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1. Preliminaries

In this section we describe some preliminary material for the proofs presented in Sections 2,

3 and 5.

1.1 Multivariate skew-normal distribution

Let

y = µ + E1,

z = −ν + DE1 + E2,

where E1 ∼ N (q)(0,Σ) and E2 ∼ N (p)(0,∆) are independent random vectors, µ is a q × 1

vector, ν is a p× 1 vector, and Dp×q is a matrix. The joint distribution of y and z isy

z

 ∼ N (q+p)


 µ

−ν

 ,

 Σ ΣDT

DΣ ∆ + DΣDT


 .

Since

fy|{z>0}(y|z > 0) =
fy(y)

P (z > 0)
P (z > 0|y = y),

the conditional density of y given z > 0 has the following form,

f(y;µ,Σ,D,ν,∆) = φ(q)(y;µ,Σ)
Φ(p)(D(y − µ);ν,∆)

Φ(p)(0;ν,∆ + DΣDT)
, (1)

where φ(q)(·;η,Ψ) and Φ(q)(·;η,Ψ) are the density and distribution function of a q-dimensional

normal distribution with mean η and covariance matrix Ψ. The density function in (1) is

from the class of multivariate skew-normal distribution described in González-Faŕıas et al.

(2004), Arnold (2009) and Flecher et al. (2009). Following González-Faŕıas et al. (2004),

we let CSNq,p(µ,Σ,D,ν,∆) denote this multivariate skew-normal distribution. Its moment

generating function is

MY (t) = exp
{

tTµ +
1

2
tTΣt

}Φ(p)(DΣt;ν,∆ + DΣDT)

Φ(p)(0;ν,∆ + DΣDT)
.

The multivariate normal distribution is a special case of the multivariate skew-normal dis-

tribution when D = 0.
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Sampling from CSNq,p(µ,Σ,D,ν,∆) can proceed by drawing from

z ∼ N (p)(−ν,∆ + DΣDT) until z > 0, then draw y from

N (q) {µ + (DΣ)T(∆ + DΣDT)−1(z + ν),Σ− (DΣ)T(∆ + DΣDT)−1(DΣ)}.

1.1.1 Mean. Note that

∂MY (t)

∂t
= exp

{
tTµ +

1

2
tTΣt

}Φ(p)(DΣt;ν,∆ + DΣDT)

Φ(p)(0;ν,∆ + DΣDT)
(µ + Σt)

+ exp
{

tTµ +
1

2
tTΣt

}∂Φ(p)(DΣt;ν,∆ + DΣDT)/∂t

Φ(p)(0;ν,∆ + DΣDT)
.

So the mean of the multivariate skew-normal distribution is

E(y;µ,Σ,D,ν,∆) =
∂MY (t)

∂t
|t=0

=µ +
∂Φ(p)(DΣt;ν,∆ + DΣDT)/∂t|t=0

Φ(p)(0;ν,∆ + DΣDT)
.

For details about obtaining the derivatives of a multivariate normal distribution function

with respect to t, see Section A.2.

1.1.2 Variance. Note that

∂2MY (t)

∂t∂tT
= exp

{
tTµ +

1

2
tTΣt

}Φ(p)(DΣt;ν,∆ + DΣDT)

Φ(p)(0;ν,∆ + DΣDT)
(µ + Σt) (µ + Σt)T

+ exp
{

tTµ +
1

2
tTΣt

}
(µ + Σt)

(
∂Φ(p)(DΣt;ν,∆ + DΣDT)/∂t

)T
Φ(p)(0;ν,∆ + DΣDT)

+ exp
{

tTµ +
1

2
tTΣt

}Φ(p)(DΣt;ν,∆ + DΣDT)

Φ(p)(0;ν,∆ + DΣDT)
Σ

+ exp
{

tTµ +
1

2
tTΣt

}∂Φ(p)(DΣt;ν,∆ + DΣDT)/∂t

Φ(p)(0;ν,∆ + DΣDT)
(µ + Σt)T

+ exp
{

tTµ +
1

2
tTΣt

}∂2Φ(p)(DΣt;ν,∆ + DΣDT)/∂t∂tT

Φ(p)(0;ν,∆ + DΣDT)
.

