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We provide outlines of the proofs of the theorems stated in Section 3 using modern empirical

process theory. Let D denote the sample space and D denote an arbitrary sample point with D ∈

D. Also, let Pnf = n−1∑n
i=1 f(Di), for a measurable function f : D 7→ R, and Pf =

∫
D fdP

denote the expectation of f under P , the probability measure of the data on the measurable

space (D,A), with A being a σ-algebra on D. In what follows, C denotes a universal constant

that may vary from place to place. We start with two technical lemmas that will be used later

in the proofs.

Lemma 1. Let h(t) be a fixed uniformly bounded function on [0, τ ] and φ(t) a non-decreasing

random function on [0, τ ] that belongs to the P -Donsker class Φ. Then the class of functions

F1 =

{∫ t

0

h(u)dφ(u) : t ∈ [0, τ ]

}

is P -Donsker.

Proof. For any probability measure Q and any t1, t2 ∈ [0, τ ] we can easily demonstrate that

∥∥∥∥∫ t1

0

h(u)dφ(u)−
∫ t2

0

h(u)dφ(u)

∥∥∥∥
Q,2

≤ C‖φ(t2)− φ(t1)‖Q,2,

where ‖h‖Q,2 = (
∫
h2dQ)1/2. Now, for any t ∈ [0, τ ] there exists a ti ∈ [0, τ ], i = 1, . . . , N(ε,Φ, L2(Q)),
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such that ‖φ(t)−φ(ti)‖Q,2 < ε. Consequently, for any member of F1 there exists a
∫ ti
0
h(u)dφ(u),

for i = 1, . . . , N(ε,Φ, L2(Q)), such that

∥∥∥∥∫ t

0

h(u)dφ(u)−
∫ ti

0

h(u)dφ(u)

∥∥∥∥
Q,2

≤ Cε,

and thus we can cover the whole F1 withN(ε,Φ, L2(Q)) L2(Q) ε′-balls centered at
∫ ti
0
h(u)dφ(u).

By the uniform entropy bound (2.5.1) in van der Vaart and Wellner (1996) and the P -Donsker

theorem, Theorem 2.5.2 of van der Vaart and Wellner (1996), it follows that F1 is P -Donsker.

Lemma 2. Let g(t) be a data-dependent and uniformly bounded function and f(t) a continuous

fixed function of bounded variation on [0, τ ]. Then, the class

F2 =

{∫ t

0

g(s)df(s) : t ∈ [0, τ ]

}
,

is P-Donsker.

Proof. The assumption on f(t) implies that f(t) = f1(t) − f2(t), where f1 and f2 are non-

decreasing continuous functions. The classes of fixed functions F3,l = {fl(t) : t ∈ [0, τ ]}, l = 1, 2,

are P -Donsker because they are totally bounded by the | · | metric. The total boundedness of

F3,1 and F3,2 is a consequence of the fact that their members are continuous functions defined

on the compact set [0, τ ], and therefore F3,1 and F3,2 are compact. Now, for any t1, t2 ∈ [0, τ ]

and any finitely discrete probability measure Q it follows that

∥∥∥∥∫ t1

0

g(s)dfl(s)−
∫ t2

0

g(s)dfl(s)

∥∥∥∥
Q,2

≤ C|fl(t1)− fl(t2)|, l = 1, 2.

Similar arguments to those used in the proof of Lemma 1 can be used to show the Donsker

property of F2,l =
{∫ t

0
g(s)dfl(s) : t ∈ [0, τ ]

}
, l = 1, 2. Finally, the Donsker property of F2 is a

consequence of Corollary 9.31 of Kosorok (2008), since F2 is formed by differences of functions

that belong to the Donsker classes F2,1 and F2,2.
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S1 Proof of Theorem 1

Consider the underlying stochastic basis (Ω,F , {Ft : t ≥ 0}, PΩ), with

Ft = σ
〈
{N(u),N?(u),Y(u), R,Z : 0 ≤ u ≤ t}

〉
,

and define G = σ
〈
{N?(u),Y(u), R,Z : 0 ≤ u ≤ τ} ∪ {N(u) : 0 ≤ u ≤

τ, R = 1}
〉
, the σ-algebra generated by the observable random variables

on (0, τ ]. In the remaining of this proof, we present the arguments for

the estimators concerning the absorbing states which may be missing. The

corresponding arguments for the estimators regarding the transient states

that are completely observed, follow the same arguments as those given in

Andersen et al. (1993). The expected cause-specific counting process for an

absorbing state j ∈ T is

E[Nihj(t)] = E[δijNih·(t)] = E{E[δijNih·(t)|G]} = E[Nih·(t)E(δij|G)],

which immediately results in

E[Ñihj(t)] ≡ E {[Riδij + (1−Ri)E(δij|G)]Nih·(t)} = E[Nihj(t)], (S1.1)

for all h /∈ T , j ∈ T and t ∈ [0, τ ]. It is also noted that after observing Di

we have that E(δij|G) = E(δij|Di) = πj(Zi,β0) with β0 denoting the true

regression parameter for the probability of the absorbing state j ∈ T , πj.

