute structure parameter	-0.007(4)		
Extinction coefficient	n/a		
Largest diff. peak and hole	1.197 and -0.918 e.Å ⁻³		

Figure 3. View of the Ir complex showing the heteroatom labeling scheme. Displacement ellipsoids are scaled to the 50% probability level. Most hydrogen atoms have been omitted for clarity.

Kinetic Studies

Standard Conditions: To a dried 5 mL volumetric flask under an argon atmosphere charged with with (R)-Ir-**VI** (53.7mg, 0.05 mmol, 5 mol%), phthalimido-allene (277.8 mg, 1.5 mmol, 150 mol%), KH₂PO₄ (136.1 mg, 1 mmol, 100 mol%), and 1,3,5-trimethoxybenzene (internal standard, 168.2 mg, 1 mmol, 100 mol%) was added 2-phenylethanol (120 μ L, 1 mmol, 100 mol%). The flask was then filled to the mark with dioxane and sonicated until full dissolution. The reaction mixture was then transfer *via* syringe to a condenser-tube sealed with a rubber septa under an argon atmosphere. The reaction mixture was then heated to 100 °C.

Reaction progress was monitored by sampling followed by NMR analysis. The reaction was sampled by removable of approximately 100 μ L of the reaction mixture *via* syringe and dilution with CDCl₃.

Experiment	[lr] (M)	[1] (M)	[2a] (M)	[excess] [1]-[2a] (M)	Note
Standard	0.01	0.3	0.2	0.1	-
Different excess 1	0.01	0.6	0.2	0.4	-
Different excess 2	0.01	0.3	0.4	-0.1	-
Same excess	0.01	0.2	0.1	0.1	-
Same excess product addition	0.01	0.2	0.1	0.1	3a 0.08M
Increased catalyst	0.02	0.3	0.2	0.1	-
Added Aldehyde	0.01	0.3	0.2	0.1	dehydro- 2a 0.01M

Table S1. Further reaction conditions for the kinetic experiments.

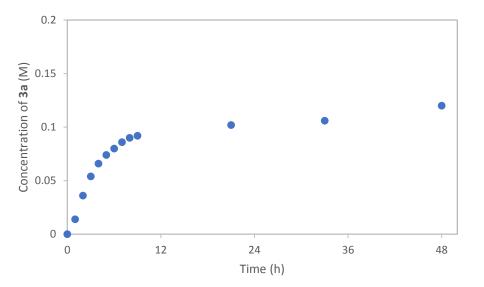
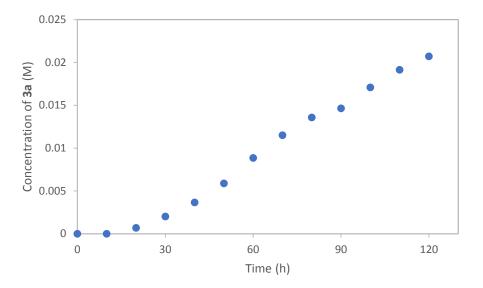
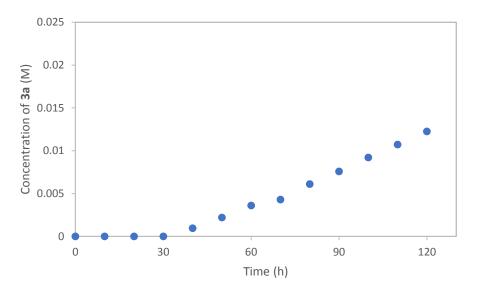




Figure 4. Product formation under standard conditions.

Figure 5. Product formation under standard conditions. Reaction monitored for first 2 hours to determine initial rate.

Figure 6. Product formation under standard conditions utilizing **deuterio-2a**. Reaction monitored for first 2 hours to determine initial rate.

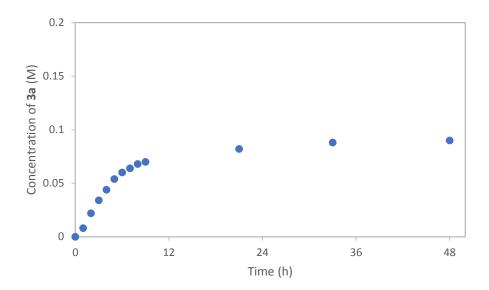


Figure 7. Product formation under different excess 1 conditions.

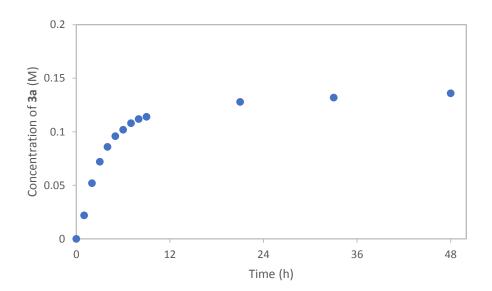


Figure 8. Product formation under different excess 2 conditions.