Thus the 2nd moment of the multivariate skew-normal distribution is

∂2MY (t)

∂t∂tT
|t=0 =µµT + Σ + µ

(
∂Φ(p)(DΣt;ν,∆ + DΣDT)/∂t|t=0

)T
Φ(p)(0;ν,∆ + DΣDT)

+
∂Φ(p)(DΣt;ν,∆ + DΣDT)/∂t|t=0

Φ(p)(0;ν,∆ + DΣDT)
µT

+
∂2Φ(p)(DΣt;ν,∆ + DΣDT)/∂t∂tT|t=0

Φ(p)(0;ν,∆ + DΣDT)
,
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and the variance of the multivariate skew-normal distribution is

Var(y;µ,Σ,D,ν,∆) =
∂2MY (t)

∂t∂tT
|t=0 −

∂MY (t)

∂t
|t=0

(
∂MY (t)

∂t
|t=0

)T

=Σ +
∂2Φ(p)(DΣt;ν,∆ + DΣDT)/∂t∂tT|t=0

Φ(p)(0;ν,∆ + DΣDT)

− ∂Φ(p)(DΣt;ν,∆ + DΣDT)/∂t|t=0

Φ(p)(0;ν,∆ + DΣDT)(
∂Φ(p)(DΣt;ν,∆ + DΣDT)/∂t|t=0

Φ(p)(0;ν,∆ + DΣDT)

)T

.

1.2 Derivatives of a multivariate normal distribution function

Let Φ(p)(Gt;ν,Ψ) denote the cumulative distribution function (cdf) of a p-dimensional

multivariate normal distribution with mean ν and covariance matrix Ψ, where G is a p× q

matrix, t is a q × 1 vector, ν is a p× 1 vector and Ψ is a p× p covariance matrix. The first

derivative of Φ(p)(Gt;ν,Ψ) with respect to t is

∂Φ(p)(Gt;ν,Ψ)

∂t
=

∂

∂t

∫ Gt

−∞
φ(p)(z;ν,Ψ)dz1dz2 · · · dzp

=
∂

∂t

∫ G1·t

−∞

∫ G2·t

−∞
· · ·
∫ Gp·t

−∞
φ(p)(z;ν,Ψ)dz1dz2 · · · dzp

=
∂

∂t

∫ G`·t

−∞

[ ∫ G−`·t

−∞
φ(p−1) {z−`;ν−` + Ψ−`,`Ψ

−1
`,` (z` − ν`),Ψ−`,−` −Ψ−`,`Ψ

−1
`,`Ψ`,−`

}
dz−`

]
φ(1)(z`;ν`,Ψ`,`)dz`

=

p∑
`=1

Φ(p−1) {G−`·t;ν−` + Ψ−`,`Ψ
−1
`,` (G`·t− ν`),Ψ−`,−` −Ψ−`,`Ψ

−1
`,`Ψ`,−`

}
φ(1)(G`·t;ν`,Ψ`,`)G

T

`·

=

p∑
`=1

Φ(p−1) {(G−`· −Ψ−`,`Ψ
−1
`,`G`·)t;ν−` −Ψ−`,`Ψ

−1
`,`ν`,Ψ−`,−` −Ψ−`,`Ψ

−1
`,`Ψ`,−`

}
φ(1)(G`·t;ν`,Ψ`,`)G

T

`·

where G`· is the `th row vector of G, G−`· is the matrix G with its `th row removed, z =

(z1, . . . , zp)
T, z` is the `th element of vector z, z−` is the vector z with its `th element removed,

ν` is the `th element of vector ν, ν−` is the vector ν with its `th element removed, Ψ−`,k is
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the kth column vector of Ψ after removing its `th row, Ψ`,−k is the `th row vector of Ψ after

removing its kth column, Ψ−`,−k is the matrix of Ψ with its `th row and kth column both

removed, and Ψ`,k is the (`, k)th element of the matrix Ψ.

Denote G`∗ = G−`·−Ψ−`,`Ψ
−1
`,`G`·, ν

`∗ = ν−`−Ψ−`,`Ψ
−1
`,`ν`, Ψ`∗ = Ψ−`,−`−Ψ−`,`Ψ

−1
`,`Ψ`,−`.