Hence the corresponding absorbing state-specific counting process can be

expressed as Ñihj(t;β0) = [Riδij + (1−Ri)πj(Zi,β0)]Nih·(t).
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Define three classes of functions, L1,h,j = {Nhj(t) : t ∈ [0, τ ]} for h /∈ T

and j ∈ I, L2,h = {Yh(t) : t ∈ [0, τ ]}, h /∈ T , and L3,j = {fj(β) = Rδj+(1−

R)πj(Zi,β) : β ∈ B}, j ∈ T . L1,h,j is a class of monotone cadlag functions

satisfying C2 and hence it is P -Donsker for any h /∈ T and j ∈ I, with

h 6= j, by Lemma 4.1 of Kosorok (2008), because P [Nhj(τ)]2 ≤ C2 <∞.

Note that Yh(t) = N·h(t−) − Nh·(t−), with N·h(t) =
∑

j 6=hNjh(t) and

Nh·(t) =
∑

j 6=hNhj(t). The classes of functions N·h(t−) and Nh·(t−) are

P -Donsker because they can be expressed as the finite sum of P -Donsker

classes (Kosorok, 2008). Thus, using the same argument as before, L2,h is

also P -Donsker.

Next, note that the fixed class B is trivially Donsker by condition C4.

Conditions C4 and C6 imply that πj(Zi,β) is a Lipschitz continuous func-

tion of β on compacts and, therefore, the class L3,j is P -Donsker for any

j ∈ T , by Corollary 9.31 in Kosorok (2008). Now, the class of functions

L3,jL1,h = {fj(β)Nh·(t) = Ñhj(t;β) : t ∈ [0, τ ],β ∈ B}, for all h /∈ T and

j ∈ T , is P -Donsker because it is formed by products of bounded functions

that belong to Donsker classes.

Since a P -Donsker class is also Glivenko-Cantelli, we have that

sup
t∈[0,τ ]

|PnYh(t)− PYh(t)|
as∗→ 0 h /∈ T ,
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and

sup
t∈[0,τ ]

|PnÑhj(t;β0)− PNhj(t)|
as∗→ 0, h /∈ T , j ∈ T , (S1.2)

by (S1.1). Then it is straightforward to show

sup
t∈[0,τ ]

|PnÑhj(t; β̂n)− PNhj(t)| ≡ ‖PnÑhj(t; β̂n)− PNhj(t)‖∞

≤ C
(
‖β̂n − β0‖+ ‖PnÑhj(t;β0)− PNhj(t)‖∞

)
as∗→ 0.

for any h /∈ T , j ∈ T by (S1.2) and C5. Next, performing the same calcu-

lation as that in Stute (1995), we have

Ân,hj(t)− A0,hj(t) = I1(t) + I2(t) + I3(t),

where,

I1(t) =

∫ t

0

PYh(u)− PnYh(u)

[PYh(u)]2
dPnÑhj(u; β̂n), I2(t) =

∫ t

0

d[PnÑhj(u; β̂n)− PNhj(u)]

PYh(u)

and

I3(t) =

∫ t

0

[PYh(u)− PnYh(u)]2

[PYh(u)]2PnYh(u)
dPnÑhj(u; β̂n).

We shall show that each of the above terms converges almost surely to zero

under the ‖ · ‖∞ metric. First,

‖I1(t)‖∞ ≤
‖PYh(t)− PnYh(t)‖∞

inft∈[0,τ ][PYh(t)]2
PnÑhj(τ ; β̂n)

a.s.→ 0,

due to the fact that L2,h is Glivenko-Cantelli.
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Next, note that PnÑhj(u; β̂n) − PNhj(u) is a right-continuous process

of bounded variation on any interval A ⊂ [0, τ ]. Now, we have∫ t

0

d[PnÑhj(u; β̂n)− PNhj(u)]

PYh(u)
=

∫ t

0

dPnÑhj(u; β̂n)

PYh(u)
−
∫ t

0

dPNhj(u)

PYh(u)

= Pn
[
fj(β̂n)− fj(β0)

] ∫ t

0

dNh·(u)

PYh(u)
+ (Pn − P )

[∫ t

0

dÑhj(u;β0)

PYh(u)

]

and hence

‖I2(t)‖∞ ≤ C

(
‖β̂n − β0‖+

∥∥∥∥∥(Pn − P )

[∫ t

0

dÑhj(u;β0)

PYh(u)

]∥∥∥∥∥
∞

)
as→ 0

by C2, C4–C6 and Lemma 1.

Finally, since L2,h is Donsker and hence Glivenko-Cantelli, for any small

enough ε > 0, PnYh(t) ≥ PYh(t) − ε ≥ 1
2
PYh(t), it follows that for any

t ∈ [0, τ ]

[PYh(t)− PnYh(t)]2

[PYh(t)]2PnYh(t)
≤ 2|PYh(t)− PnYh(t)|2

[PYh(t)]3
≤ 2‖PYh(t)− PnYh(t)‖2

∞
inft∈[0,τ ][PYh(t)]3

, t ∈ [0, τ ].

