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Supplementary text 

Dependence of mHD on the sizes of a network and a basin 

To estimate the variance of average mHD as the size of a network increases, update 

rules are not considered. We assume that a subset kB  of the state space   of a given 

network X  of n  nodes denotes a desired basin, where the positive integer k  

denotes the size of kB . And undesired states are defined as states contained in 

kB  . Let  kE mHD B  denote the average mHD of undesired states to kB . Using 

the following Theorem 1 and the corresponding simulation, we suggest that the average 

mHD divided by the network size (called a “normalized average mHD”) decreases 

when the network size increases for basins of the fixed size 
2 n

k
 in the state space. 

 

Theorem 1.  

Let  1 1k
iB B i k     for the state space 1  of a network of n  nodes and a 

positive integer k . Let   2

2 1 2
k

iB B i k     for the state space 2 of a 

network of nodes 1n  , where   ,0B B   and     ,1  1kB B k      . Then kB  

and 
2k

B  have the same relative size 
2 n

k
 and  

   2

1

k
k E mHD BE mHD B

n n



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Proof. Let     1 2, , ,zero kB B B B   and    1 2, ,one k kB B B  . Symbols x  ,  ,zerox   

and  ,onex   denote the numbers of states of mHD   to 
2k

B ,  zeroB  and  oneB , 

respectively. 

Then for  2

2

k
s B    

 
   
 
 

 
 

2
,

,  or ,

, , 1
 or 

, 1 ,

k

zero one

zero zero

one one

mHD s B

mHD s B mHD s B

mHD s B mHD s B

mHD s B mHD s B



  

      
    

 

  

  

  

, 

which gives 

, ,zero onex x x      .---(eq1) 

Since there is no state of mHD 1n   due to the definition of B , we have  

1 0nx   . --- (eq2) 
 

Therefore 

 
 

     

2

1 2 1

1 1 1 1

, one,

1 1
1 1

1

1
1 2 1

1 2 2 2 2 2 2 2 2

1 1
                   2 ,  1

1 2 2 1 2 2

1
                 

1

  
1 2

k

n n

n n n n

n n zero

n n

zero

n

E mHD B x x x x
n n

n k k k k

x xx
eq eq

n k n k

x

n

n


   

 
 



 
               

 
 

   








 
 

 



   


   



 

one,

1 1 1
1 1 1 1

1

1

1

2 2 2 1 2 2 2 2

1
                  

1 2

1
                  

2
, 

n n n n

n n n

n

n

kn

n

x x x

k k n k k

x

n k

E mHD Bx

n k n

  
   





    
           




 


 



   





  

   









  





where xdenotes the number of states of mHD   to kB . 

QED. 
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Remark 1. In Theorem 1, we proved that the normalized average mHD decreases as the 

network size increases and the relative size of the desired basins is fixed, where the 

basins are assumed to have a special structure. We gave a simulation example in 

Supplementary Fig. 6 to show the property without the restriction on the structure of 

basins. 

 

Let  1 11
n E

n
E mHD B  for a singleton 1B  of a state. Without loss of generality, the 

singleton 1B  can be assumed to be the set of the zero state  0, ,0  when calculating

 1 11
n E

n
E mHD B . Let ix  denote the number of states of mHD i  to 1B . Then we 

have 

 1 1 1 2

1

1 1

1 2

2 1 2 1 2 1

1
                              

2 1

1 2 2
                            

1

  
2 1 2 1

n
n n n n

n

n i
i

n

n n

n n

x x n x
E mHD B

n n n

i C

n

n

n

E
n



 

       
  


 




  
 





 

Therefore the normalized average mHD to a singleton converges to 1/2 as n  goes to 

infinity. 

Theorem 2. Let B  be a singleton of a state of zero state values in a network of n  

nodes. Then  

 
1

1 11 2

2 1

n

n n
E mHD BE

n



 

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Using the following theorems and the corresponding simulations, we suggest that the 

normalized average mHD decreases when the network size is fixed and two states in B  

are apart from each other.  

 

Theorem3. Let 2B  be the set  0 1,B B of two states in a network of n  nodes, where 

the state values of nodes in  0 0, ,0B    are zero and  1 0, ,0,1B    has value 0 of 

all nodes except for the last node. Let  2, 1 21HD
n E

n
E mHD B . Then  

2
2, 1

1

1 2

2 1

n
HD

n n

n
E

n






 


 

Proof. Let   be the state space of the given network in the theorem.             

