Cobalt(II) Diphenylazodioxide Complexes Induce Apoptosis in SK-HEP-1 Cells

Norah J. Alghamdi,^{†,‡,#} Lakshmi Balaraman,[†] Kylin A. Emhoff,[†] Ahmed M. H. Salem,[†] Ruhan Wei,^{†,‡} Aimin Zhou,^{*†,‡} and W. Christopher Boyd^{*†}

[†]Department of Chemistry, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44114.

[‡]Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44114.

Supporting Information

Contents

		Page
1	Effect of cobalt(II) diphenylazodioxide complexes on PARP cleavage of additional cell lines	S2
2	HPLC chromatograms of cobalt(II) azodioxide complexes	S4
3	References	S5
	End	S5

1. Effect of cobalt(II) diphenylazodioxide complexes on PARP cleavage of additional cell lines

HEK 293, HT-29, MCF-7, and PC-3 cells were subjected to treatment for 12 h with each of compounds 1 and 2 at 2 μ M and 10 μ M concentrations, and western blots were used to assess the cleavage of PARP, as a marker of apoptosis. Figures S1-S4 below show that compounds 1 and 2 did not induce extensive PARP cleavage compared with the DMSO vehicle control in these cell lines.

HEK 293 cells (12 h treatment)

Figure S1. Effect of compounds 1 and 2 on PARP cleavage in HEK 293 cells.

HT-29 cells (12 h treatment)

Figure S2. Effect of compounds 1 and 2 on PARP cleavage in HT-29 cells.

MCF-7 cells (12 h treatment)

Figure S3. Effect of compounds 1 and 2 on PARP cleavage in MCF-7 cells.

PC-3 cells (12 h treatment)

Figure S4. Effect of compounds 1 and 2 on PARP cleavage in PC-3 cells.

2. HPLC chromatograms of cobalt(II) diphenylazodioxide complexes

HPLC analysis of compounds 1 and 2 was performed, supplementing the characterization provided in the initial report of these compounds.¹ The analyses were performed on a Shimadzu LC20 HPLC with a 190-320 nm UV detector. The compounds were eluted on a reverse-phase C_{18} column (Waters Corporation), with an isocratic mobile phase of pure acetonitrile. Figure S5 below shows chromatograms of compound 1 with detection wavelengths of 246 and 304 nm, and Figure S6 shows the chromatogram of compound 2 with detection wavelengths of 282 and 305 nm. The product peak area is seen to be >98% of the total in all cases.

Figure S5. Chromatograms of compound 1 at 246 and 304 nm detection wavelengths.

Figure S6. Chromatograms of compound 2 at 282 and 305 nm detection wavelengths.

3. References

 Emhoff, K. A.; Balaraman, L.; Simpson, S. R.; Stromyer, M. L.; Kalil, H. F.; Beemiller, J. R.; Sikatzki, P.; Eshelman, T. S.; Salem, A. M. H.; DeBord, M. A.; Panzner, M. J.; Youngs, W. J.; Boyd, W. C. Synthesis and Characterization of Cobalt(II) N,N'-Diphenylazodioxide Complexes. ACS Omega 2018, 3, 16021-16027.