Thus for any h /∈ T and j ∈ T

‖I3(t)‖∞ ≤
2‖PDY (t)− PnY (t)‖2

∞
inft∈[0,τ ][PDYh(t)]3

PnÑj(τ ; β̂n)
a.s.→ 0,

which leads to ‖Ân,hj(t) − A0,hj(t)‖∞
as∗→ 0, for all h /∈ T and j ∈ T .

Thus, we conclude that Ân(t)
as∗→ A0(t), uniformly on [0, τ ], and therefore

it follows that

R
(s,t]

[
I + dÂn(u)

]
as∗→R

(s,t]

[I + dA0(u)] ,
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uniformly on s, t ∈ [0, τ ], with s < t, as a consequence of a continuity

result from the Duhamel equation (Andersen et al., 1993). Thus the proof

of Theorem 1 is complete.

S2 Proof of Theorem 2

We start the proof of Theorem 2 by studying the asymptotic distribution of

Ñhj(t; β̂n), for h /∈ T and j ∈ T . First, we have the following decomposition

√
n[PnÑhj(t; β̂n)− PÑhj(t;β0)] = Gn[Ñhj(t; β̂n)− Ñhj(t;β0)] + GnÑhj(t;β0)

+
√
n[PÑhj(t; β̂n)− PÑhj(t;β0)], (S2.1)

where Gnf =
√
n(Pn − P )f . For the first part, we have

sup
t∈[0,τ ]

P [Ñhj(t; β̂n)− Ñhj(t;β0)]2 ≤ sup
t∈[0,τ ]

P [πj(D; β̂n)− πj(D;β0)]2

≤ C‖β̂n − β0‖2.

Hence, by C5 it follows that supt∈[0,τ ] P [Ñhj(t; β̂n) − Ñhj(t;β0)]2
as∗→ 0 for

all h /∈ T and j ∈ T . Additionally, we have that Pr(β̂n ∈ B) → 1 and

that L3,jL1,h,j = {Ñhj(t;β) : t ∈ [0, τ ],β ∈ B} is P -Donsker for all h /∈ T

and j ∈ T as shown in the proof of Theorem 1. Consequently, it follows by

Theorem 2.1 in van der Vaart and Wellner (2007) that

∥∥∥Gn[Ñhj(t; β̂n)− Ñhj(t;β0)]
∥∥∥
∞

= op(1).
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The second part in (S2.1) is asymptotically equivalent to a tight zero mean

Gaussian process Ghj as the class of functions {Ñhj(t;β0) : t ∈ [0, τ ]} is

a subclass of the P -Donsker class {Ñhj(t;β) : t ∈ [0, τ ],β ∈ B} and it is

therefore a P -Donsker for all h /∈ T and j ∈ T as well. Next, applying a

Taylor expansion at β0 to the third part of (S2.1) along with conditions

C4–C6 leads to

√
nP [Ñhj(t; β̂n)− Ñhj(t;β0)] =

√
n(β̂n − β0)T R̃hj(t) + op(1),

where R̃hj(t) = P [(1−R)Nh·(t)π̇j(Z,β0)]. Using condition C5 we have that

√
n[PnÑhj(t; β̂n)− PÑhj(t;β0)] =

√
nPn[Ñhj(t;β0)− PÑhj(t;β0) + ωT R̃hj(t)]

+op(1).

Since {Ñhj(t;β0) : t ∈ [0, τ ]} is P -Donsker, ω have bounded second moment

and zero expectation, and PÑhj(t;β0) is non-random, we conclude that

√
n[PnÑhj(·; β̂n)− PÑhj(·;β0)] G∗hj, h /∈ T , j ∈ T ,

with G∗hj being a tight zero mean Gaussian process. Note that the map

(PNhj, PYh) 7→
∫ t

0
1

PYh
dPNhj is Hadamaard differentiable with derivative

at (a, b) over the whole domain

H =

{
(PNhj, B) :

∫
[0,τ ]

|dPNhj(t)| ≤ C,C ∈ (0,∞), inf
t∈[0,τ ]

|PYh(t)| ≥ ε, ε > 0

}
given by

∫ t
0

da
PYh
−
∫ t

0

bdPNhj

(PYhj)2
, (Kosorok, 2008). By C1 and C2, we have that

(PNhj, PYh) ∈ H and Pr((PnÑhj,PnYh) ∈ H) → 1 as n → ∞, for h /∈ T
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and j ∈ T . Hence simple algebra followed by the Functional Delta Method

(van der Vaart, 2000) leads to

√
n[Ân,hj(·)−A0,hj(·)] =

√
nPn[ψhj,1(·)−ψhj,2(·)+ωTRhj(·)]+op(1), h /∈ T , j ∈ T ,

where

ψihj,1(·) =

∫ ·
0

dÑihj(u;β0)

PYh(u)
, ψihj,2(·) =

∫ ·
0

Yih(u)

PYh(u)
dA0,hj(u),

and Rhj(·) = P

[
(1−R)π̇j(Z,β0)

∫ ·
0

dNh·(u)

PYh(u)

]
.

