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1. Preliminaries

In this section we describe some preliminary material for the proofs presented in Sections 2,

3 and 5.

1.1 Multivariate skew-normal distribution
Let
y =mp+E,
z =—v + DE; + Ey,

where E; ~ N@(0,%) and E, ~ N®(0, A) are independent random vectors, p is a ¢ x 1

vector, v is a p x 1 vector, and D, is a matrix. The joint distribution of y and z is

T
Y ~ N(@tp) K : > D
Z —v DY A +DYXDT
Since
fy(Y)
> = - > =
fy\{z>o}(Y|Z > 0) P(z > O)P(Z = 0|y y),

the conditional density of y given z > 0 has the following form,

P (D(y — p);v, A)

f(y? l’l’7 ) 71/7 ) ¢ (y)l’l’7 )(b(p)((), V,A"—DEDT)’

(1)

where ¢(@ (-;n, ¥) and ®@(-; 5, ¥) are the density and distribution function of a g-dimensional
normal distribution with mean 1 and covariance matrix W. The density function in (1) is
from the class of multivariate skew-normal distribution described in Gonzélez-Farias et al.
(2004), Arnold (2009) and Flecher et al. (2009). Following Gonzélez-Farias et al. (2004),
we let CSN,,(p, 3, D, v, A) denote this multivariate skew-normal distribution. Its moment

generating function is

P (DXt;v, A + DEXD")
®®(0;v, A + DXD")

1
My (t) = exp {tTu + §tT2t}
The multivariate normal distribution is a special case of the multivariate skew-normal dis-

tribution when D = 0.
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Sampling from CSN, ,(p, X, D, v, A) can proceed by drawing from
z ~ N?(—v, A+ DXD") until z > 0, then draw y from

N {u+ (D) (A +DED")Y(z+v), X - (DX)"(A + DEXD")"}(DX)}.

1.1.1 Mean. Note that

®®(DXt; v, A + DXDY)
d®(0;v, A + DXD")
1 00P)(DXt; v, A + DED")/0t
£ —tht} et
texp { pot @) (0, v, A + DSDY)

aMY<t> o T 1 T
o = exp {t Bt =t Et}

5 (1 + Xt)

2
So the mean of the multivariate skew-normal distribution is

OMy (t
E(y;u’vzaDayaA) = 81( )|t:0
0P (DXt; v, A + DXD")/0t|i—o

@) (0;v, A + DEDT)

For details about obtaining the derivatives of a multivariate normal distribution function

with respect to t, see Section A.2.

1.1.2 Variance. Note that

9>My (t)

1 P (DXt;v, A + DEXD")
— = t* —tht} .
otot" eXp{ SR

d@(0;v, A + DXDT)
(09®)(DXt; v, A + DED")/0t)"
} ®®(0;v, A + DXD")
1 }cb<p>(D§:t; v,A +DXD")
J

(n+3t) (u+Xt)"

(1 + Xt)

o® (0;v, A+ DXD")
00 (DXt; v, A + DED")/0t
o) (0;v, A+ DXDT)
1 t} 820® (DXt; v, A + DEDT)/9tot"
®®(0;v, A + DXD)

Thus the 2nd moment of the multivariate skew-normal distribution is

O*My (t) (09®)(DXt; v, A + DED")/0t|i—)
ototT @) (0;v, A + DXD")
00?)(DXt; v, A + DXD")/0t|¢—o
®®(0;v, A + DEDT)
9’9 (DXt; v, A + DED?)/0tt™ |-
®®(0;v, A + DEDT) ’

(1 +3t)"

t=o =pp" + X+ p

T
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and the variance of the multivariate skew-normal distribution is

0*My (t) OMy (t) OMy (t) B
gtaer 0T g e ( ot ‘t:“)
0?0 (DXt v, A + DXDT)/0tot" |1
o) (0;v, A + DXD")
00P) (DXt; v, A + DXD?)/dt|—0
B d®(0;v, A+ DIDT)
00 (DZt; v, A + DED") /0t \
( o®)(0;v, A + DXD") )

