Optimization of the energy for Breast monochromatic absorption X-ray Computed Tomography

Pasquale Delogua*, Vittorio Di Trapani^a , Luca Brombal^b , Giovanni Mettivier^c , Angelo Taibi^d , Piernicola Oliva^e

^a Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, Università di Siena and I.N.F.N. Sezione di Pisa.

^b Dipartimento di Fisica, Università di Trieste and I.N.F.N. Sezione di Trieste.

^c Dipartimento di Fisica, Università di Napoli Federico II and I.N.F.N. Sezione di Napoli.

^d Dipartimento di Fisica e Scienze dalla Terra, Università di Ferrara and I.N.F.N. Sezione di Ferrara.

^e Dipartimento di Chimica e Farmacia, Università di Sassari and I.N.F.N. Sezione di Cagliari.

Additional Materials

In spatial domain, the noise of CT images is defined as the standard deviation σ measured on a homogeneous ROI (Region Of Interest). In frequency domain, the Noise Power Spectrum (NPS) describes the component of the variance σ^2 for each spatial frequency. The variance σ^2 can be calculated integrating the 2D NPS over the frequency domain $¹$ </sup>

$$
\sigma^2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} NPS(f_x, f_y) \, df_x \, df_y \qquad (1)
$$

For CT reconstructions with FBP algorithm, the theoretical NPS has been previously reported by various authors.^{2,3,4,5,6}

As reported by (Riederer *et al* 1978²), the NPS for a single reconstructed voxel can be written as follows:

$$
NPS(q) = \frac{\pi \Delta x}{m(n)} \cdot \frac{|W(q)|^2}{q} \quad (2)
$$

where $q = \sqrt{x^2 + y^2}$ is the spatial frequency in polar coordinates, $\langle n \rangle$ the average number of photons per pixel per projection, *m* the number of projections, Δx the pixel size and $|W(q)|$ the spectral response of the reconstruction algorithm. In particular (Kijewski and Judi 1987 $⁶$), considering also the linear</sup> interpolations used by the reconstruction algorithm to estimate the projection values between the measured points during the backprojection, derived the following mathematical formulation for $|W(q)|^2$ in FBP algorithm:

$$
|W(q)|^2 = \left(\sin c^2 (\pi q \Delta x)\right)^2 \cdot \sum_{k=-\infty}^{+\infty} \left(q - \frac{k}{\Delta x}\right)^2 \cdot \left|H\left(q - \frac{k}{\Delta x}\right)\right|^2 \cdot \text{rect}(q \Delta x - k) \quad (3)
$$

In Eq. (3), $\left(q - \frac{k}{\Delta x}\right)$ ² is the contribution of the Ram-Lak filter, $(sinc^2(\pi q\Delta x))^2$ the low-pass filtering introduced by the linear interpolations and H $\left(q - \frac{k}{\Delta x}\right)$ is the apodization function which can be employed to reduce the high frequency components of the noise. The expressions for some function $H(q)$ commonly employed in FBP are listed in Table A1.

Table A1: List of some apodization functions commonly employed in FBP algorithm

The noise variance for each reconstructed point derives from Eq. (1) and, in polar coordinates, is 2^2

$$
\sigma^2 = \int_0^{2\pi} d\theta \int_0^{+\infty} NPS(q) q dq = \frac{2\pi^2 \Delta x}{m\langle n \rangle} \cdot \int_0^{+\infty} |W(q)|^2 dq \tag{4}
$$

Moreover, the function

$$
rect(x) = \begin{cases} 1, |x| < 1/2 \\ 0, \text{ otherwise} \end{cases} \tag{5}
$$

allows to rewrite Eq. (3) as a piecewise function

$$
|W(q)|^2 = \begin{cases} (q)^2 \cdot |H(q)|^2 \cdot \left(\sin c^2 (\pi q \Delta x)\right)^2, & 0 < q < \frac{1}{2\Delta x}, \quad k = 0\\ \left(q - \frac{k}{\Delta x}\right)^2 \cdot \left|H\left(q - \frac{k}{\Delta x}\right)\right|^2 \cdot \left(\sin c^2 (\pi q \Delta x)\right)^2, & \left(\frac{2k-1}{2\Delta x}\right) < q < \left(\frac{2k+1}{2\Delta x}\right), k \neq 0 \end{cases} \tag{6}
$$

By combining Eq. (4) and Eq. (6) we obtain

$$
\sigma^2 = \frac{2\pi^2 \Delta x}{m(n)} \left(\int_0^{1/2} \Delta x \, |W(q)|^2 \, dq + \sum_k \int_{(2k-1)/2}^{(2k+1)/2} \, |W(q)|^2 \, dq \right) \equiv \frac{\beta}{m(n)} \tag{7}
$$

where β has the dimension of a squared spatial frequency.

The Nyquist frequency (q_{Ny}) of a CT image sampled with a voxel of linear size Δx , is q_{Ny} = 1/2 Δx . In the backprojection process, the frequency components of the projection data which exceed q_{Ny} are folded back into a region below q_{Ny} due to the discrete sampling. In Eq. (7) this means that the integrals in the summation (of $|W(q)|^2$ for $q > q_{\text{Ny}}$) are the contributions of the aliasing effect to the global noise as shown in Figure A1.