Under the regularity conditions and Lemma 1, it can be shown that ψhj,1(t),

t ∈ [0, τ ], forms a Donsker class. The same is true for ψhj,2(t), t ∈ [0, τ ],

as a consequence of the regularity conditions and Lemma 2. Therefore,

√
n[Ân,hj(·) − A0,hj(·)] converges weakly to a mean-zero Gaussian process

for all h /∈ T and j ∈ T . Using similar calculations, it is straightforward to

show for the transient states, which are completely observed, that

√
n[Ân,hj(·)− A0,hj(·)] =

√
nPn[ψhj1(·)− ψhj2(·)] + op(1), h, j /∈ T ,

for h 6= j. Thus it follows that

√
n[Ân(·)−A0(·)] =

√
nPn[ψ1(·)−ψ2(·) + ωT Iq+1R(·)] + ε,
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where

ψl =



−
∑

j 6=0 ψ0jl ψ01l · · · ψ0ql

ψ10l −
∑

j 6=1 ψ1jl · · · ψ1ql

...
...

...
...

ψ(q−k)0l ψ(q−k)1l · · · ψ(q−k)ql

0k×1 0k×1 · · · 0k×1


, l = 1, 2,

R =

 RT c RT

0k×(q−k+1) 0k×k

 ,

and ε is a (q+ 1)× (q+ 1) matrix that includes op(1) terms. In the matrix

R, RT c is a (q−k+1)× (q−k+1) diagonal matrix with diagonal elements

−
∑

j∈T Rhj, h /∈ T , and RT a (q − k + 1) × k matrix with elements Rhj,

h /∈ T and j ∈ T .

Next, by the regularity conditions and the Hadamard differentiability

of the product integral (Andersen et al., 1993)

A0 7→R [I + dA0] ,

on the whole domain space of the matrix-value functions with elements that

are continuous functions of bounded variation on [0, τ ], and the functional
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delta method (van der Vaart, 2000) it follows that

√
n[P̂n(s, ·)−P0(s, ·)] =

√
nPn

∫ ·
s

R
[s,u)

[I + dA0(v)]ψ(du) R
(u,·]

[I + dA0(v)] + ε

≡
√
nPnγ(s, ·) + ε, s ∈ [0, τ)

where ψ(t) = ψ1(t)−ψ2(t) +ωT Iq+1R(t). The components of the matrix-

valued influence functions γi(s, t) are

γihj(s, t) =
∑
l /∈T

∑
m∈I

∫ t

s

P0,hl(s, u−)P0,mj(u, t)dψilm(u),

where

ψilm(t) =


ψilm,1(t)− ψilm,2(t) + ωTi Rlm(t) if m ∈ T

ψilm,1(t)− ψilm,2(t) if m /∈ T

for l 6= m, and ψill(t) = −
∑

h6=l ψilh(t), l /∈ T , otherwise.

Without loss of generality, set s = 0. To show the Donsker property of

the class Γhj = {γhj(0, t) : t ∈ [0, τ ]}, for all h /∈ T and j ∈ I, with h 6= j,

consider the classes

Γhj,1 =

{∫ t

0

P0,hl(s, u−)P0,mj(u, t)dψlm,1(u) : t ∈ [0, τ ]

}
,

Γhj,2 =

{∫ t

0

P0,hl(s, u−)P0,mj(u, t)dψlm,2(u) : t ∈ [0, τ ]

}
,

and

Γ3 =

{
ωT
∫ t

0

P0,hl(s, u−)P0,mj(u, t)dRlm(u) : t ∈ [0, τ ]

}
.
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The class Γhj,1 is P -Donsker as a result of C2, C4, C6 and Lemma 1. The

Donsker property of Γhj,2 follows from C2, C3 and Lemma 2. The class Γhj,3

is P -Donsker because it is formed by products of the random quantities ω

which have bounded second moments by C5, with a fixed and uniformly

bounded function. Now, the classes Γhj for h /∈ T and j ∈ I, with h 6= j are

P -Donsker because they are formed by finite sums of functions that belong

to P -Donsker classes.

Next, consider the processes Wn,hj(0, t) =
√
nPnγhj(0, t), W̃n,hj(0, t) =

√
nPnγhj(0, t)ξ and Ŵn,hj(0, t) =

√
nPnγ̂hj(0, t)ξ, where ξi are random draws

from N(0, 1),

γ̂ihj(0, t) =
∑
l /∈T

∑
m∈I

∫ t

0

P̂n,hl(0, u−)P̂n,mj(u, t)dψ̂ilm(u),

with

ψ̂ilm(t) =


ψ̂ilm,1(t)− ψ̂ilm,2(t) + ω̂Ti R̂lm(t) if m ∈ T

ψ̂ilm,1(t)− ψ̂ilm,2(t) if m /∈ T

and the remaining components of the estimated influence functions are

ψ̂ilm,1(t) =

∫ t

0

dÑilm(u; β̂n)

PnYl(u)
, ψ̂ilm,2(t) =

∫ t

0

Yil(u)

PnYl(u)
dÂn,lm(u),

and R̂lm(t) = Pn
[
(1−R)π̇m(Z, β̂n)

∫ t

0

dNl·(u)

PnYl(u)

]
.

