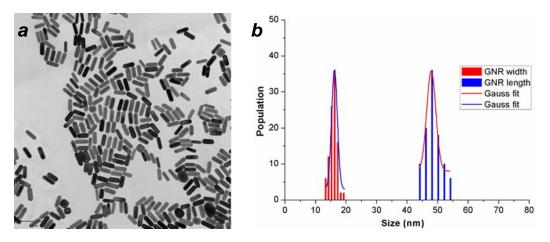
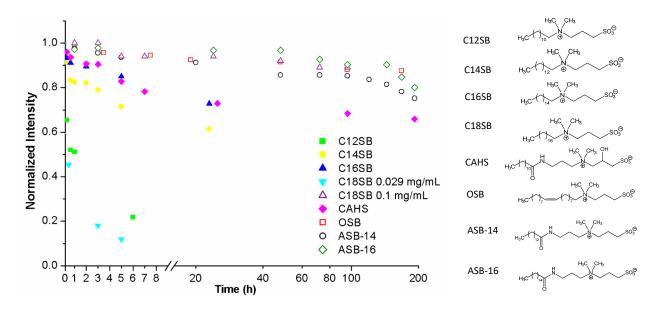
## **Supporting Information**

## siRNA Delivery Using Dithiocarbamate-Anchored Oligonucleotides on Gold Nanorods

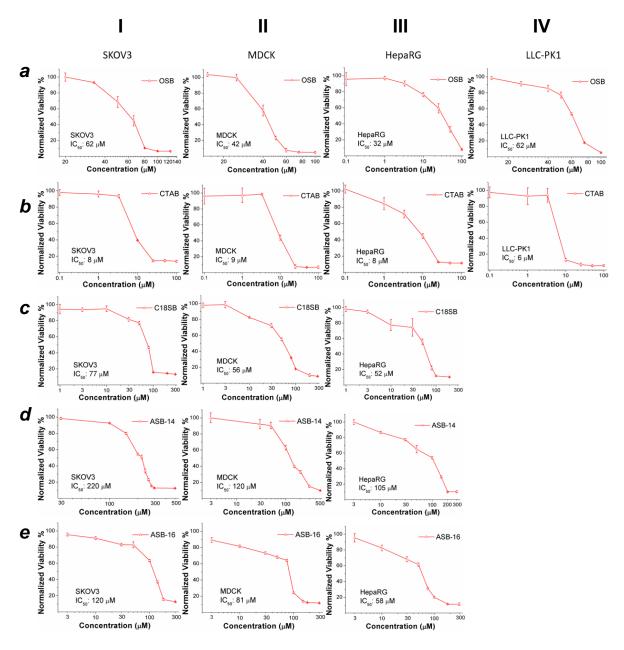
Jianxin Wang,<sup>1</sup> Mini Thomas,<sup>1</sup> Peng Lin,<sup>1,2</sup> Ji-Xin Cheng,<sup>1,2</sup> Daniela E. Matei,<sup>4,5</sup> and Alexander Wei<sup>1,3,\*</sup>


<sup>1</sup>Department of Chemistry, Purdue University, West Lafayette, IN, 47907

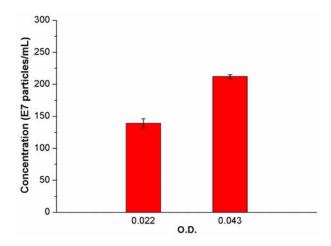
| Table of Contents S-1                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------|
| TEM analysis of citrate-stabilized GNRs (Figure S1)                                                                     |
| Dispersion stability of sulfobetaine (SB)-GNRs in 1 M NaCl (Figure S2)S-2                                               |
| Cytotoxicity of SB surfactants against various cell lines (Figure S3)                                                   |
| GNR count versus optical density (Figure S4)                                                                            |
| Quantification of Dy547-labeled RNA by fluorimetry (Figure S5)                                                          |
| Control study for folate-mediated cell uptake of GNR-siRNA carriers (Figure S6) S-5                                     |
| Cytotoxicity of GNR-siRNA against SKOV-3 cells (Figure S7)                                                              |
| SKOV-3 cell viability after GNR-siRNA and laser treatment (Figure S8)S-6                                                |
| eGFP knockdown efficiency by triggered release of siRNA vs. Lipofectamine, two to four days after treatment (Figure S9) |
| UV-Vis spectrum of DTC group formation (Figure S10)                                                                     |
| Dispersion stability of GNRs coated with mPEG-DTC, without prior Au overgrowth (Figure S11)                             |
| Standard curve for TG2-specific enzyme activity (Figure S12)                                                            |
| Flow cytometry for folate receptor expression by SKOV-3 cells (Figure S13) S-8                                          |
| Flow cytometry to quantify eGFP expression by SKOV-3 cells (Figure S14)                                                 |


<sup>&</sup>lt;sup>2</sup>Department of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907