Then the second derivative of Φ(p)(Gt;ν,Ψ) with respect to t is

∂2Φ(p)(Gt;ν,Ψ)

∂t∂tT
=

p∑
`=1

∂

∂tT

{
Φ(p−1)

(
G`∗t;ν`∗,Ψ`∗

)
φ(1)(G`·t;ν`,Ψ`,`)G

T

`·

}
=

p∑
`=1

p−1∑
k=1

Φ(p−2) [{G`∗
−k· −Ψ`∗

−k,k(Ψ
`∗
k,k)
−1G`∗

k·
}

t;ν`∗−k −Ψ`∗
−k,k(Ψ

`∗
k,k)
−1ν`∗k ,

Ψ`∗
−k,−k −Ψ`∗

−k,k(Ψ
`∗
k,k)
−1Ψ`∗

k,−k
]
φ(1)(G`∗

k·t;ν`∗k ,Ψ
`∗
k,k)φ

(1)(G`·t;ν`,Ψ`,`)G
T

`·G
`∗
k·

+

p∑
`=1

Φ(p−1)
(
G`∗t;ν`∗,Ψ`∗

)
φ(1)(G`·t;ν`,Ψ`,`)(−Ψ`,`)

−1(G`·t− ν`)G
T

`·G`·

Setting t = 0, we have

∂Φ(p)(Gt;ν,Ψ)

∂t
|t=0

=

p∑
`=1

Φ(p−1)
(
0;ν−` −Ψ−`,`Ψ

−1
`,`ν`,Ψ−`,−` −Ψ−`,`Ψ

−1
`,`Ψ`,−`

)
φ(1)(0;ν`,Ψ`,`)G

T

`·

and

∂2Φ(p)(Gt;ν,Ψ)

∂t∂tT
|t=0

=

p∑
`=1

p−1∑
k=1

[
Φ(p−2) {0;ν`∗−k −Ψ`∗

−k,k(Ψ
`∗
k,k)
−1ν`∗k ,Ψ

`∗
−k,−k −Ψ`∗

−k,k(Ψ
`∗
k,k)
−1Ψ`∗

k,−k
}

×φ(1)(0;ν`∗k ,Ψ
`∗
k,k)φ

(1)(0;ν`,Ψ`,`)G
T

`·G
`∗
k·
]

+

p∑
`=1

Φ(p−1)
(
0;ν`∗,Ψ`∗

)
φ(1)(0;ν`,Ψ`,`)Ψ

−1
`,`ν`G

T

`·G`·.

In particular, when p = 1 we have

∂Φ(1)(Gt;ν,Ψ)

∂t
|t=0= φ(1)(0;ν,Ψ)GT,

∂2Φ(1)(Gt;ν,Ψ)

∂t∂tT
|t=0= φ(1)(0;ν,Ψ)Ψ−1νGTG;
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and when p = 2 we have

∂Φ(2)(Gt;ν,Ψ)

∂t
|t=0=

2∑
`=1

Φ(1)
(
0;ν−` −Ψ−`,`Ψ

−1
`,`ν`,Ψ−`,−` −Ψ−`,`Ψ

−1
`,`Ψ`,−`

)
φ(1)(0;ν`,Ψ`,`)G

T

`·,

∂2Φ(2)(Gt;ν,Ψ)

∂t∂tT
|t=0=

2∑
`=1

[
φ(1)(0;ν`∗,Ψ`∗)φ(1)(0;ν`,Ψ`,`)G

T

`·G
`∗]

+
2∑
`=1

Φ(1)
(
0;ν`∗,Ψ`∗)φ(1)(0;ν`,Ψ`,`)Ψ

−1
`,`ν`G

T

`·G`·.

2. Conditional distribution of the random effects given observed data

Following Section 2.2 of the main text, the conditional distribution of the random effects bi,

given the observed data Yi1, . . . , Yi,j−1, Si = j − 1,Hi,j−1, is

f(bi | Yi1, . . . , Yi,j−1, Si = j − 1,Hi,j−1)

∝ f(bi;θ)f(Yi1, . . . , Yi,j−1 | Hi,j−1,bi;θ)λi,j−1

j−2∏
l=1

(1− λil)

∝ exp{−1

2
bT

i Σ
−1
b bi −

1

2σ2
ε

j−1∑
`=1

(yi` − xT

i`β − zT

i`bi)
2}Φ(j−1)(Aj−1α + Bj−1bi; 0, I)

∝ exp

[
−1

2

{
bT

i

(
Σ−1b +

1

σ2
ε

j−1∑
`=1

zi`z
T

i`

)
bi −

2

σ2
ε

j−1∑
`=1

(yi` − xT

i`β)zT

i`bi

}]
Φ(j−1)(Aj−1α + Bj−1bi; 0, I)