Let     2
0,  1id s B HD s B i i n     , where symbol A  denotes the number 

of elements of a set A  and  ,HD s s  is the Hamming distance between states s  and 

s . Using the definition of  2
0 1,B B B , we have 1 1d   and  0 2d n    . Let 

    0 1HD ,  and HD ,i
kS s s B i s B k     2 ,  1 1i n k i     , where 

 0HD ,s B i  implies that the number of values 1 in the state s is i  and 

 1HD ,s B k  implies that the number of values 1 in s  is either 1k   or 1k  . 

Then  

1i k  , 
 

 
1 1

0 1 2

i
ii

k

S k i
S

k i
      

 and 1 1 1
i
i n iS C   , 

which gives the desired result 
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 

    

1
2, 1

1 1 2 1

2
1

1
1 2 1

1
1 1

2

1 1

2 2

1 1
          2 1

2 2

1 1
          2 1 1

2 2

          

n n n i
HD i

n n i i kn
i i i k

n n i
n i i

i i kn
i i k

n
n i

in
i

E i C i d i k S
n

n i d i i S i k S
n

n d S
n



   





  






 
          

  
                

 
         

  

  



 1 1 1
1 1

2

1 2

1

1 1 1 1
2 1 2 2

2 2 2 2

1 2 1 2
          

2 2 2 1

n
n n n

n in n
i

n n

n n

n C n
n n

n n

n n

  
 



 



 
           

 
   

 



. 

QED. 

Remark 2. Using Theorems 2 and 3, we obtained  

1 1
1 2, 1

1

2 2
> 

2 1 1 2 1

n n
HD

n nn n

n
E E

n

 

  
  

 

and  

   
1

1 1 2, 1
1

2
1

2 1

n
HD

n nn

n
nE mHD B n EE



   


. 

In particular, the last equality in the proof of Theorem 1 implies that the average mHDs 

for desired basins of a fixed relative size does not increase even if the network size 

increases.  

 

Theorem4. Let 2B  be the set  0 1,B B of two states in a network of n  nodes, where 

the state values of nodes in  0 0, ,0B    are zero and  1 0, ,0,1,1B    has value 0 

of all nodes except for the last two nodes. Let  2, 2 21HD
n E

n
E mHD B . Then  

2
2, 2

1

1 2

2 1

n
HD

n n

n
E

n






 


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Proof. Let   be the state space of the given network in the theorem.             

Let     2
0,  1id s B HD s B i i n     , where symbol A  denotes the number of 

elements of a set A  and  ,HD s s  is the Hamming distance between states s  and 

s . Using the definition of  2
0 1,B B B , we have 2 1d   and  0 1 ,  2d n      . 

Let     0 1HD ,  and HD ,i
kS s s B i s B k     2 ,  1 1i n k i     , where 

 0HD ,s B i  implies that the number of values 1 in s  is i  and  1HD ,s B k  

implies that the number of values 1 in s  is 2k  , k  or 2k  . Then  

2i k  , 
 
 

2 2

0

i
ii

k

S k i
S

others
   


 and 2 2 2

i
i n iS C   , 

 

which gives the desired result 

 

    

1
2, 2

1 1 2 1

1
2

1 2 1 1,k 2

1 2
2

2

1 1

2 2

1 1
          2 2

2 2

1 1
          2 2 2

2 2

 

n n n i
HD i

n n i i kn
i i i k

n n
n i i

i i kn
i i k i i

n
n k

kn
i

E i C i d i k S
n

n i d i i S i k S
n

n d S
n



   




      

 



 
          

  
                 

 
         

  

  



  1 1 2
2 2

2

1 1 2

1

1 1 1 1
         2 2 2 2 2 2 2 1

2 2 2 2

1 2 2 1 2
          

2 2 2 1

n
n n n

n in n
i

n n n

n n

n C n
n n

n n

n n

  
 



  



 
               

  
   

 



. 

QED. 
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Remark 3. Using Theorems 3 and 4, we have  

2, 1 2, 2HD HD
n nE E , 

and using Remark 2 together, we have 

     1 2, 1 2, 2
1 11 1HD HD

n nmHD B n E n EE      , 

which implies that the average mHDs for desired basins of a fixed relative size does not 

increase even if the network size increases.  