Var(y; u, 3, D, v, A) =

=3 +

1.2 Derivatives of a multivariate normal distribution function

Let ®®(Gt;v, ¥) denote the cumulative distribution function (cdf) of a p-dimensional
multivariate normal distribution with mean v and covariance matrix ¥, where G is a p X ¢q
matrix, t is a ¢ x 1 vector, v is a p X 1 vector and W is a p X p covariance matrix. The first

derivative of ®®)(Gt; v, \I') with respect to t is

p .
O (Gt v, ¥) 3 ¢<p)(z v, W)dzdz, - - dz,

Gi1.t pGat Gp.t
81;/ / / Z 14 \Il)dzleQ d

G_,t
at/' |:/ ¢(P 1) {Z oV _g—f—\I’ M‘I’M(ZZ_VK) v_ ¢, g—\I’_g’g‘I’ZellP&_[} dZ_g:|

—00

oW (2 v0, Oy ) dzy

p
= Z (I)(pil) {G,g.t; V_y+ ‘I’,g’g\Ilzel(Gg.t - Vg), \I’,g’,g - \I’,g’g\Ilzel\Ilg’,g}

= (I)(pil) {(G,g. - \Il,&g\I/ZZng.)t; V_y— ‘If,g,g\IlZ@lVg, ‘If,g,,g - ‘If,g’g\Ilzel\Ilg’,g}

¢ (Grt; v, Ui 0)GE

where Gy. is the /" row vector of G, G_,. is the matrix G with its ¢* row removed, z =
(21, .,2p)7, z¢ is the " element of vector z, z_ is the vector z with its /' element removed,

v, is the " element of vector v, v_, is the vector v with its £t element removed, W_,is
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the k™ column vector of ¥ after removing its ¢** row, W, _j is the " row vector of W after
removing its k™ column, ¥_,_; is the matrix of ¥ with its ¢/ row and k" column both
removed, and W, is the (£, k)" element of the matrix W.

Denote G* = G_p.—W_o W, /Gy, v =v_—V_, W, ju, " =¥_,_,—V_,, ¥, | ¥, _,.

Then the second derivative of ®®)(Gt; v, ¥) with respect to t is

POV (Gt;v, ¥) K 0 _ e le bk
A S {0 (Gt ) Gt 910G
/=1
p p—1
Z (I)p 2 {Ge* _ql%k,k(‘llifk)il(;ﬁ}t;yejk_qlé*k,k(\pﬁk) 11/2*7
/=1 k=1

‘Il%k,fk - \I’ﬁjkk<qli*k)_lqli*fk] ¢(1)(G€*t Vi 7‘I’£*k)¢(1)(Gf-t; Ve, ‘I’Z,Z)G}-Gﬁ
p
+ Z Cp(pfl) (Gg*t; I/Z*, \Ilg*)(ﬁ(l)(crg.t; Uy, ‘I’g’g)(—‘ll&g)il(Gg.t — Vg)GEG@.
/=1

Setting t = 0, we have

00 (Gt v, ¥)

ot 1=o0
p
= Z =) (0; VR ) s R R \I’—Z,E‘I’Zg}lpé,—f> oW (0w, ¥y y) Gy,
=1
and
0*0P)(Gt; v, U)
OtotT l1=0
p p-1
= [ =2 {0§ Ve—*k - \Ilgjkk(\l’i*k) 1’/?7 \Il%k,—k - \I’Kjk,k(‘:[lﬁw_lqlﬁfk}
=1 k=1
x (0,0, Wi )M (000, W0 ) GLGY]
p
+ >0 (0,05, W) 6 (0; v, W) W GEG.
—1

In particular, when p = 1 we have

00N (Gt; v, ¥)
ot
9*dM(Gt; v, U)
ototT

l=0= 0 (0; v, ¥)G",

lieo= ¢V (0; v, ¥) T 'WGTG;
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and when p = 2 we have

002 (Gt; v, W)