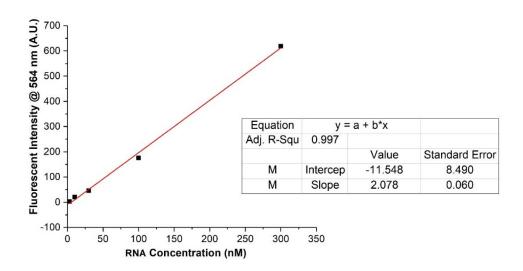
<sup>&</sup>lt;sup>3</sup>Department of Materials Engineering, Purdue University, West Lafayette, IN, 47907


<sup>&</sup>lt;sup>4</sup>Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, and <sup>5</sup>Robert H. Lurie Comprehensive Cancer Center, Chicago, IL 60611

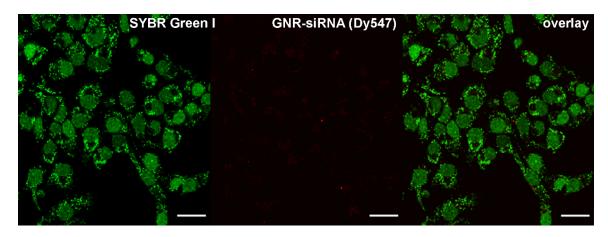



**Figure S1.** Size analysis of citrate-stabilized GNRs. (a) TEM image (scale bar =100 nm); (b) statistical distribution of width  $(16.1 \pm 1.2 \text{ nm})$  and length  $(48.2 \pm 2.6 \text{ nm}; N = 100)$ .

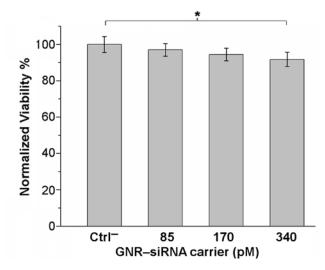



**Figure S2.** Dispersion stability of sulfobetaine (SB)-stabilized GNRs in 1 M NaCl over a 1-week period, as a function of surfactant structure. Surfactant concentrations at 2.1 mg/mL, unless otherwise noted.

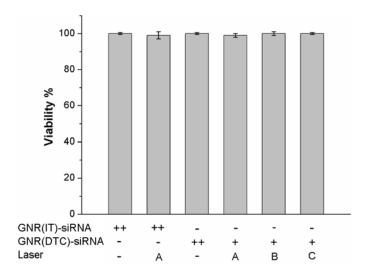



**Figure S3.** Cell viabilities (with IC<sub>50</sub> values) of CTAB and various sulfobetaines by MTT assay, using different cell lines. *Rows a–e*: OSB, CTAB, C18SB, ASB-14, and ASB-16. *Columns I–IV*: SKOV-3, MDCK, HepaRG, and LLC-PK1 cells.

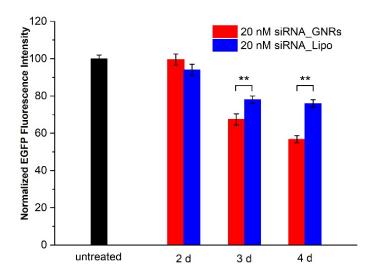



**Figure S4.** OSB-GNR counts as a function of optical density (absorbance at  $\lambda_{max}$ ; *cf.* Figure 2a), determined by nanoparticle tracking analysis (NTA). Particle counts based on a minimum of 2000 particles, and calibrated against a suspension of standardized 100-nm polystyrene beads. <sup>49</sup> A GNR dispersion with an initial O.D. of 1.1 was diluted 25- and 50-fold using particle-free water prior to NTA (final O.D. values shown). Error represents one standard deviation of three separate trials. The concentration of OSB-GNRs at O.D. 1.0 is estimated to be 5.1 ×  $10^{10}$  particles/mL, or 85 pM.

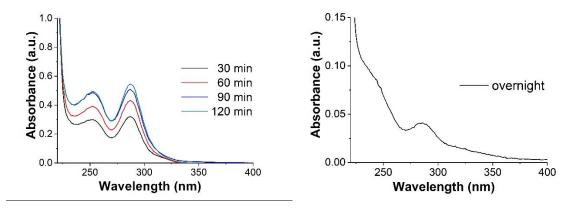



**Figure S5.** Standard linear curve for eGFP antisense RNA, based on Dy547 fluorescence ( $\lambda_{em} = 564 \text{ nm}$ ) with serial dilution of Dy547-eGFP antisense RNA (300 nM to 3 nM). The fluorescence intensity for the experimental data point was 25.8, corresponding to 14.7 nM antisense RNA released from GNR–siRNA carriers (64 pM).

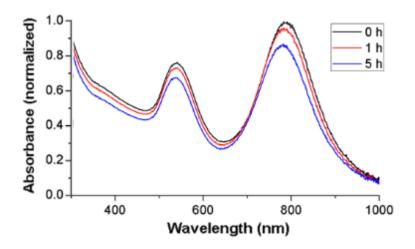



**Figure S6.** Confocal fluorescence microscopy of wild-type SKOV-3 cells after 24-h incubation with GNR-siRNA labelled with Dy547 (85 pM), using HS-mPEG as a coadsorbate. Bar =  $30 \mu m$ .