Given the Donsker property of the classes {γhj(0, t) : t ∈ [0, τ ]} for all
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h /∈ T and j ∈ I and the conditional multiplier central limit theorem (van

der Vaart and Wellner, 1996), W̃n,hj(0, t) converges weakly, conditionally

on the observed data D, to the same limiting process as that of Wn,hj(0, t)

(unconditionally). To complete the proof of the second part of theorem 2

it remains to show that ‖Ŵn,hj(0, t) − W̃n,hj(0, t)‖∞ = op(1), for all h /∈ T

and j ∈ I, unconditionally. After some algebra it can be shown that

‖Ŵn,hj(0, t)− W̃n,hj(0, t)‖∞ ≤
∑
l /∈T

∑
m∈I

(In,lm1 + In,lm2 + In,lm3),

for all h /∈ T and j ∈ T , where

In,lm1 =

∥∥∥∥√nPnξ ∫ t

0

[P̂n,hl(0, u−)P̂n,mj(u, t)− P0,hl(0, u−)P0,mj(u, t)]

×d[ψ̂lm(u)− ψlm(u)]

∥∥∥∥
∞
,

In,lm2 =

∥∥∥∥√nPnξ ∫ t

0

d[ψ̂lm(u)− ψlm(u)]

∥∥∥∥
∞
,

and

In,lm3 =

∥∥∥∥∫ t

0

[P̂n,hl(0, u−)P̂n,mj(u, t)− P0,hl(0, u−)P0,mj(u, t)]

×d[
√
nPnψlm(u)]

∥∥∥∥
∞
Op(1).

Due to the weak convergence result for the NPMPLE that was shown above

and after some algebra, we have

√
n[P̂n,hl(0, u−)P̂n,mj(u, t)− P0,hl(0, u−)P0,mj(u, t)] = Op(1).
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Thus, after some algebra and C2 and C3, we have

In,lm1 ≤
∥∥∥∥Pn ∫ t

0

d[ψ̂ilm(u)− ψilm(u)]

∥∥∥∥
∞
Op(1)

≤
{∥∥∥∥Pn ∫ t

0

[
fm(β̂n)

PnYl(u)
− fm(β0)

PYl(u)

]
dNl·(u)

∥∥∥∥
∞

+‖Ân,lm(t)− A0,lm(t)‖∞ +

∥∥∥∥ 1

PnYl(t)
− 1

PYl(t)

∥∥∥∥
∞

+(Pn‖ω̂ − ω‖+ ‖Pnω‖) sup
t∈[0,τ ]

∥∥∥∥∫ t

0

d[R̂lm(u)−Rlm(u)]

∥∥∥∥
+(Pn‖ω̂ − ω‖) sup

t∈[0,τ ]

∥∥∥∥∫ t

0

dRlm(u)

∥∥∥∥}Op(1). (S2.2)

After some algebra and by C2, C4 and C5, it can be shown that first term in

the right side of (S2.2) is op(1). The second and third terms are also op(1)

as a result of the uniform consistency of Ân,lm(t) and the Glivenko-Cantelli

property of the class {Yl(t) : t ∈ [0, τ ]} which were shown in the proof of

Theorem 1. For the last two terms, we have that Pn‖ω̂ − ω‖ = op(1) and

Pnω = oas(1) by C5 and the strong law of large numbers. Next, C2, C4 and

C5, the continuous mapping theorem and the strong law of large numbers,

imply that

sup
t∈[0,τ ]

∥∥∥∥∫ t

0

d[R̂lm(u)−Rlm(u)]

∥∥∥∥ = op(1), (S2.3)

and therefore the forth term in (S2.2) is op(1). Finally, C2, C4 and C6

ensure that supt∈[0,τ ]

∥∥∥∫ t0 dRlm(u)
∥∥∥ = Op(1) and thus the fifth term is also

op(1) and, therefore, In,lm1 = op(1).
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Using C2 and C3, (S2.3) and the fact that
∥∥∥ 1
PnYl(t)

− 1
PYl(t)

∥∥∥
∞

= oas(1)

and supt∈[0,τ ]

∥∥∥∫ t0 dRlm(u)
∥∥∥ = Op(1), it can be shown that

In,lm2 ≤
∥∥∥∥√nPnξ ∫ t

0

d[ψ̂ilm(u)− ψilm(u)]

∥∥∥∥
∞

≤
∥∥∥∥√nPnξ ∫ t

0

[
fm(β̂n)

PnYl(u)
− fm(β0)

PYl(u)

]
dNl·(u)

∥∥∥∥
∞

+‖
√
n[Ân,lm(t)− A0,lm(t)]‖∞|Pnξ|Op(1)

+‖A0,lm(t)‖∞|
√
nPnξ|oas(1)