2
lt—0= Z oM (0; v =W W v, U, — \11_475\11&1\1'474)

ot .
¢(1)(0§ v, W,0)Gy,
20 (Gt v, T 2 * *
8(t6tT ) o= Y _ [0 (0;0%, ®*)o) (05 11, Wy ) G G"]
=1

Zcpﬂ (0; 7, ) 6 (0; v, W) O 0GP G

2. Conditional distribution of the random effects given observed data

Following Section 2.2 of the main text, the conditional distribution of the random effects b;,

given the observed data Yj,...,Y; ;1,5 =7 —1,H; 1, is

f(bl ’ }/;'17 cee 75/;,]'71757; = J - 17H7;7j*1>

Jj—2
o< f(by;0)f(Yir,...,Yijo1 | Hij—1,bi;0) ;51 H(1 — Air)
=1
j—1
o exp{—5biS; b~ 5 Z (yie — %58 — 2by) } UV (A; 1o + By 1b;;0,1)

Ue

1 J Jj—
X exp [_5 { ( _2 ZZMZM> 2 Z Yie — 1@/6 Mb }
e = e =

(I)(jil) (Aj,la -+ ijlbi; 0, I)

o ¢(‘1) (b“ ,*l’bi|-7 Ebi‘.)q)(j_l) (Aj—la + Bj—lbi; 07 1)7

where Xy, = (357 + 5 Y3000 2uz) ™ By = 25 S 2o (Yie — X[B) 2,

T T
X1 Y1 Wi

A = ,and Bj_; = . Therefore, it is a multivariate skew-
T T
XSi,5—2 Yi-2 Wi -2

T T
—XSij—1 _ijlwlﬁj—l
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normal distribution with density function

UV (A, o+ B,_1by;0,1)

ja+ By, 0,1+ B 13, Bf )
CUY(B; (b — gy )s —Aj10 = By, 1)

PU-1) (0; Ao — Bj—ll-»l'bi|.7 I+ Bj—lzbi“B]T—l) 7

¢(q) (bzy l'l’bi\-a Zlh') PU-1) (A

= ¢(q)(bi;ﬂbi\.,2bi|~)

where from (1), = py,., X =3, D=B; 1, v =-A; ja —B; 1y, and A =1

3. Default extrapolation distribution for Yj; (j < k¥ < M) under the SPM

Recall that under the specified SPM, it is assumed that the missing outcomes after dropout
at S; = j — 1 still follows the model Y, =x},8 +z,b; + €1 (j < k< M) .

As shown in Section 2, we have

f(bz | }/;1; s 7}/;,j—175i = ] - 17H’i7j_1)

(I)(j_l)(Aj_la + Bj—lbi; Oa I)
PUV(Aj o+ Bjpy, 0,1+ B; 13, Bj )

PG (0; —Ajio =By, I+ Bj‘lzbi"BJT"1>

= ¢(q)(bi;”bi\~7 31

= ¢(q)(bi;ﬂbi\.7 2bi|‘)

A

CSNq,j—l(l‘l’bi\w ZJb«;|~a Bj—la _(Aj—la + Bj—ly’bi\~)7 I)

According to Remark 1 in Gonzalez-Farfas et al. (2004), the linear combination of the

random effects z), b; also follows a skew-normal distribution

T 2
Zikbi ~ CSNl,j—l(HliM-v O1ik|-> Dlik|-a Vyik|- Alik\-):

[ 2 I _ 1 —
where fiy;,). = ZikMy, | O1ig). = 2,2, Zik, D1k = o2 B; 13, Zik, Vi = —(qua =+

Bjipty,)), A =1+ B 13, Bl — »—

2
1ik|-

B;_130,zix2,, 3, B]_;, with the density func-
tion
PU-1 <D1z‘k|~(2 — [hik].) Viikl-» Auk|~>

PG <0; Y1k, Arir]. + Ui'kl-D“’“"Df“ﬂ')

¢(1)(2§ H1ik|- U%m.)

