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ABSTRACT

3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP) is a highly-hydrophobic

small molecule that was originally developed for cancer therapy (Triapine®, Vion Pharma-

ceuticals) due to its ability to inhibit ribonucleotide reductase, a key enzyme required for

DNA synthesis. 3-AP has a high affinity for divalent cations, chelating the Fe2+ at the R2

subunit of the enzyme and inhibiting formation of a tyrosyl radical essential for ribonu-

cleotide reduction. We have demonstrated that 3-AP is also a potent neuroprotectant (as

such, it is referred to as “PAN-811”). In vitro it completely blocks ischemic neurotoxicity

at a concentration of 0.5 ìM (EC50 � 0.35 ìM) and hypoxic toxicity at 1.2 ìM (EC50 �

� 0.75 ìM). Full protection of primary cortical and striatal neurons can be achieved with

3-AP when it is added to the medium at up to six hours after an ischemic insult. 3-AP also

suppresses cell death induced by neurotoxic agents, including staurosporine, veratridine

and glutamate, indicating activity against a central target(s) in the neurodegenerative

process. 3-AP acts via neutralization of two important intracellular effectors of excitatory

neurotoxicity; calcium and free radicals. Its reported ability to elevate anti-apoptotic pro-

teins is likely to be a consequence of the suppression of excessive intracellular free calci-

um. In a rat model of transient ischemia, a single bolus delivery of 3-AP 1 h after the initi-

ation of ischemic attack reduced infarct volume by 59% when administered i.c.v. (50 ìg

per rat) and by 35% when administered i.v. (1 mg�kg). In Phase I clinical trials in cancer

therapy 3-AP had no cardiovascular, CNS or other major adverse effects. Thus, 3-AP has a
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high potential for development as a novel, potent neuroprotectant for the treatment of

neurodegenerative diseases.

INTRODUCTION

3-Aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP �PAN-811) (Fig. 1), is a

potent neuroprotectant belonging to a class of á-(N)-heterocyclic carboxaldehyde thio-

semicarbazones (HCTs), that were originally developed for the treatment of cancer. This

class of compounds can suppress tumor growth by inhibiting the bioactivity of ribonucleo-

tide reductase (RNR). RNR catalyzes the synthesis of deoxyribonucleotides from their

ribonucleotide precursors and is as such required for DNA synthesis and repair (12,60).

RNR is the rate-limiting enzyme in DNA synthesis due to its low abundance in normal

cells. In comparison with several other key enzymes, RNR shows the greatest increase in

activity in tumor cells (55,65), and, therefore, RNR is considered an important intracellu-

lar target for inhibiting cellular proliferation. In contrast to hydroxyurea (HU), which has a

low affinity for RNR and a short half-life in humans (3,23,44), HCTs are strong RNR in-

hibitors. Several HCTs inhibit RNR at concentrations more than 1000-fold lower than

those required for HU to achieve the same effectiveness (43). One of them, 5-hydroxypy-

ridine-2-carboxaldehyde thiosemicarbazone (5-HP), manifested significant antineoplastic

activity in animal models (13) but eventually showed disappointing results in clinical

trials due to its rapid inactivation through glucuronidation and elimination in patients (32).

New HCTs, that are not subject to such metabolic inactivation, have been synthesized and

evaluated for antitumor activity; the most promising of them is 3-AP (37). 3-AP is a potent

inhibitor of RNR with a broad spectrum antitumor activity in preclinical systems, effective

in lung carcinoma, ovarian carcinoma, neuroepithelioma, leukemia, etc. (8,11,16). Several

phase I clinical trials concluded that 3-AP produced no cardiovascular, central nervous

system (CNS) or other major adverse effects at effective therapeutic concentrations (15,

22,45,62). 3-AP is currently manufactured under Good Manufacturing Practice (GMP)

and undergoing phase II clinical trials (56) as a cancer chemotherapeutic agent.

The mechanism underlying deactivation of RNR by 3-AP involves iron chelation. RNR

provides deoxyribonucleotides which are the building blocks for DNA replication in all

living cells (Fig. 2, for a review see ref. 31). RNR is a multisubunit enzyme, composed of

two identical R1 subunits and two identical R2 subunits. The R1 subunits carry two cata-

lytic and four allosteric sites, which play a role in binding ribonucleotide di- or triphos-

phates (NDPs or NTPs) and reducing those substrates to deoxyribonucleotides di- or tri-
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Fig. 1. 3-AP, a thiosemicarbazone, contains a pyridine ring with an amino group in

position 3 and a carboxaldehyde thiosemicarbazone group in position 2.



phosphates (dNDPs or dNTPs) by catalyzing the replacement of an OH group of a NDP or

NTP with hydrogen in a protein radical-dependant manner (58,60). The R2 subunits

contain two oxygen-linked diferric clusters and tyrosyl radicals. A long-range protein-

mediated radical transfer pathway appears to be responsible for the delivery of the radical

from the tyrosine in R2 to the substrate on R1 (49,54). The tyrosyl free radical is stabilized

by iron (59). The iron chelators, aroylhydrazones, including 2-hydroxy-1-naphthylalde-

hyde isonicotinoyl hydrazone and its analogs (14,19,40,51,52) tachpyridine (N,N�,N��-

tris(2-pyridylmethyl)-cis,cis-1,3,5-triaminocyclohexane; 1,61), and 3-AP (16, 17), dem-

onstrate substantial antiproliferative activity. Inhibition of tumor growth by these iron

chelators is mediated by the suppression of RNR activity (16). The Fe-chelator complex

destroys the tyrosyl radical, blocking dNDP or dTDP formation and consequently DNA

synthesis (Fig. 2) (53,57). HCTs also chelate other divalent metals, such as copper (II) and

Zinc (II) (5,6).