∝ φ(q)(bi;µbi|·,Σbi|·)Φ
(j−1)(Aj−1α + Bj−1bi; 0, I),

where Σbi|· = (Σ−1b + 1
σ2
ε

∑j−1
`=1 zi`z

T
i`)
−1, µbi|· =

1
σ2
ε
Σbi|·

∑j−1
`=1(yi` − xT

i`β)zi`,

Aj−1 =



xT
S,i1

...

xT
S,i,j−2

−xT
S,i,j−1


, and Bj−1 =



γT
1Wi1

...

γT
j−2Wi,j−2

−γT
j−1Wi,j−1


. Therefore, it is a multivariate skew-
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normal distribution with density function

φ(q)(bi;µbi|·,Σbi|·)
Φ(j−1)(Aj−1α + Bj−1bi; 0, I)

Φ(j−1)(Aj−1α + Bj−1µbi|·; 0, I + Bj−1Σbi|·B
T
j−1)

(2)

= φ(q)(bi;µbi|·,Σbi|·)
Φ(j−1)(Bj−1(bi − µbi|·);−Aj−1α−Bj−1µbi|·, I)

Φ(j−1)
(
0;−Aj−1α−Bj−1µbi|·, I + Bj−1Σbi|·B

T
j−1

) ,
where from (1), µ = µbi|·, Σ = Σbi|·, D = Bj−1, ν = −Aj−1α−Bj−1µbi|·, and ∆ = I.

3. Default extrapolation distribution for Yik (j 6 k 6M) under the SPM

Recall that under the specified SPM, it is assumed that the missing outcomes after dropout

at Si = j − 1 still follows the model Yik = xT
ikβ + zT

ikbi + εik (j 6 k 6M) .

As shown in Section 2, we have

f(bi | Yi1, . . . , Yi,j−1, Si = j − 1,Hi,j−1)

= φ(q)(bi;µbi|·,Σbi|·)
Φ(j−1)(Aj−1α + Bj−1bi; 0, I)

Φ(j−1)(Aj−1α + Bj−1µbi|·; 0, I + Bj−1Σbi|·B
T
j−1)

= φ(q)(bi;µbi|·,Σbi|·)
Φ(j−1)

(
Bj−1(bi − µbi|·);−(Aj−1α + Bj−1µbi|·), I

)
Φ(j−1)

(
0;−Aj−1α−Bj−1µbi|·, I + Bj−1Σbi|·B

T
j−1

)
∧
= CSNq,j−1(µbi|·,Σbi|·,Bj−1,−(Aj−1α + Bj−1µbi|·), I).

According to Remark 1 in González-Faŕıas et al. (2004), the linear combination of the

random effects zT
ikbi also follows a skew-normal distribution

zT

ikbi ∼ CSN1,j−1(µ1ik|·, σ
2
1ik|·,D1ik|·,ν1ik|·,∆1ik|·),

where µ1ik|· = zT
ikµbi|·, σ

2
1ik|· = zT

ikΣbi|·zik, D1ik|· = 1
σ2
1ik|·

Bj−1Σbi|·zik, ν1ik|· = −(Aj−1α +

Bj−1µbi|·), ∆1ik|· = I + Bj−1Σbi|·B
T
j−1 − 1

σ2
1ik|·

Bj−1Σbi|·zikz
T
ikΣbi|·B

T
j−1, with the density func-

tion

φ(1)(z;µ1ik|·, σ
2
1ik|·)

Φ(j−1)
(
D1ik|·(z − µ1ik|·);ν1ik|·,∆1ik|·

)
Φ(j−1)

(
0;ν1ik|·,∆1ik|· + σ2

1ik|·D1ik|·DT

1ik|·

) .
Under the specified SPM in the main text, we have xT

ikβ + εik ∼ N(xT
ikβ, σ

2
ε ), which is a

special case of the skew-normal distribution, and is independent of zT
ikbi given the covariates.
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Therefore following Theorem 4 in González-Faŕıas et al. (2004), the conditional distribution

for the missing data Yik = xT
ikβ+zT

ikbi+εik given Yi1, . . . , Yi,j−1, Si = j−1,Hi,j−1,xik, zik (i.e.,

the default extrapolation distribution under the SPM) is also skew-normally distributed.