Under the specified SPM in the main text, we have x7, 3 + €, ~ N(x,.3,02), which is a

special case of the skew-normal distribution, and is independent of z}, b; given the covariates.
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Therefore following Theorem 4 in Gonzélez-Farias et al. (2004), the conditional distribution
for the missing data Y, = x},8+zb;+e€; given Y, ..., Y, 1,8 = j—1, H; j_1, Xk, 2, (ie.,
the default extrapolation distribution under the SPM) is also skew-normally distributed.

The moment generating function is

M}/ik|Y;-1,...,'Yiy]'_l,Si:j—l,Hi,j—l7xik,zik (t)
- Mx;I;CIB‘FEik (t)Mz;l;cbi‘Yil7-"7Y’ivj*17si:j_1’Hi’j71 (t>
1 1
= exp (xfkﬁt + ioth) €xXp {Mulq-t + QUi‘k-ﬂ}

(ID(jfl)(DukLUfik\-t; Viikl., Arik|- + Ufikl-D”H'Dfikl')
U (0; w1441, Asigl. + 075 Dain. Dy

1
= exp {(XiTkﬂ + pain. )t + 5(‘73 + U%ik|-)t2}

QU Dy 07 5 Viinf-s A + 0754 D Dy )
UD(0; vk, Ay + 07y Dring Dy,

1, o q)(j_l)(DQikLUgik‘.t;V2ik|-aA2ik|~+U§ik|.D2ik|-Dgik‘.)
= exp | Mot + 505t

i—1) () 1/ , 2 , T
2 (I)(J )<0, V2ik|-» AQZkl. + J2ik\-D21k|'D2ik\-)
2 2 2 “?M
_ T _ J— N — —
where M2ik|- = Xikﬁ + M1kl O%ik|- = Oe + O%ik)-» D2ik|- = —UZ+0§,€|AD“’“|" Voik|- = Viik|- AQik\. =

4
Ay + Ufz’k|-D173k|'D£’k|- - L"‘_Dlikermv Thus it follows that the default extrapolation

o207,
distribution for Yj; under the specified SPM is a skew-normal distribution with the density

function

ink‘Yil’n-,Yi,j—l:Si:j—LHi,j—l (yzk)

QU (Dot (Yik — Haik)-); Vaik)-» Doiy.)

PU=D(0; vk, Agik|. + U%ikI-D%M'D;k\‘) |

= ¢(1) (yz’k; H2ik|- agi,ﬂ.)

4. Steps for model assessment
The steps to implement the model assessment procedure in Section 3.3 of the main text are:
(1) For the ith patient, sample the complete longitudinal outcome vector, Y, from the

specified longitudinal model in (8) of the main text, given the current posterior samples

and the patient’s covariate values.
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(2) For the ith patient, sample a replicated dropout time, S;, from the specified dropout
model in (9) of the main text, given the current posterior samples and the patient’s
covariate values.

(3) If ;" = j — 1 < 12, truncate Y;” at visit j — 1 to obtain the replicates of the observed
longitudinal data Y;"%.

(4) Repeat 1-3 for N = 827 HERS patients and compute Y505 (Y97 — pu0)™Ver (Y —
9 /i, where g = B(Y'™ | S = j — 1, H,; ), V2 = Var(Y2™™ | §1% = j -
1,H; 1), H; ;_; is the collection of the covariates in (8) and (9) of the main text up to
visit j — 1, and n;”” is the number of observations in Y;"“. Details for computing p¢
and V¢ can be found in Section 5.

(5) Compute the x? discrepancy for the observed HERS data, similarly to Step 4 by replacing
Y!"? with Y?.

(6) Repeat Steps 1-5 for each posterior sample of the model parameters and compute the
posterior predictive probability that the replicated x? statistic is larger than the observed

x? statistic.

Because computing pf and V¢ involves numerous calculations of multivariate normal
probabilities, we only use 1024 (out of 9000) posterior samples and parallelize the calculation
of the x? discrepancy statistics on 32 cores. The posterior probability that the x? statistic is
larger than the observed x? statistic is 0.212, which does not indicate lack of fit of our SPM
to the observed HERS data.