 

Theorem5. Let 2B  be the set  0 1,B B of two states in a network of n  nodes, where 

the state values of nodes in  0 0, ,0B    are zero and  1 0, ,0,1,1,1B    has value 

0 of all nodes except for the last three nodes. Let  2, 3 21HD
n E

n
E mHD B . Then  

   1 2

2, 3
1 2 2 31

2 2

n n

HD
n n

n
E

n

    
 


 

Proof. Let   be the state space of the given network in the theorem.             

Let     2
0,  1id s B HD s B i i n     , , where symbol A  denotes the number 

of elements of a set A  and  ,HD s s  is the Hamming distance between states s  and 

s . Using the definition of  2
0 1,B B B , we have 3 1d   and  0 1 ,  3d n      . 

Let     0 1HD ,  and HD ,i
kS s s B i s B k     2 ,  1 1i n k i     , where 

 0HD ,s B i  implies that the number of values 1 in s  is i  and  1HD ,s B k  

implies that the number of values 1 in s  is 3k  , 1k  , 1k   or 3k  . Then  
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1,  3i k k   , 

 
 
 

1

3

1

3

0

i
i

i i
k i

k iS

S k iS

others





  


  



 and 1 3 1 3 2 3 2

3 3 0 3 3 3 3

3i
i n i n i

i
i n i n i

S C C C

S C C C

    

    

   

  
, 

which gives the desired result 

 

      

1
2, 3

1 1 2 1

1

1

1 3
2

1
3 1 3

2 3

1 1

2 2

2
1 1

          
2 2

1 3

1 1
          2 3 3

2 2

n n n i
HD i

n n i i kn
i i i k

n
n

i
i

n n
i i
i i

i

n n
n i i

i in
i i

E i C i d i k S
n

n i d

n
i i S i i S

n d S S
n



   





 



 

 

 
          

 
   

  
  

        
 
  

          

  





 

    
   

1
3 2 3 3

2 3

1 3 3

1 21 2

1 1
          2 3 3 3

2 2

1 1
          2 3 3 2 1 3 2 1

2 2

1 2 2 31 2 3 2 3 1
          

2 2 2 2

n n
n

n i n in
i i

n n n
n

n nn n

n n

n C C
n

n
n

nn

n n


   

 

  

  


 


  

            

         
      

   
 

 

 

QED. 

 

Remark 4. Using Theorems 1, 2, 3, 4 and 5, we suggest that the normalized average 

mHD has the following upper bound  

   
1

1 1
2

21
3, 1  

2 1

kE mHD B
mHDE B n

n
kE



       




  


, 

where the property is presented by a simulation example in Supplementary Fig. 7.  
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Remark 5. The inequality  

 
   1 22

2, 2 2, 3
1

1 2 2 32
1

2 1 2 2

n nn
HD HD

n nn n

n
nE n nE

 



  
    

 
 

is equivalent to 

 
   

 
 

     

1 22

1

1 2

2 2

1

1 2 2 32
1

2 1 2 2
1

2 2 3
1                      1

2 2
1

2 2 3
2 1

                     1
2 1

n nn

n n

n n

n

n n

n

n
n

nn

n
n

 



 

 



  
  

 

 
  


 


  


, 

and then we obtain 

2, 2 2, 3HD HD
n nnE nE . 

So, we suggest that the average mHD decreases for any fixed network size when the 

two states in kB  are farther apart from each other (see Supplementary Fig. 8). 

Therefore, using Remarks 2 and 3 together, we obtain 

     1 2, 1 2, 2 2, 3
1 1 11 1 1HD HD HD

n n n nnE n E n E n E        , 

and then we suggest that the average mHDs for desired basins of a fixed relative size 

does not increase even if the network size increases (see Supplementary Fig. 8).  
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Extension of BRC to a homogeneous system of finite linear differential equations 

with constant coefficients 

The general solution of any homogeneous system of finite linear ordinary differential 

equations (ODEs) with constant coefficients can in general be explicitly written in a 

closed form. Using the closed-form solution, we can identify an exact basin and so 

apply the concept of BRC to the system. This process is explained in the following steps 

with an example.  