The moment generating function is

MYik|Yi1,...,Yi,j−1,Si=j−1,Hi,j−1,xik,zik(t)

= M
xT
ikβ+εik

(t)MzTikbi|Yi1,...,Yi,j−1,Si=j−1,Hi,j−1
(t)

= exp

(
xT

ikβt+
1

2
σ2
ε t

2

)
exp

{
µ1ik|·t+

1

2
σ2
1ik|·t

2

}
Φ(j−1)(D1ik|·σ

2
1ik|·t;ν1ik|·,∆1ik|· + σ2

1ik|·D1ik|·D
T

1ik|·)

Φ(j−1)(0;ν1ik|·,∆1ik|· + σ2
1ik|·D1ik|·DT

1ik|·

= exp

{
(xT

ikβ + µ1ik|·)t+
1

2
(σ2

ε + σ2
1ik|·)t

2

}
Φ(j−1)(D1ik|·σ

2
1ik|·t;ν1ik|·,∆1ik|· + σ2

1ik|·D1ik|·D
T

1ik|·)

Φ(j−1)(0;ν1ik|·,∆1ik|· + σ2
1ik|·D1ik|·DT

1ik|·

= exp

(
µ2ik|·t+

1

2
σ2
2ik|·t

2

)
Φ(j−1)(D2ik|·σ

2
2ik|·t;ν2ik|·,∆2ik|· + σ2

2ik|·D2ik|·D
T

2ik|·)

Φ(j−1)(0;ν2ik|·,∆2ik|· + σ2
2ik|·D2ik|·DT

2ik|·)

where µ2ik|· = xT
ikβ + µ1ik|·, σ

2
2ik|· = σ2

ε + σ2
1ik|·, D2ik|· =

σ2
1ik|·

σ2
ε+σ

2
1ik|·

D1ik|·, ν2ik|· = ν1ik|·, ∆2ik|· =

∆1ik|· + σ2
1ik|·D1ik|·D

T

1ik|· −
σ4
1ik|·

σ2
ε+σ

2
1ik|·

D1ik|·D
T

1ik|·. Thus it follows that the default extrapolation

distribution for Yik under the specified SPM is a skew-normal distribution with the density

function

fYik|Yi1,...,Yi,j−1,Si=j−1,Hi,j−1
(yik)

= φ(1)(yik;µ2ik|·, σ
2
2ik|·)

Φ(j−1)(D2ik|·(yik − µ2ik|·);ν2ik|·,∆2ik|·)

Φ(j−1)(0;ν2ik|·,∆2ik|· + σ2
2ik|·D2ik|·DT

2ik|·)
.

4. Steps for model assessment

The steps to implement the model assessment procedure in Section 3.3 of the main text are:

(1) For the ith patient, sample the complete longitudinal outcome vector, Yrep
i , from the

specified longitudinal model in (8) of the main text, given the current posterior samples

and the patient’s covariate values.
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(2) For the ith patient, sample a replicated dropout time, Srepi , from the specified dropout

model in (9) of the main text, given the current posterior samples and the patient’s

covariate values.

(3) If Srepi = j− 1 < 12, truncate Yrep
i at visit j− 1 to obtain the replicates of the observed

longitudinal data Yo,rep
i .

(4) Repeat 1-3 for N = 827 HERS patients and compute
∑827

i=1(Y
o,rep
i − µo

i )
TVo−1

i (Yo,rep
i −

µo
i )/n

rep
i , where µo

i = E(Yo,rep
i | Srepi = j − 1,Hi,j−1), Vo

i = Var(Yo,rep
i | Srepi = j −

1,Hi,j−1), Hi,j−1 is the collection of the covariates in (8) and (9) of the main text up to

visit j − 1, and nrepi is the number of observations in Yo,rep
i . Details for computing µo

i

and Vo
i can be found in Section 5.

(5) Compute the χ2 discrepancy for the observed HERS data, similarly to Step 4 by replacing

Yo,rep
i with Yo

i .

(6) Repeat Steps 1-5 for each posterior sample of the model parameters and compute the

posterior predictive probability that the replicated χ2 statistic is larger than the observed

χ2 statistic.