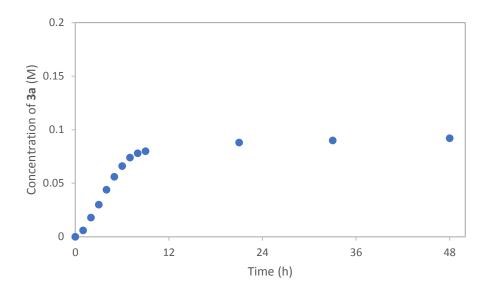


Figure 9. Product formation under same excess conditions.

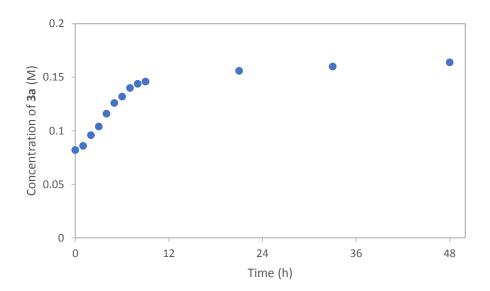


Figure 10. Product formation under same excess conditions with product addition.

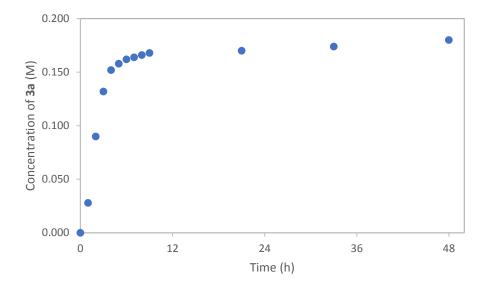
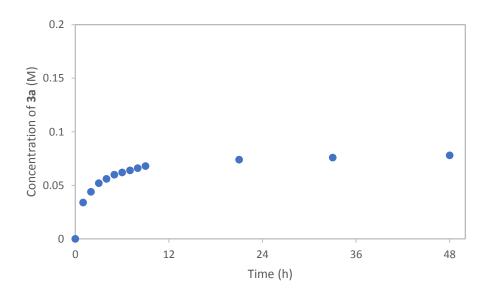
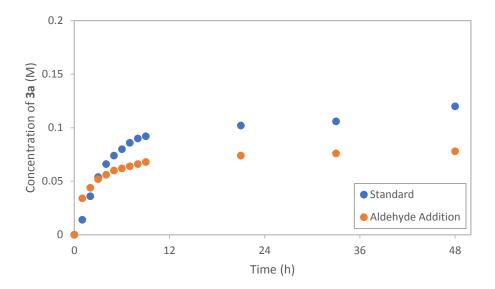




Figure 11. Product formation under increased catalyst conditions.

Figure 12. Product formation under standard conditions with 10 mol% aldehyde *dehydro-***2a** added.

Figure 13. Product formation under standard conditions with 10 mol% aldehyde *dehydro-***2a** added comparison to standard conditions – negative order.

In order to determine if any catalyst deactivation occurred during the reaction the same excess protocol was utilized. The collected product concentration data for both the standard and same excess data sets were converted to alcohol concentration data ($[2a]_t = [2a]_0 - [3a]_t$). Since the starting concentration of the same excess experiments is different than that of the standard experiment, the same excess time data was adjusted accordingly. This method is representative of starting the reaction from two different starting points. At the point where the standard data set reaches the starting point of the same excess data set they then represent a reaction with the same conditions, with the exception of the first containing product already present and a catalyst that has completed more turnovers.⁵ The failure of these two curves to overlap indicates that significant catalyst deactivation occurs. Additionally, in the case of the same excess conditions with product addition, a slight shift towards the standard conditions indicates that the product is contributing to the deactivation pathway. This is only a moderate contribution.

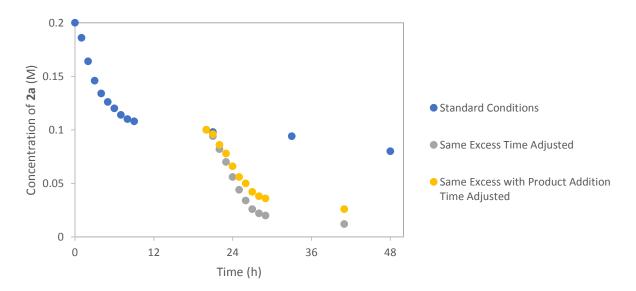


Figure 14. Evaluation of catalyst performance utilizing same excess protocol.

References

- (1) Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.
- (2) Alonso, F.; Moglie, Y.; Radivoy, G.; Yus, M. Org. Biomol. Chem. 2011, 9, 6385.
- (3) Lindsay, V. N. G.; Fiset, D.; Gritsch, P. J.; Azzi, S.; Charette, A. B. *J. Am. Chem. Soc.* **2013**, *135*, 1463.
- (4) Werstiuk, N. H.; Timmins, G. Can. J. Chem. 1986, 64, 1072
- (5) For a review on reaction progress kinetic analysis, see: Blackmond, D. G. Angew. Chem. Int. Ed. 2005, 44, 4302.