Step 1. Construction of the general solution in a closed form 

Consider a network of three nodes whose dynamics are modelled by the homogeneous 

system of three linear ordinary differential equations with constant coefficients 

     0
d

X t AX t t
dt

  , 

where        1 2 3    
T

X t x t x t x t     is the transpose of the vector of  ix t  and 

1 3 2

1 0 1

3 2 2

A

 
   
  

. 

Symbol     1,2,3ix t i   denotes the state of the thi  node at time t . Matrix A  has 

three eigenvalues 1,  2 ,  2i i    and their corresponding eigenvectors 

     1 2 31  0  1 , 1   1    2 , 1   1    2
T T T

V V i i V i i              , 
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where i  denotes the imaginary number. Then the general solution  X t  is written as 

follows: for generic constants  1 3iC i   

     2 2
1 1 2 3cos sin sin cost t t

a b a bX t C e V C e tV tV C e tV tV     , --- (1) 

where aV  and bV  are real and imaginary parts of 2V  such that  

 1  1  2
T

aV      and  0  1  1
T

bV  . 

For the application of BRC we write the general solution  X t  in (1) as follows: 

 
     
     

2 2
1 1 2 3

2 2
2 2 3

2 2
3 1 2 3

cos sin

cos sin sin cos

2cos sin 2sin cos

t t t

t t

t t t

x t C e C e t C e t

x t C e t t C e t t

x t C e C e t t C e t t





   

     

      

--- (2) 

Step 2. Identification of the exact basin of a desired attractor 

We assume that a desired point attractor state is    1 2 3, , 0,0,0x x x  . Using the 

general solution (2), we have the exact basin 

  ,0,r r r R   --- (3) 

since the exact basin of the desired attractor is defined as the set of all initial conditions 

under which the ODE system is convergent to the desired attractor, where R  denotes 

the set of real numbers.  

Step 3. Determination of an undesired state 

The undesired states are any initial state under which the ODE system does not 

converge to the desired attractor. Letting an initial condition be 
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     1 1 2 3 1 2 30 = 0.5   0  0.5   0, 0.5
T

a bX C V C V C V C C C        , 

the ODE system with the initial condition    0 0.5   0  0.5
T

X     is divergent. So, 

an undesired state can be the state 

   1 2 3, , 0.5,0, 0.5x x x    . 

Step 4. Identifications of control target sets and boundary states 

We assume that a given control strategy is to identify the minimum number of control 

target nodes to be perturbed which drive the undesired state into the exact basin (3). If 

1x  is perturbed to 0.5 or 2x  is perturbed to 0.5, then the perturbed state can be 

contained in the exact basin. Therefore minimum control target sets are  

 1 0.5x   and  2 0.5x  , 

which result in the two boundary states from the undesired state 

   1 2 3, , 0.5,0,0.5x x x    and    1 2 3, , 0.5,0, 0.5x x x    

and the boundary of the exact basin from the undesired state 

        1 2 3 1 2 3, , 0.5,0, 0.5 ,  , , 0.5,0, 0.5x x x x x x     . 
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Supplementary Figure 1 

 

 

Supplementary Figure 1. Update rules and data used in Fig. 1b. The first row (upper 

b1 to upper b7) is explained in the caption of Fig. 1b in the main text. Lower b1 denotes 

the Boolean update rules for the original network in upper b1, where symbol “*” of a 

node on the left side of each equation denotes its value at time step t+1 and a node on 

the right side of the equation denotes its value at time step t. The symbols “”, “” and 

“” denote the logic operators “NOT”, “OR” and “AND”. The reduced network of 

nodes A, B, C, D and E in upper b3 is obtained from the original network by removing 
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symmetric nodes F and G, which has the reduced attractor state (A, B, C, D, E) = (1, 0, 

1, 1, 1) obtained from desired attractor  and the reduced update rules in lower b3. The 

basin of the reduced attractor is given in lower b5, which are hierarchically identified by 

following the process presented in the main text by using (1) the reduced attractor, (2) 

the reduced update rules and (3) sufficient conditions for terminal basin states in lower 

b4. To clearly and generally explain this process, an example network of 5 nodes with a 

desired attractor of length 2 is used in Supplementary Fig. 3. The table in ⓘ is 

obtained by concatinating each state in lower b5 and four possible states (F, G) = (0, 0), 