Because computing µo
i and Vo

i involves numerous calculations of multivariate normal

probabilities, we only use 1024 (out of 9000) posterior samples and parallelize the calculation

of the χ2 discrepancy statistics on 32 cores. The posterior probability that the χ2 statistic is

larger than the observed χ2 statistic is 0.212, which does not indicate lack of fit of our SPM

to the observed HERS data.

For model comparison, Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002)

based on observed data likelihood can be used (Wang and Daniels, 2011). This requires

integrating out the random effects to obtain the observed data likelihood, which is com-

putationally intensive for the SPM. Note that WinBUGS provides the DIC conditional on

random effects; therefore the DIC from WinBUGS is not appropriate for model comparison.
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In addition, because the LMM does not explicitly model the dropout process, its DIC based

on observed data likelihood can not be directly compared with that from the SPM. But

we could compare the values of DIC for the SPM and PMM. More discussion about model

comparison with informative dropout can be found in Daniels et al. (2012).

5. Conditional distribution of the random effects given the dropout time and

covariates

For computing the χ2 discrepancy statistics in the model assessment procedure in Section 4,

we need to compute E(Yo,rep
i | Srepi = j − 1,Hi,j−1) and Var(Yo,rep

i | Srepi = j − 1,Hi,j−1).

We first derive the conditional distribution of the random effect bi given the dropout time

Srepi = j − 1 and the covariates Hi,j−1 and obtain its mean and variance. Then writing

Yo,rep
i = Xo

iβ + Zo
ibi + εo,repi , where Xo

i = (xi1, . . . ,xi,j−1)
T and Zo

i = (zi1, . . . , zi,j−1)
T, and

εo,repi = (εrepi1 , . . . , ε
rep
i,j−1)

T, we can easily obtain E(Yo,rep
i | Srepi = j − 1,Hi,j−1) = Xo

iβ +

Zo
iE(bi | Srepi = j − 1,Hi,j−1) and Var(Yo,rep

i | Srepi = j − 1,Hi,j−1) = Zo
iVar(bi | Srepi =

j − 1,Hi,j−1)(Z
o
i )

T + σ2
ε I.

Since

f(bi | Srepi = j − 1,Hi,j−1)

∝ f(Srepi = j − 1 | bi,Hi,j−1)f(bi | Hi,j−1)

∝ λi,j−1

j−2∏
l=1

(1− λil)φ(q)(bi; 0,Σb)

∝ Φ(j−1)(Aj−1α + Bj−1bi; 0, I)φ(q)(bi; 0,Σb),

it follows that the conditional distribution of bi given Srepi = j − 1,Hi,j−1 is a multivariate

skew-normal distribution with the density function

f(bi | Si = j − 1,Hi,j−1) = φ(q)(bi; 0,Σb)
Φ(j−1)(Bj−1bi;−Aj−1α, I)

Φ(j−1)(0;−Aj−1α, I + Bj−1ΣbBT
j−1)

.
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6. Results from a pattern mixture model for the HERS data

Pattern mixture models (PMMs) are an alternative approach to dealing with informative

dropout and can also provide transparent sensitivity analyses. Discussion about advantages

and disadvantages of PMMs can be found in Chapter 8 of Daniels and Hogan (2008). Hogan

et al. (2004) provided an analysis of the HERS data using a PMM. Here we follow their

approach and compare the results from the PMM with those from the SPM. The observed

dropout times are first combined to form three dropout pattern groups: patients whose final

visits were between visit 1 and visit 5; patients whose final visits were between visit 6 and

visit 10; patients whose final visits were visit 11 or visit 12 (completers). Discussion of this

choice of grouping can be found in Hogan et al. (2004). A linear mixed model is then specified

such that each dropout pattern group has unique regression coefficients for the fixed effects.

Specifically, let Gi = g if the patient’s final visit was in pattern g (g = 1, 2, 3). We assume

that

Yij = xT

ijβ
g + bi1 + bi2j

∗ + εij, (3)

where βg is the vector of regression coefficients for the gth grouped pattern. The specifications

for random effects, the error term and the covariates remain the same as in the longitudinal

sub-model of the SPM described in Section 3.1 of the main text. Independent normal priors

N(0, 100) are assigned to βg. The prior specification for the rest of the parameters is the

same as in the SPM.

Table 1 presents the posterior mean estimates and 95% credible intervals of the regression

coefficients for each dropout pattern. All of the coefficients vary significantly across patterns.

The estimated main effects of time are negative for patterns 1-2, but are close to zero for

pattern 3. In particular, the magnitude of these effects decrease as the dropout time increases.