+‖
√
nPn(ω̂ − ω)ξ‖op(1) + ‖

√
nPnωξ‖op(1)

+‖
√
nPn(ω̂ − ω)ξ‖Op(1) + op(1). (S2.4)

The first term in (S2.4) can be shown to be op(1) by conditions C2, C4–

C6, and the central limit theorem. The second term is also op(1) because

√
n[Ân,lm(t)−A0,lm(t)] = Op(1) and the fact that Pnξ = oas(1) by the strong

law of large numbers. Conditions C3 and C5, and the central limit theorem

ensure that the third term converges in probability to 0. Finally, the fourth,

fifth and sixth terms are all op(1) by the fact that ‖
√
nPn(ω̂−ω)ξ‖ = op(1),

which follows from C5 and Lemma A.3 of Spiekerman and Lin (1998), and

also the fact that
√
nPnωξ converges in distribution by C5 and the central

limit theorem. Therefore, In,lm2 = op(1).

Finally, In,lm3 = op(1) by Lemma 4.2 in Kosorok (2008), because

‖P̂n,hl(0, u−)P̂n,mj(u, t)− P0,hl(0, u−)P0,mj(u, t)‖∞ = oas(1),
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as a result of Theorem 1, and the fact that
√
nPnψlm(t) converges weakly

to a tight mean-zero Gaussian process by the Donsker property of the class

{ψlm(t) : t ∈ [0, τ ]}. Taking all the pieces together it follows that

‖Ŵn,hj(0, t)− W̃n,hj(0, t)‖∞ = op(1), (S2.5)

for all h /∈ T and j ∈ T . The fact that (S2.5) also holds for all h, j /∈ T can

be shown by similar but simpler arguments because the influence functions

do not involve the terms ωTRlm(t). Therefore, the proof of Theorem 2 is

complete.

S3 Proof of Theorem 3

Using similar arguments to those used in the proof of Theorem 2, it can be

shown that under the null hypothesis PLj(t;β0) = 0,

Vnj(t) =
√
nPnLj(t;β0)−

√
n(β̂n − β0)TP [π̇j(Z,β0)RN··(t)] + op(1)

≡
√
nPnψLj (t) + op(1), j ∈ T (−1). (S3.1)

where ψLj (t) = Lj(t;β0) − ωTP [π̇j(Z,β0)RN··(t)]. Note that the class

LLj = {ψLj (t) : t ∈ [0, τ ]} is P -Donsker, due to the Donsker property of

the class {N·j(t) : t ∈ [0, τ ]} and the fact that the class LLj is formed by

(finite) sums of functions that belong to Donkser classes, which are multi-

plied by bounded random variables (conditions C4 and C6) and added to
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bounded random variables (condition C5). Now, we can make use of the

conditional multiplier central limit theorem (van der Vaart and Wellner,

1996) and argue that the asymptotic distribution of Vnj(t) is the same as

the conditional on the data limiting distribution of Ṽnj(t) =
√
nPnψLj (t)ξ,

where ξi is a random draw from N(0, 1). Next, we need to show that

V̂nj(t) =
√
nPnψ̂Lj (t)ξj and Ṽnj(t) converge weakly (unconditionally) to the

same distribution. As in the proof of Theorem 2, this requires showing that

‖V̂nj(t)− Ṽnj(t)‖∞ = op(1). It can be shown that

‖V̂nj(t)− Ṽnj(t)‖∞ ≤ ‖
√
nPnω̂T [Pnπ̇j(Z, β̂n)RN··(t)− Pπ̇j(Z,β0)RN··(t)]ξj‖∞

+
∑
h/∈T

∑
l∈T

‖
√
nPn[πj(D; β̂n)− πj(D;β0)]RNhl(t)ξj‖∞

+‖
√
nPn(ω̂ − ω)T [Pπ̇j(Z,β0)RN··(t)]ξj‖∞. (S3.2)

The right side of (S3.2) is op(1) and this can be shown by using similar

arguments to those used in the proof of Theorem 2. Therefore, the proof of

Theorem 3 is complete.

S4 Additional Simulation Results

Additional simulation results that are referred in Section 4 of the main text

are presented below.
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Figure S1: Dependence of the parametric model logit[π1(Z,β0)] on time to absorbing

state T , according to the misspecification simulation scenarios 2–4 with ν1 = 0.8, ν1 = 0.4

and ν1 = 0.2, respectively.
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Figure S2: Transition probability estimates (dashed black lines) and corresponding true
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Figure S3: Monte Carlo standard deviation (MCSD) of the estimates for t = 0.4, t = 0.8

and t = 1.2, according to the probability of missingness and the sample size (dashed

lines: n = 200; solid lines: n = 400).

Table S1: Pointwise simulation results for absorbing state 1 with n = 200 at t1 = 0.4,

t2 = 0.8 and t3 = 1.2, under model misspecification scenarios 3 and 4 with ν1 = 0.4 and

ν1 = 0.2, respectively.