(1, 0), (0, 1) , (1, 1). For example, there exist four states (A, B, C, D, E, F, G) = (0, 0, 1, 

0, 0, 0, 0), (0, 0, 1, 0, 0, 1, 0), (0, 0, 1, 0, 0, 0, 1), (0, 0, 1, 0, 0, 1, 1), which are states 1, 

2, 11 and 12 in the table in ⓘ. The ordering of states in the table shows that node G is 

symmetric. Symmetric structure of F and G are presented in Supplementary Fig. 2. HDs 

from  to each basin state are 2, 3, 1, 2, 3, 4, 2, 3, 3, 4, 3, 4, 2, 3, 4, 5, 3, 4, 4 and 5, 

leading to mHD = 1 only for basin state 3. So, state 3 becomes a unique boundary state 

from α and the boundary of the basin from  is the singleton of state 3 {(A, B, C, D, E, 

F, G) = (0, 0, 1, 0, 1, 0, 0)}, leading to an unique minimum control target set is {C=0}. 
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Supplementary Figure 2 

 

 

Supplementary Figure 2. Symmetric nodes F and G of mean value 0.5 in Fig. 1b. 

The three sets of 20 states on the right side, the center and the left side are equal and 

each set is the basin of attractor  in Supplementary Fig. 1. The two sets on the left side 

and the center show that nodes G and F are symmetric of mean value 0.5 in the basin, 

respectively. The right side shows the symmetric structure of (F, G). 

 

  



 
 

17 
 

Supplementary Figure 3 

 

Supplementary Figure 3. Identification process of the exact basin with an example 

network. a Conceptual illustratation of identifying basin states with respect to the 

direction of state transition trajectory. The dotted closed curve denotes the set of 

terminal basin states converging to the desired attractor. b The toy network of five 

nodes. Arrows and bar-headed lines in the network represent activation and inhibition, 

respectively. c The subnetwork obtained from the network b by removing the 

symmetric node 5x . d Classification of nodes. “Indegree 1” of 2x  means that there is 

only one input node to 2x . “From 1x   To 2x” means that the state value of 1x  at 

time step t is an input value to the state value of 2x  at time step 1t  . Node 1x  is 
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called “Deterministic” since 1x  is only one input node to 2x  and each basin state is 

identified following the reverse of the state trajectory. A deterministic node is denoted 

by “D”. A “nondeterministic” node means that the node is not deterministic and is 

denoted by “N”. e Transformation nodes and the update rules into (1) symmetric nodes, 

(2) equations for the other nodes and (3) sufficient conditions for terminal basin states. 

The Boolean eqautions are the update rules for the network b. The update rule for 

symmetric node 5x  is located outside the box and the update rules for the subnetwork 

b are located inside the box. ① denotes the reversion of the update rules. ② denotes 

the replacements of node symbol x  with “D” and “N” in d. ③ denotes the system of 

equations for determinitic nodes D1 and D2, where D2*, N1* and N2* are given state 

values. ④ denotes the equation for nondeterminitic nodes N1 and N2, where D1* is a 

given state value. The dotted box means that no more modification to the equation in 

the dotted box is given. ⑤ denotes the removal of logic operators in front of D1 and 

D2. Since there exist two equations for D1, we divided the system of three equations for 

D1 and D2 into two subsystems. One consists of two equations for D1 and D2, which is 

denoted by ⑥ and the second consists of the other equation for D1 denoted by ⑦. 

Using the two equations for D1 in ⑥ and ⑦, we obtained the equation denoted by ⑧ 

which yields the sufficient conditions (sc) for terminal basin states in the bold box. The 
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sufficient conditions mean that (D1*, D2*, N1*, N2*) = (, 1, , 1) and (, 0, , 0) are 

terminal basin states, where the centered dot () denotes two values 0 or 1. Using the 

system of equations for D1, D2, N1, D2 and the sufficient conditions, we identitfied the 

states (D1, D2, N1, N2) given a state (D1*, D2*, N1*, N2*). f Origian and reduced 

attractors. The top represents the orignal desired attractor of length 2 for the orignal 

network b and the bottom represents the reduced attractor of the original attractor in the 

subnetwork c. g Basin of the reduced desred attractor. The desired basin for the 

subnetwork consists of two local basins which are identified independently. Each 

attractor is located at the 1st layer of its local basin. Given a state in the 1st layer, states 

in the 2nd layer are calculated by using the equations in the bold box at the end of e. h 