To summarize the marginal effects of covariates unconditional on dropout patterns, we take
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a weighted average of the conditional effects over the distribution of the dropout patterns:

β =
3∑
g=1

βgπg,

where πg is the probability of being in pattern g. We assume that Gi follows a multinomial

distribution with parameters π1, π2, π3 that are given a Dirichlet prior. We then use the

posterior samples of πg and βg to obtain the posterior samples of β. Table 1 presents the

posterior mean estimates and 95% credible intervals of β. The estimated marginal covariate

effects, especially the main effects, are similar in the PMM and SPM. As a result, the

conclusions about the effects of baseline viral load levels and ART status on the rates of

changes in mean CD4 counts are similar in both analyses.

Based on the fitted PMM, a sensitivity analysis can be done by extrapolating the mean

longitudinal CD4 count profiles beyond dropout for those patients who had the same dropout

times. Similar to the proposed sensitivity analysis approach, a piece-wise linear model can

be used and sensitivity parameters can be specified to allow for the change of longitudinal

profiles after dropout to be a function of the dropout time and also the observed covariates.

Then the conditional longitudinal profiles are averaged over the dropout time distribution

and marginal covariate effects can be summarized based on the marginal longitudinal profiles.

Su and Hogan (2010) provided an example how this can be done in the HERS data analysis.

An important distinction of the sensitivity analysis based on the PMM from that based

on the SPM is that for the PMM the extrapolation is done at the population level for each

unique dropout time. Therefore, summaries of marginal covariate effects can be done directly

by averaging over the observed dropout time distribution, and do not have to rely on G-

computation. However, this approach can be difficult to implement when there are many

unique observed dropout times and data are sparse within each unique dropout time.

[Table 1 about here.]
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7. Approximation for σbi2 in G-computation

To speed up the G-computation for the HERS analysis, we approximate σbi2 using the average

estimated posterior standard deviations of the random slopes for all HERS patients within

each of the 8 covariate groups defined by the baseline viral load level, ART status and HIV

symptoms. Specifically, we first obtain empirical standard deviations of random slopes of

the HERS patients in WinBUGS (based on 600 posterior samples of each random slope),

and then average them within baseline covariate groups. Table 2 presents the approximated

values σ̂bi2 for σbi2 by the baseline covariate groups.

[Table 2 about here.]

We compare the results of marginal covariate effects when the exact and approximated

values of σbi2 are used in the G-computation of the sensitivity analysis for the HERS data.

It appears that the point estimates of the marginal covariate effects are similar, but the 95%

credible intervals are wider when the exact values of σbi2 are used. For example, given that

no ART was used and the number of HIV symptom at baseline was zero, the difference in the

mean change of square root CD4 count from baseline to Visit 6 between the viral load 500-5k

and 30k+ groups is 2.26 (95% CI=[0.85,3.70]) when the exact values of σbi2 are used. The

estimate of this covariate effect is 2.11 (95% CI=[0.76,3.37]) when the approximated values

of σbi2 are used. This is not surprising because in the approximation σ̂bi2 varies by baseline

covariates only, but in the exact calculation σbi2 is also a function of observed outcomes before

dropout in additional to baseline covariates (thus the latter introduces more variation).

When the marginal covariate effects are more pronounced (e.g. the viral load effects), using

the approximation or the exact values of σbi2 would not make much difference in terms of

statistical conclusions. But it could make slight differences for the covariate effects that are

closer to zero because the 95% CI might cover zero when the exact values of σbi2 are used.

For example, given the viral load was 500-5k and the number of HIV symptom at baseline
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was zero, the difference in the mean change of square root CD4 count from baseline to

Visit 6 between baseline ART groups is 0.54 (95% CI=[-0.12,1.25]) when the exact values

of σbi2 are used. The estimate of this covariate effect is 0.63 (95% CI=[0.05,1.19]) when the

approximated values of σbi2 are used.
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Table 2
Approximated values for σbi2 by the baseline covariate groups

HIV symptoms Viral load group ART σ̂bi2

0 0-500 No 0.48
0 0-500 Yes 0.52
0 500-5k No 0.52
0 500-5k Yes 0.49
0 5k-30k No 0.61
0 5k-30k Yes 0.62
0 30k+ No 0.69
0 30k+ Yes 0.79