Figure A1: $\Delta x = 0.120$ mm (a) frequency response of the square of Ram-Lak filter; (b) frequency response of the square of the linear interpolation kernel, i.e. $(sinc^2(\pi q\Delta x))^2$; (c) spectral response of the reconstruction algorithm ($\vert W(q) \vert^2$, Eq. (3)). The shaded area is the noise which is folded back (aliasing).

The integrals in Eq. (7) can be evaluated numerically. We used Matlab for numerical integrations and, for a pixel of size $\Delta x = 0.12$ mm and a Ram-Lak filter, we obtained

$$
\sigma_{Ram-Lak}^2 = \frac{\beta_{Ram-Lak}}{m(n)} \approx \frac{2\pi^2 \Delta x}{m(n)} (9.448 + 1.737) \approx \frac{26.49}{m(n)} \, mm^{-2} \tag{8}
$$

In Eq. (8) the contribution of Aliasing to the noise is in bold. The results for Eq. (7) when using the apodization windows listed in Table A1 are reported in Table A2.

Filter	σ^2	β (mm ⁻²)
Ram-Lak	$\frac{2\pi^2\Delta x}{m\langle n\rangle}(9.448 + 1.737) \approx \frac{26.49}{m\langle n\rangle} \, mm^{-2}$	$\beta_{Ram-Lak} = 26.49$
Shepp-Logan	$\frac{2\pi^2\Delta x}{m\langle n\rangle}(6.457 + 0.8822) \approx \frac{17.38}{m\langle n\rangle} \, mm^{-2}$	$\beta_{Shepp-Logan} = 17.38$
Hamming	$\frac{2\pi^2\Delta x}{m\langle n\rangle}(1.8169 + 0.0457) \approx \frac{4.411}{m\langle n\rangle} \;mm^{-2}$	$\beta_{Hamming} = 4.411$
Hann	$\frac{2\pi^2\Delta x}{m\langle n\rangle}(1.5679 + 0.0224) \approx \frac{3.714}{m\langle n\rangle} \;mm^{-2}$	$\beta_{Hann} = 3.714$

Table A2: σ^2 for different FBP filters

The noise variance calculated in Eq. (7) is function of the mean number of registered X-ray quanta $\langle n \rangle$. According to the Lambert-Beer law, considering a CT scan with a monochromatic parallel beam of energy E, $\langle n \rangle$ is function of the number of incident quanta to the sample $\langle n \rangle_0$, the geometry of the sample and the distribution of the linear attenuation coefficients $\mu_{Sample}(x, y, E)$ of which the sample is made. For a homogeneous circular sample of radius R, the transmitted X-ray quanta $\langle n \rangle$ passing from the center is:

$$
\langle n \rangle = \langle n \rangle_0 \cdot e^{-2 \int_0^R \mu_{Sample} dR} = \langle n \rangle_0 \cdot e^{-2 \mu_{Sample} \cdot R} \tag{9}
$$

Indicating the total number of photons per pixel impinging on the phantom as $N_{ph} = m \langle n \rangle_0$ and by combining (7) and (9), the variance $\sigma^2(0,0)$ at the center of the CT reconstruction with FBP is:

$$
\sigma^2(0,0) = \frac{\beta}{N_{ph} \cdot e^{-2\mu_{Sample} \cdot R}} \qquad (10)
$$

We underline that, if the sample is placed at a some distance D from the detector and the space is filled with air, the Eq. (10) has to be corrected for the attenuation of the air:

$$
\sigma_{corr}^2(0,0) = \frac{\beta}{N_{ph} \cdot e^{-2\mu_{Sample} \cdot R}} \cdot \frac{1}{e^{-\mu_{air} \cdot D}} \quad (11)
$$

where μ_{air} is the linear attenuation coefficient of the air.

References

- 1. Cunningham I. Applied Linear-Systems Theory. In: *Van Metter R. L., Beutel J., Kundel H. L. Handbook of Medical Imaging* Vol. 1*.* Bellingham:Press SPIE; 2000:79-162.
- 2. Riederer, S. J., Pelc, N. J. & Chesler, D. A., The noise power spectrum in computed X-ray tomography. *Phys. Med. Biol.* **23** (3), 446, https://doi.org/10.1088/0031-9155/23/3/008 (1978).
- 3. Hanson, K. M., Detectability in computed tomographic images. *Med. Phys.* **6** (5), 441-451, https://doi.org/10.1118/1.594534 (1979).
- 4. Wagner, R. F., Brown, D. G. & Pastel, M. S., Application of information theory to the assessment of computed tomography. *Med. Phys.* **6** (2), 83-94, https://doi.org/10.1118/1.594559 (1979).
- 5. Faulkner, K. & Moores, B. M., Noise and contrast detection in computed tomography images. *Phys. Med. Biol.* **29** (4), 329, https://doi.org/10.1088/0031-9155/29/4/003 (1984).
- 6. Kijewski, M. F. & Judy, P. F., The noise power spectrum of CT images. *Phys. Med. Biol* **32** (5), 565, https://doi.org/10.1088/0031-9155/32/5/003 (1987).