Exact basin of the origianl attractor. Concatination of states in g and state values 0 and 1 

of symmetric node 5x  yields the exact basin for the network b. When using the exact 

basin in BRC, the state trajectories (dotted arrows) are not used. 
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Supplementary Figure 4 

 
 

Supplementary Figure 4. Identification of the basin of the attractor  of CACC21 

in Fig. 2a. The basin identification follows the process in Supplementary Fig. 3. The 

subnetwork of 4 nodes in the blue dotted box (○ⅰ ) denotes the hierarchical structure of 

symmetric nodes: Proliferation is the unique symmetric node in CACC21; P21 and 
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CyclinD1 are symmetric in CACC21 without Proliferation; Bcatenin is symmetric in 

CACC21 without Proliferation, P21 and CyclinD1. There is no symmetric node in 

CACC21 without Proliferation, P21, CyclinD1 and Bcatenin. The update rules for 

CACC21 are in Supplementary Data 1. The desired cyclic attractor state  of CACC21 

is located just below the hierarchical subnetwork of 4 symmetric nodes, where the 

reduced attractor state 1 of the subnetwork of 17 nodes is marked with the black dotted 

box. 9 nodes of fixed values in the basin of 1 are in the red dotted box (○ⅱ ) and the 

remaining 8 nodes are in the grey box (○ⅲ ), where the fixed values are (IKK, AKT, 

NFKB, PTEN, TNFR, JUN, P53, MAC, MDM2) = (0,0,0,1,0,0,1,0,0) and state values 

of nodes 14 to 21 are denoted by nodes w1 to w8. The heatmap in bottom right denotes 

basin states [w1, w2, w3, w4, w5, w6, w7, w8]. On the left side the three parts (values of 

symmetric nodes in ○ⅰ , fixed values of 9 nodes in ○ⅱ  and states of 8 nodes in ○ⅲ ) are 

concatenated, which results in the exact basin in bottom left (sorted to the symmetric 

nodes, followed by nodes of fixed values). 
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Supplementary Figure 5 

 

Supplementary Figure 5. Identification process of control target sets in Fig. 2b. The 

update rules for CACC21 are in Supplementary Data 1 and the attractors  and 1 are 

the same attractors in Supplementary Fig. 4. Green and red colors denote state values 1 

and 0, respectively. The process from “Step 1” to “Step 3” is to separate all nodes of 

CACC21. Step 1 is to find symmetric nodes, which are nodes 1, 2, 3 and 4, where only 

the network structure is used without using the update rules. “Step 2” is to find nodes of 

fixed values in the basin of 1 for the subnetwork of the 17 nodes, which are nodes 5 to 

13. Their fixed values are located just above the boxed words “Comparison with the 

fixed values in the basin of 1”. Using the comparison of the values of nodes 5 to 13 in 
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α with the fixed values, the values of nodes 6 and 10 must be changed to value 0 

(“control target nodes”), which is represented on the right side of the boxed words. 

“Step 3” is to find nodes of unfixed values in the basin of 1 which values in α are 

denoted by “State A”. The mHD of state A to the boundary of the reduced basin of 1 is 

equal to 2, where the reduced basin of 1 is obtained by removing the nodes 5 to 13 

from the basin of 1 and state A can be driven to the boundary by using {(node 14, node 

21) = (0,1)} (“control target nodes”) or {(node 18, node 21) = (0,1)} (“control target 

nodes”). “Step 4” is to collect control target nodes, which results in two control target 

sets of α, {(node 6, node 10, node 14, node 21) = (0,0,0,1)} and {(node 6, node 10, node 

18, node 21) = (0,0,0,1)}. Therefore perturbation of at least four nodes (mHD = 4) is 

needed to drive the undesired state  to the basin of  in BRC. “Final step” is to use a 

control target set to drive α to the boundary of the basin of , after which the state 

transition flow diagram is presented in top right. 
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Supplementary Figure 6 

 

 