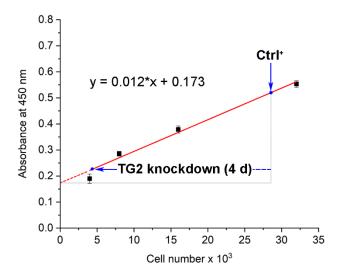



**Figure S7.** Cytotoxicity analysis of SKOV-3 cells by MTT assay after 24-hour exposure to GNR–siRNA carriers, without laser irradiation (N = 3). \* p = 0.06 (Student's t-test, two-tailed null hypothesis) or 0.095 (one-way ANOVA, posthoc Tukey). Carriers were prepared using DTC-siRNA labelled with HS-PEG-folate.

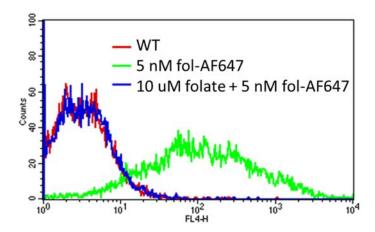



**Figure S8.** Short-term viability of SKOV-3 cells after a 24-hour incubation with GNR–siRNA carriers followed by laser treatment, based on Trypan Blue exclusion assay. GNR–siRNA carriers were prepared using DTC-siRNA or iminothiolate (IT)-modified siRNA. GNR concentrations of 85 pM (+) or 0.34 nM (++) were used. (A) 15-min irradiation by CW laser (808 nm, 1.33 W/cm²); (B) 3-min irradiation with stationary fspulsed laser (800 nm, 7.5 nJ/pulse, 1.2 W/cm²); (C) 3-min irradiation with scanning fspulsed laser (800 nm, 1.5 nJ/pulse, 0.6 W/cm²).

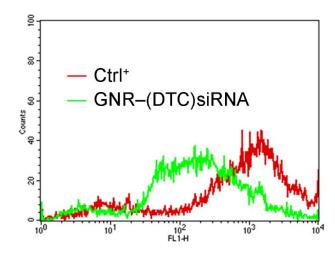



**Figure S9.** eGFP knockdown using GNR-siRNA carriers at 85 pM (DTC-anchored, equivalent to 20 nM siRNA) and stationary fs-pulsed laser irradiation (1.2 W/cm<sup>2</sup>), two to four days after treatment (red bars). Knockdown using unmodified siRNA duplexes at 20 nM and Lipofectamine RNAiMAX (blue bars) performed as positive control. \*\* p < 0.01 (N=3).




**Figure S10.** UV-visible spectra for monitoring in situ DTC formation, using mPEG-NH<sub>2</sub>. *Left*, 80  $\mu$ M mPEG-NH<sub>2</sub> treated with CS<sub>2</sub> in methanol, over a 2-hour period; *right*, 50  $\mu$ M mPEG-NH<sub>2</sub> in borate buffer (pH 9.5) treated with saturated aqueous CS<sub>2</sub> solution, after 12 hours.




**Figure S11.** Dispersion stability of GNRs (no Au overgrowth) coated with mPEG-DTC, after treatment with 20 mM mercaptoethanol.



**Figure S12.** Standard (linear) curve for TG2-specific enzyme activity, as a function of SKOV-3 cell count (two-fold serial dilution from  $3.2 \times 10^4$  cells). The linear fit was applied toward an estimate in the relative reduction in TG2 activity by SKOV-3 cells, 4 days after treatment with GNR–siRNA carriers and scanning fs-pulsed laser irradiation. The mean absorbance value for the control group (Ctrl<sup>+</sup>) was 0.519, corresponding to 2.9  $\times$  10<sup>3</sup> cells. The mean absorbance value for the experimental group (TG2 knockdown) was 0.227, corresponding to a 84% knockdown in TG2 activity.



**Figure S13.** Flow cytometry analysis for folate receptor expression on SKOV-3 cells, cultured in folate-deficient media. WT = wild-type SKOV-3 cells without dye labelling (red); SKOV-3 cells treated with 5 nM folate-AF647 (green), incubated for 30 min at room temperature prior to analysis, using 635-nm laser excitation and 661/16 nm emission filter. Competition experiment (blue): SKOV-3 cells treated with 10  $\mu$ M folic acid for 5 min at room temperature, followed by incubation with 5 nM folate-AF647 for 30 min at room temperature.



**Figure S14.** Representative flow cytometry data for quantitative eGFP expression in SKOV-3 cells, 4 days following no treatment (Ctrl<sup>+</sup>; *red*) or treatment with 85 pM GNR–siRNA labelled with HS-PEG-folate plus scanning fs-pulsed laser irradiation at 800 nm (*green*). Mean fluorescence values after gating are 1543.5 (*red*) and 428.2 (*green*), the latter corresponding with a 72% reduction in eGFP production.