For model comparison, Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002)
based on observed data likelihood can be used (Wang and Daniels, 2011). This requires
integrating out the random effects to obtain the observed data likelihood, which is com-
putationally intensive for the SPM. Note that WinBUGS provides the DIC conditional on

random effects; therefore the DIC from WinBUGS is not appropriate for model comparison.
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In addition, because the LMM does not explicitly model the dropout process, its DIC based
on observed data likelihood can not be directly compared with that from the SPM. But
we could compare the values of DIC for the SPM and PMM. More discussion about model

comparison with informative dropout can be found in Daniels et al. (2012).

5. Conditional distribution of the random effects given the dropout time and

covariates

For computing the y? discrepancy statistics in the model assessment procedure in Section 4,
we need to compute E(Y"" | S;" = j —1,H; ;1) and Var(Y;"" | S =5 — 1,H, ;_1).

We first derive the conditional distribution of the random effect b; given the dropout time
S;” = j — 1 and the covariates H; ;_; and obtain its mean and variance. Then writing
Y7 = X8 + Zob; + €%, where X9 = (X1, ...,%;;-1)" and Z¢ = (z;1,...,2;;-1)", and
€ = (61", €51)" we can easily obtain E(Y"™™ | S;* = j — 1,H,; 1) = X{8 +
Z?E(b; | S;” = j—1,H;;_1) and Var(Y"? | S;" = j — 1,H; ;1) = Z¢Var(b; | S/ =
j—LH;;0)(Z9)" + o1

Since
f(bi | Si? =7 —1,H;;1)
X f(SZEP =j—1 \ biaHi,jfl)]%bi ‘ Hi,j71>
j—2
o< Aot [ (1= Xa)8'? (bi; 0, )
=1
X (I)(j_l) (A]‘_la + Bj—lbi; O7 I)gb(q) (bl, 07 Zb),

it follows that the conditional distribution of b; given S; = j — 1, H; ;_; is a multivariate

skew-normal distribution with the density function

(I)(jfl) (Bj—lbi; —Aj—laa I)
q>(j—1)(0; —Aj_la, I+ Bj—1EbBJT_1)'

fi | Si=j—1H,;_1) = ¢ (b;0,%)
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6. Results from a pattern mixture model for the HERS data

Pattern mixture models (PMMs) are an alternative approach to dealing with informative
dropout and can also provide transparent sensitivity analyses. Discussion about advantages
and disadvantages of PMMs can be found in Chapter 8 of Daniels and Hogan (2008). Hogan
et al. (2004) provided an analysis of the HERS data using a PMM. Here we follow their
approach and compare the results from the PMM with those from the SPM. The observed
dropout times are first combined to form three dropout pattern groups: patients whose final
visits were between visit 1 and visit 5; patients whose final visits were between visit 6 and
visit 10; patients whose final visits were visit 11 or visit 12 (completers). Discussion of this
choice of grouping can be found in Hogan et al. (2004). A linear mixed model is then specified
such that each dropout pattern group has unique regression coefficients for the fixed effects.
Specifically, let G; = ¢ if the patient’s final visit was in pattern g (¢ = 1,2,3). We assume

that

Yij = x;8% + bis + biaJ”™ + €35, )

where (39 is the vector of regression coefficients for the gth grouped pattern. The specifications
for random effects, the error term and the covariates remain the same as in the longitudinal
sub-model of the SPM described in Section 3.1 of the main text. Independent normal priors
N(0,100) are assigned to 7. The prior specification for the rest of the parameters is the
same as in the SPM.

Table 1 presents the posterior mean estimates and 95% credible intervals of the regression
coefficients for each dropout pattern. All of the coefficients vary significantly across patterns.
The estimated main effects of time are negative for patterns 1-2, but are close to zero for
pattern 3. In particular, the magnitude of these effects decrease as the dropout time increases.