Supplementary Figure 6. Decrease of normalized average mHD as the network size 

increases and the relative size of desired basins is fixed. A subset kB  of the state 

space   of a given network X  of n  nodes denotes a desired basin, where the 

positive integer k  denotes the size of kB . An undesired state is defined as a state 

contained in kB  . Symbol  kE mHD B  denotes the average mHD of undesired 

states to kB . The 16 points (circles) in the grey box are connected by a dotted vertical 

line, on which the first and last points are obtained from networks of sizes 5n   and

20n  , respectively, and have the coordinates 
  4

5

2
,  ,  0.2098

2 2

k

n

E mHD Bk

n

   
        
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and
 

,  
2

k

n

E mHD Bk

n

 
 
 
 

19

20

2
,  0.0500

2

 
  
 

, respectively. The network sizes in the 

vertical line increase ( n  increases from 5 to 20) but the same x-coordinates are the 

same value  
1

2
 4 19 is fixed and  increases from 2  to 2

2n

k
k 

 
 

, where the normalized 

average mHD, 
 kE mHD B

n
, decreases from 0.2098 to 0.0500.  Following other 

dotted vertical lines we have the same property. 

 

Supplementary Figure 7 
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Supplementary Figure 7. Upper bound of normalized average mHD. A subset kB  

of the state space   of a given network X  of n  nodes denotes a desired basin, 

where the positive integer k  denotes the size of kB . Symbol  kE mHD B  denotes 

the average mHD of undesired states to kB . The sequence 
 12n

E mHD B

n

 
 
 
  

is a 

decreasing sequence due to Theorem 1 and Supplementary Fig. 6. The four filled circles 

in the grey box denote consecutive elements such that 

     14 9 42 2 2

15 10 5

E mHD B E mHD B E mHD B
  . In addition, the grey box shows that 

     42 2 2

15 10 5

E mHD B E mHD B E mHD B


 



 for 12,13,14   and 5,6,7,8 , 

which are not proved in Theorem 1. Value  
5 1

1
5 2

1 2

5 2 1
E mHD B






 is an upper bound 

of all 
   15,10, ,35,40, 2

k

n
E mHD B

n k
n

   as shown in Remark 4. 
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Supplementary Figure 8 

 

Supplementary Figure 8. Two factors to reduce mHD. a A subset 

 2, 2 2,
,0 ,1,n n nB B B   of the state space   of a given network X  of n  nodes denotes 

a desired basin, where the state values of nodes in  2
,0 0, ,0nB    are zero and 

 2,
,1 0, ,0,1, ,1nB      has value 0 of all nodes except for the last   nodes 

 1 10  . Note that superscripts 2 and  in 2,
nB   denote the number of states in 

2,
nB   and the HD between 2

,0nB  and 2,
,1nB  , respectively. An undesired state is defined 

as a state contained in 2,
nB   . Symbol  2,

nE mHD B   denotes the average mHD of 
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undesired states to 2,
nB  . For simplicity symbol  2, 1HD

nnE  is used instead of average 

mHD  2,
nE mHD B  . Every desired basin used here consists of two states. The larger 

the HD of two states in a desired basin is, the smaller average mHD is, which can be 

expressed as 2,  2,  1HD HD
n nnE nE  . The right shows that even if the relative size of a 

basin is extremely small (0.1953%), the average mHD is less than 3.8. b Average mHD 

decreases as the network size increases and the relative size of a desired basin is fixed. 
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Supplementary Figure 9 

 

 

 

Supplementary Figure 9. Success rate of persistent perturbation depending on stop 

time of perturbation duration and initial states of the MAPK33 network. a Success 

rate for 233 randomly selected initial states. The black circle on the y-axis denotes the 

ratio of states converging to the desired attractor in the main text and the number 0 in 

the x-axis indicates no perturbation. Replacing the values of BCL2, ERK, FOXO3, P21 

and P53 in all the 233 randomly selected states with (BCL2, ERK, FOXO3, P21, P53) = 

(0, 0, 1, 1, 1) gives perturbed states, which are referred to as the “1st perturbed random 

states”. Substituting one of the 1st perturbed random states into the update rules 

(Supplementary Data 4) as an initial state at time step 1 gives a state of MAPK33 at 

time step 2, which is referred to as a “2nd state”. Similarly, “nth states” are defined. The 

ratio of the 1st perturbed random states converging to the desired attractor in the main 
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text is the “success rate” at the 1st stop time of perturbation duration. Note that no 

persistent perturbation is applied for the calculation of success rate. Similarly, replacing 

the values of BCL2, ERK, FOXO3, P21 and P53 in all the 1st states with (BCL2, ERK, 