Bias×102 MCSD×103 ASE×103 CP×102

Scenario (ν1) t1 t2 t3 t1 t2 t3 t1 t2 t3 t1 t2 t3

Missing: 80%

3 (0.4) -0.8 0.4 0.7 49.1 57.7 62.1 47.2 55.2 58.9 92.9 93.4 92.2

4 (0.2) -0.5 0.7 0.8 51.3 56.6 59.0 47.8 53.2 55.5 92.4 92.7 91.4

Missing: 60%

3 (0.4) -0.6 0.4 0.6 36.5 41.7 43.9 36.5 41.8 44.1 93.8 94.9 95.1

4 (0.2) -0.5 0.4 0.6 39.0 41.6 43.2 38.2 41.3 42.9 94.2 94.5 94.6

Scenario, simulation scenario; MCSD, Monte Carlo standard deviation; ASE, average standard error;

CP, coverage probability
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Table S2: Pointwise simulation results for absorbing state 1 with n = 400 at t1 = 0.4,

t2 = 0.8 and t3 = 1.2, under model misspecification scenarios 3 and 4 with ν1 = 0.4 and

ν1 = 0.2, respectively.

Bias×102 MCSD×103 ASE×103 CP×102

Scenario (ν1) t1 t2 t3 t1 t2 t3 t1 t2 t3 t1 t2 t3

Missing: 80%

3 (0.4) -1.1 0.1 0.5 33.0 38.7 40.7 32.9 38.8 41.5 93.0 94.2 94.5

4 (0.2) -1.0 0.3 0.5 35.1 38.0 39.4 34.6 38.3 40.2 93.0 94.8 94.9

Missing: 60%

3 (0.4) -0.8 0.2 0.5 25.4 29.4 30.9 25.7 29.4 31.2 92.9 94.7 94.3

4 (0.2) -0.7 0.4 0.7 27.1 29.2 29.9 27.2 29.3 30.4 92.6 94.7 95.0

Scenario, simulation scenario; MCSD, Monte Carlo standard deviation; ASE, average standard error;

CP, coverage probability

Table S3: Simulation results on the coverage probability of the proposed 95% simul-

taneous confidence bands based on equal-precision (EP) and Hall–Wellner-type (HW)

weights, under model misspecification scenarios 3 and 4 with ν1 = 0.4 and ν1 = 0.2,

respectively.

Scenario 3 Scenario 4

n missing EP HW EP HW

200 80% 89.1 90.8 81.8 89.4

60% 94.1 93.7 88.3 92.0

400 80% 82.9 92.6 62.3 87.3

60% 89.2 93.6 73.0 89.5
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Table S4: Simulation results on Monte Carlo standard deviation (×103) of the estimator

according to the probability π?
11 = Pr(C? = 1|C = 1), while setting π?

22 = Pr(C? =

2|C = 2) = π?
11 in all cases. A larger value of π?

11 indicates a higher accuracy of the

auxiliary imperfect diagnostic test C?.

n = 200 n = 200 n = 400 n = 400

Missing: 80% Missing: 60% Missing: 80% Missing: 60%

π?
11 t1 t2 t3 t1 t2 t3 t1 t2 t3 t1 t2 t3

0.5 46.1 63.0 72.1 33.9 46.5 52.5 32.1 44.1 50.2 23.4 32.0 36.6

0.6 45.8 63.5 72.1 33.3 45.9 51.9 31.0 42.9 48.6 23.2 31.4 35.7

0.7 45.3 62.4 70.6 33.1 45.2 50.8 31.3 43.1 48.9 23.2 31.4 35.6

0.8 44.3 60.8 68.7 32.8 44.7 50.1 30.6 41.9 47.3 22.8 30.6 34.8

0.9 42.8 58.2 65.8 32.0 43.3 48.5 29.6 40.4 45.5 22.4 30.0 33.9
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Table S5: Pointwise simulation results for absorbing state 1 with n = 400 at t1 = 0.4,

t2 = 0.8 and t3 = 1.2, based on the Gouskova, Lin and Fine nonparametric approach

(GLF) which does not incorporate auxiliary covariates, and the proposed method that

incorporates the auxiliary covariate, under a correctly specified (Scenario 1), a mildly

misspecified (Scenario 2), and a moderately misspecified (Scenario 3) model for π1(Z,β).

The probability of missingness was Pr(R = 0) = 0.6, and did not depend on the auxiliary

variable.

Bias×102 MCSD×103 MSE×104

Method t1 t2 t3 t1 t2 t3 t1 t2 t3

Scenario 1

GLF -0.1 0.0 -0.2 25.5 33.4 38.8 6.5 11.1 15.1

Proposed 0.1 0.1 0.2 22.8 29.9 33.6 5.2 8.9 11.3

Scenario 2

GLS 0.1 0.1 0.1 27.0 34.3 55.1 7.3 11.7 30.4

Proposed -0.2 0.2 0.3 24.3 30.6 33.7 6.0 9.4 11.5

Scenario 3

GLS 0.4 0.4 0.5 29.5 55.6 96.0 8.9 31.1 92.5

Proposed -0.6 0.4 0.7 27.1 31.1 33.1 7.7 9.9 11.5

MCSD, Monte Carlo standard deviation; MSE, mean squared error
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Table S6: Pointwise simulation results with n = 400, for absorbing state 1 at t1 = 0.4,

t2 = 0.8 and t3 = 1.2, based on the Gouskova, Lin and Fine nonparametric approach

(GLF) which does not incorporate auxiliary covariates, and the proposed method that

incorporates the auxiliary covariate, under a correctly specified (Scenario 1), a mildly

misspecified (Scenario 2), and a moderately misspecified (Scenario 3) model for π1(Z,β).

