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Additional Materials 

In spatial domain, the noise of CT images is defined as the standard deviation σ measured on a 
homogeneous ROI (Region Of Interest). In frequency domain, the Noise Power Spectrum (NPS) 
describes the component of the variance 𝜎" for each spatial frequency. The variance 𝜎" can be 
calculated integrating the 2D NPS over the frequency domain 1  
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For CT reconstructions with FBP algorithm, the theoretical NPS has been previously reported by 
various authors. 2,3,4,5,6  
As reported by (Riederer et al 19782), the NPS for a single reconstructed voxel can be written as 
follows: 
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where 𝑞 = 𝑥" + 𝑦" is the spatial frequency in polar coordinates, 𝑛  the average number of photons 
per pixel per projection, m the number of projections, Δ𝑥 the pixel size and |W(q)| the spectral response 
of the reconstruction algorithm. In particular (Kijewski and Judi 1987 6), considering also the linear 
interpolations used by the reconstruction algorithm to estimate the projection values between the 
measured points during the backprojection, derived the following mathematical formulation for 
𝑊(𝑞) " in FBP algorithm: 
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In Eq. (3), 𝑞 − E
1(

"
 is the contribution of the Ram-Lak filter, 𝑠𝑖𝑛𝑐" 𝜋𝑞Δ𝑥 "

 the low-pass filtering 

introduced by the linear interpolations and H 𝑞 − E
1(

 is the apodization function which can be 

employed to reduce the high frequency components of the noise. The expressions for some function 
𝐻 𝑞  commonly employed in FBP are listed in Table A1. 
 

Filter 𝐻 𝑞  
Shepp-Logan 𝑠𝑖𝑛𝑐 𝜋𝑞Δ𝑥  

Hamming 0.54 + 0.46 𝑐𝑜𝑠 2𝜋𝑞Δ𝑥  
Hann 0.5 + 0.5 𝑐𝑜𝑠 2𝜋𝑞Δ𝑥  

Table A1: List of some apodization functions commonly employed in FBP algorithm 

The noise variance for each reconstructed point derives from Eq. (1) and, in polar coordinates, is 2 
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Moreover, the function 

𝑟𝑒𝑐𝑡 x = 1, 𝑥 < 1 2
0, otherwise      (5) 

 
allows to rewrite Eq. (3) as a piecewise function  
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By combining Eq. (4) and Eq. (6) we obtain 
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where 𝛽 has the dimension of a squared spatial frequency. 
The Nyquist frequency (qNy) of a CT image sampled with a voxel of linear size Δ𝑥, is qlm = 1 2∆𝑥 . 
In the backprojection process, the frequency components of the projection data which exceed qn* are 
folded back into a region below qn* due to the discrete sampling. In Eq. (7) this means that the 
integrals in the summation (of 	 𝑊(𝑞) " for 𝑞 > qlm	) are the contributions of the aliasing effect to the 
global noise as shown in Figure A1. 
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Figure A1: Δ𝑥 = 0.120	𝑚𝑚 (a) frequency response of the square of Ram-Lak filter; (b) frequency 
response of the square of the linear interpolation kernel, i.e. 𝑠𝑖𝑛𝑐" 𝜋𝑞Δ𝑥 "

; (c) spectral response of 
the reconstruction algorithm ( 𝑊(𝑞) ", Eq. (3)). The shaded area is the noise which is folded back 
(aliasing). 
 
The integrals in Eq. (7) can be evaluated numerically. We used Matlab for numerical integrations and, 
for a pixel of size Δ𝑥 = 0.12	𝑚𝑚 and a Ram-Lak filter, we obtained 
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In Eq. (8) the contribution of Aliasing to the noise is in bold. The results for Eq. (7) when using the 
apodization windows listed in Table A1 are reported in Table A2. 
 

Filter 𝜎"	 𝛽	(𝑚𝑚.") 
Ram-Lak 2𝜋"Δ𝑥

𝑚 𝑛
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Hamming 2𝜋"Δ𝑥
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4.411
𝑚 𝑛

	𝑚𝑚." 
β�r22�3� = 4.411 

Hann 2𝜋"Δ𝑥
𝑚 𝑛

1.5679 + 𝟎. 𝟎𝟐𝟐𝟒 ≈
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Table A2: σ2 for different FBP filters 
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The noise variance calculated in Eq. (7) is function of the mean number of registered X-ray quanta 𝑛 . 
According to the Lambert-Beer law, considering a CT scan with a monochromatic parallel beam of 
energy E, 𝑛 	is function of the number of incident quanta to the sample 𝑛 Y, the geometry of the 
sample and the distribution of the linear attenuation coefficients 𝜇�r2���(𝑥, 𝑦, 𝐸) of which the sample 
is made. For a homogeneous circular sample of radius R, the transmitted X-ray quanta 𝑛  passing from 
the center is: 
 

        𝑛 = 𝑛 Y ⋅ 𝑒." ��uv���	�q
t
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Indicating the total number of photons per pixel impinging on the phantom as 𝑁�� = 𝑚 𝑛 Y and by 
combining (7) and (9), the variance 𝜎"(0,0) at the center of the CT reconstruction with FBP is: 
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We underline that, if the sample is placed at a some distance D from the detector and the space is filled 
with air, the Eq. (10) has to be corrected for the attenuation of the air: 
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where 𝜇r�¡ is the linear attenuation coefficient of the air. 
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