To summarize the marginal effects of covariates unconditional on dropout patterns, we take
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a weighted average of the conditional effects over the distribution of the dropout patterns:

3
B=> B,
g=1

where 79 is the probability of being in pattern g. We assume that G; follows a multinomial
distribution with parameters m!', 72, 73 that are given a Dirichlet prior. We then use the
posterior samples of 79 and (39 to obtain the posterior samples of 3. Table 1 presents the
posterior mean estimates and 95% credible intervals of 3. The estimated marginal covariate
effects, especially the main effects, are similar in the PMM and SPM. As a result, the
conclusions about the effects of baseline viral load levels and ART status on the rates of
changes in mean CD4 counts are similar in both analyses.

Based on the fitted PMM, a sensitivity analysis can be done by extrapolating the mean
longitudinal CD4 count profiles beyond dropout for those patients who had the same dropout
times. Similar to the proposed sensitivity analysis approach, a piece-wise linear model can
be used and sensitivity parameters can be specified to allow for the change of longitudinal
profiles after dropout to be a function of the dropout time and also the observed covariates.
Then the conditional longitudinal profiles are averaged over the dropout time distribution
and marginal covariate effects can be summarized based on the marginal longitudinal profiles.
Su and Hogan (2010) provided an example how this can be done in the HERS data analysis.
An important distinction of the sensitivity analysis based on the PMM from that based
on the SPM is that for the PMM the extrapolation is done at the population level for each
unique dropout time. Therefore, summaries of marginal covariate effects can be done directly
by averaging over the observed dropout time distribution, and do not have to rely on G-
computation. However, this approach can be difficult to implement when there are many

unique observed dropout times and data are sparse within each unique dropout time.

[Table 1 about here.]

11
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7. Approximation for o,, in G-computation

To speed up the G-computation for the HERS analysis, we approximate o3, using the average
estimated posterior standard deviations of the random slopes for all HERS patients within
each of the 8 covariate groups defined by the baseline viral load level, ART status and HIV
symptoms. Specifically, we first obtain empirical standard deviations of random slopes of
the HERS patients in WinBUGS (based on 600 posterior samples of each random slope),
and then average them within baseline covariate groups. Table 2 presents the approximated

values oy, for g, by the baseline covariate groups.

[Table 2 about here.]

We compare the results of marginal covariate effects when the exact and approximated
values of oy, are used in the G-computation of the sensitivity analysis for the HERS data.
It appears that the point estimates of the marginal covariate effects are similar, but the 95%
credible intervals are wider when the exact values of 03, are used. For example, given that
no ART was used and the number of HIV symptom at baseline was zero, the difference in the
mean change of square root CD4 count from baseline to Visit 6 between the viral load 500-5k
and 30k+ groups is 2.26 (95% CI=[0.85,3.70]) when the exact values of o, are used. The
estimate of this covariate effect is 2.11 (95% CI=[0.76,3.37]) when the approximated values
of oy,, are used. This is not surprising because in the approximation o,,, varies by baseline
covariates only, but in the exact calculation oy, is also a function of observed outcomes before
dropout in additional to baseline covariates (thus the latter introduces more variation).

When the marginal covariate effects are more pronounced (e.g. the viral load effects), using
the approximation or the exact values of o3, would not make much difference in terms of
statistical conclusions. But it could make slight differences for the covariate effects that are
closer to zero because the 95% CI might cover zero when the exact values of o,,, are used.

For example, given the viral load was 500-5k and the number of HIV symptom at baseline
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was zero, the difference in the mean change of square root CD4 count from baseline to
Visit 6 between baseline ART groups is 0.54 (95% CI=[-0.12,1.25]) when the exact values
of oy,, are used. The estimate of this covariate effect is 0.63 (95% CI=[0.05,1.19]) when the

approximated values of o3, are used.
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Biometrics, 000 0000

Table 2
Approximated values for op,, by the baseline covariate groups

HIV symptoms Viral load group ART oy,

0 0-500 No 0.48
0 0-500 Yes  0.52
0 500-5k No 0.52
0 500-5k Yes  0.49
0 5k-30k No 0.61
0 5k-30k Yes  0.62
0 30k+ No 0.69
0 30k+ Yes 0.79