FOXO3, P21, P53) = (0, 0, 1, 1, 1) gives perturbed states, which are referred to as the 

“2nd perturbed random states” and the ratio of the 2nd perturbed random states 

converging to the desired attractor is the success rate at the 2nd stop time of perturbation 

duration. At the 8th stop time of perturbation duration the success rate becomes 1. b 

Success rate for 1,310,720 initial states of which collection is the basin of the undesired 

attractor in the main text. The meanings of symbols and terms in b are equal to those in 

a. The difference is that all basin states of the undesired attractor are used in b as initial 

states instead of 233 randomly selected initial states used in a. Since all the initial states 

are undesired basin states, the ratio of all the initial states converging to the desired 

attractor is equal to 0 (black circle). When the stop time increases up to the 7th stop time, 

states are getting close to the desired attractor (this data is not shown) but do not 

converge to the desired attractor. 
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Supplementary Figure 10 

 

 
 

Supplementary Figure 10. A Boolean network model for plant–pollinator 

community assembly and application of BRC. a The interaction network of three 
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plants species (plant 1, plant 2 and plant 3) and two pollinators species (pollinator 1 and 

pollinator 2)1. Arrows and bar-headed lines in the network represent activation and 

inhibition, respectively. b Restoration of the desired ecological state. Symbol “attr1” is 

an undesired attractor due to no species in attr1. Symbol “attr2” is an unrealistic 

attractor due to its cyclic property1. Symbol “attr3” is assumed to be a desired attractor. 

The control target species to restore the desired ecological state (attr3) from the absence 

of all species (attr1) are plant 3 and pollinator 2. 
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Supplementary Figure 11 

 

 
 

Supplementary Figure 11. Dominance interaction networks in the social wasp 

Ropalidia marginata and application of BRC. a Role of control target nodes in a 

dominance interaction network with no feedback loop. The colony of R. marginata is of 

size 14. Arrows on the left side denote the dominance relationship between dominants 
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and subordinates2. Each number in a box denotes a wasp. The right shows that the 

dominant network has the structure of feed-forward loop without a feedback loop. For 

the application of BRC, the Boolean logic OR is used for all the interactions. The state 

of each node in a desired attractor is assumed to be value 1 and undesired states are all 

states except basin states of the desired attractor. The yellow nodes denote control target 

nodes, which are located at the tops of dominant relationships and so can be called 

“master regulators”. There is no master regulator except for the control target nodes. b 

Role of control target nodes in a dominance interaction network with a feedback loop. 

The colony of R. marginata is of size 21. Arrows on the left side denote the dominance 

relationship between dominants and subordinates2. The right shows that the dominant 

network has the structure of feed-forward loop except for the feedback loop 

12171412. For the application of BRC, the OR logic is used for all the 

interactions. The state of each node in a desired attractor is assumed to be value 1 and 

undesired states are all states except basin states of the desired attractor. The yellow 

nodes denote control target nodes, which are located at the tops of dominant 

relationships and so can be called “master regulators”. There is no master regulator 

except for the control target nodes. 
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Supplementary Figure 12 

 

Supplementary Figure 12. Stability comparison of two boundary states (S1 and S2). 

CACC21 network in Fig. 2 and Supplementary Data 2 are used in the boxplots. A 

cancer attractor state (att1 in Supplementary Data 2) has two boundary states (S1 and S2) 

which converge to a desired attractor state (att4 in Supplementary Data 2). Each node’s 

state in S1 was flipped 10,000 times with probability 0.1 (left). As a result, a probability 

of the flipped state being contained in the desired basin was calculated (referred to as 

stability). Repeating the calculation of stability 100 times, we obtained 100 stabilities of 

S1 and represented them as black dots in the first column on the left side (a green 

diamond for average stability). Similarly, we obtained 100 stabilities of S2 in the second 

column on the left side. When comparing box plots of S1 and S2, boundary state S1 can 

be considered more stable than S2. In the case of probability 0.2 (right), we obtained the 

same result that S1 can be considered more stable than S2. 
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