The probability of missingness was Pr(R = 0) = 0.5 + 0.2I{C?=1}, depending on the

auxiliary variable.

Bias×102 MCSD×103 MSE×104

Method t1 t2 t3 t1 t2 t3 t1 t2 t3

Scenario 1

GLS -2.7 -4.4 -5.4 23.3 31.2 36.6 13.0 28.7 42.9

Proposed 0.1 0.2 0.2 24.2 32.0 36.3 5.9 10.2 13.2

Scenario 2

GLS -3.0 -4.4 -5.2 25.0 31.9 51.7 15.1 29.5 53.7

Proposed -0.2 0.2 0.4 25.7 32.6 36.2 6.7 10.7 13.3

Scenario 3

GLS -2.7 -3.6 -4.4 28.7 38.3 175.2 15.3 27.4 326.2

Proposed -0.6 0.5 0.8 29.0 33.5 35.8 8.7 11.5 13.6

MCSD, Monte Carlo standard deviation; MSE, mean squared error
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Table S7: Simulation results on computing time in seconds for point estimates and

standard errors under the proposed estimator for Scenario 1, according to the sample

size.

Missing: 80% Missing: 60%

No SCB With SCB No SCB With SCB

n Mean SD Mean SD Mean SD Mean SD

200 0.6 0.1 0.9 0.1 0.7 0.1 0.9 0.1

300 1.7 0.2 2.6 0.3 1.9 0.1 2.7 0.1

400 3.2 0.1 4.9 0.2 3.4 0.1 4.9 0.1

500 5.1 0.2 7.8 0.2 5.4 0.2 7.7 0.2

600 8.1 0.3 11.7 0.4 8.0 0.3 11.3 0.3

700 11.8 0.3 17.0 0.5 12.0 0.5 16.5 0.5

800 17.7 0.7 24.6 0.9 17.0 0.8 22.9 0.8

900 24.1 0.7 32.5 0.9 23.7 0.9 30.8 0.9

1000 30.2 0.9 40.7 1.1 30.1 0.8 38.7 1.0

1100 40.0 1.2 51.5 1.5 38.7 1.0 49.3 1.4

1200 50.9 1.9 65.7 2.3 48.9 2.0 61.8 1.7

1300 62.9 1.9 79.9 1.8 60.0 1.7 75.2 1.8

1400 77.7 2.3 97.3 2.2 73.8 2.0 91.4 2.0

1500 94.2 2.4 116.3 3.1 89.4 2.3 109.6 2.4

SCB, simultaneous confidence band based on 1,000 simulations; SD, standard deviation
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Table S8: Pointwise simulation results for the näıve approach under Scenario 1, according

to the probability π?
11 = Pr(C? = 1|C = 1), while setting π?

22 = Pr(C? = 2|C = 2) = π?
11

in all cases. A larger value of π?
11 indicates a higher accuracy and a lower misclassification

rate of the imperfect diagnostic test C?.

Bias×102 MCSD×103 ASE×103 CP×102

π?
11 t1 t2 t3 t1 t2 t3 t1 t2 t3 t1 t2 t3

n = 200

0.9 1.9 2.5 2.5 24.8 31.3 34.1 25.4 31.4 34.2 89.7 88.4 90.2

0.8 3.9 5.1 5.1 26.1 32.2 34.4 26.7 32.4 35.0 68.1 64.5 70.4

0.7 5.9 7.8 7.9 27.9 34.1 36.1 28.0 33.4 35.7 36.9 32.0 39.6

0.6 7.8 10.3 10.5 28.9 34.3 36.5 29.1 34.2 36.2 16.9 10.5 14.0

0.5 9.9 13.0 13.2 29.4 34.1 36.3 30.1 34.9 36.7 4.8 2.6 3.3

n = 400

0.9 2.0 2.6 2.6 18.8 22.8 24.2 18.1 22.3 24.3 79.0 76.8 81.3

0.8 4.0 5.2 5.3 19.3 23.2 24.9 19.1 23.0 24.8 41.6 36.8 42.2

0.7 6.1 7.8 8.0 20.2 23.6 25.4 20.0 23.7 25.3 10.2 6.0 10.0

0.6 8.1 10.4 10.8 20.8 23.8 26.2 20.8 24.3 25.6 0.9 0.5 1.1

0.5 10.0 13.0 13.4 21.3 24.0 26.3 21.4 24.7 25.9 0.0 0.0 0.1

Scenario, simulation scenario; MCSD, Monte Carlo standard deviation; ASE, average standard error;

CP, coverage probability