The intracellular accumulation of free calcium (Ca2+) and free radicals plays an im-

portant role in acute neuronal injury, such as ischemic stroke, as well as in chronic neuro-

degeneration, such as Alzheimer’s disease (AD) (2,20,24,50). After middle cerebral ar-

terial occlusion (MCAO) necrotic cell death predominates in the central core of brain

infarct. This necrotic cell death is coincident with an overall increase in intracellular free

calcium ([Ca2+]i) and is reflected by a rapid and long-term decrease of extracellular calci-

um ([Ca2+]e). In contrast, in the penumbral area, where mainly a delayed apoptotic cell
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tide. The Fe-chelator (3-AP) complex destructs the tyrosyl radical, blocks deoxyribonucleotide formation, and

consequently DNA synthesis.



death is observed, the [Ca2+]e decreases only transiently (33,36,47). Free radical levels

significantly increase in the central core during both, the ischemic insult and reperfusion

period, while in the penumbra they increase only during reperfusion (38). Thus, it is clear

that the neurodegenerative cascade resulting in necrosis in the central core and apoptosis

in the penumbra is differentially regulated by the intracellular mediators, Ca2+ and free

radicals.

AD is a chronic neurodegenerative disease occurring most commonly in aged indi-

viduals. This indicates an important contribution of accumulated age-related risk factors to

the initiation and development of the disease. Recently, excessive accumulation of di-

valent metals, such as calcium and iron, and reactive oxygen species (ROS) have been

suggested to play a role in the etiology of AD (20,24,50). Memantine, which blocks the

influx of extracellular free calcium, has been shown in phase III clinical trials to be ef-

fective in the treatment of AD (50) and has recently been approved by the FDA for this

purpose. Scavengers of ROS, such as vitamin E and ginkgo biloba, are known to protect

neurons against Aâ-induced cell death (2,10,67).

Since 3-AP is a robust divalent ion chelator with a consequent function of free radical

scavenging, it was hypothesized that this compound could protect against neuronal cell

death due to acute or chronic insults (25–27). The research data generated over the past

three years demonstrated a potent neuroprotective activity of 3-AP in vitro and in vivo.

3-AP prevented neurotoxicity caused by hypoxia, hypoglycemia�hypoxia (H�H), gluta-

mate-, veratridine (a sodium channel opener related Ca2+ influx; 4,29), hydrogen peroxide,

or staurosporine (apoptosis inducer; 21,46) — (9,25–28). As a neuroprotectant 3-AP was

assigned a code number PAN-811 (28). This article reviews evidence for the neuroprotect-

ant activity of 3-AP, its mechanism of action, its in vivo distribution, its toxicity, and rel-

evant clinical studies.

CHEMISTRY

3-AP was originally synthesized by Sartorelli’s group at Yale University School of

Medicine in 1992 (37). Its chemical structure is shown in Fig. 1; its empirical formula

is C7H9N5S with a molecular weight of 195.24 Da. It has a melting point of 232°C.

The white to pale yellow powder of this compound is highly hydrophobic, soluble at

0.1 mg�mL H2O, 1.25 mg�mL ethanol, and 15 mg�mL of polyethylene glycol-300

(PEG-300) or 7:3 (v�v) PEG-300:ethanol.

PHARMACOLOGY

Neuroprotective Efficacy and EC50 of 3-AP in Vitro and in Vivo

Neuronal cell death in the central core and surrounding penumbral area of an infarct

following a cerebral ischemic attack seems to be induced by different insults. Extreme

ischemia (or H�H) occurs in the central core but that in the penumbral area is much
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less pronounced. In contrast, hypoxia affects the penumbral area for a longer period of

time after resolution of the arterial occlusion. During 2-h MCAO in the rat, glucose

concentration is greatly reduced in the central core of the infarct, from 2.12 down to

0.21 mmol�kg, but only mildly (to 1.42 mmol�kg) in the penumbra. It recovers to a

normal level in both areas (2.65 mmol�kg in the central core and 2.69 mmol�kg in the

penumbra) at 1 hour after reperfusion (18). Reperfusion also restores interstitial oxygen

tension (pO2) in the central core to its preischemic value but penumbral pO2 recovers only

partially (39). To facilitate drug screening we attempted to mimic local environment in the

area between central core and penumbra during ischemia and after reperfusion in vivo, and

established in vitro H�H (1.2 mM glucose and 0% pO2, insulted for 6 hours) and hypoxia

only models (0% pO2, insulted for 18 h) of neurodegeneration. 3-AP at concentrations of

0.63 ìM and 0.45 ìM fully blocked H�H-induced mitochondrial dysfunction and LDH re-

lease with an EC50 of 0.2–0.35 ìM. At 1.0 to 1.2 ìM 3-AP completely inhibited hypoxia-

induced mitochondrial dysfunction and LDH release (28). We also determined therapeutic

windows in the H�H insult model: as 6-h during the H�H insult, and 48-h during recovery

period subsequent to the H�H insult. Results were quantified with the LDH assay and cells

were evaluated morphologically. Pretreatment with 3-AP showed only minimal protec-

tion, while neurons that received 3-AP during or especially after H�H insult were well

protected. Thus, effective neuroprotection by 3-AP does not require pretreatment (28). An

in vivo study in the MCAO model demonstrated therapeutic benefit when rats were treated

with 3-AP during the ischemic insult (28,41). 3-AP was administered intracerebroventri-

cularly (i.c.v.) at a dose of 50 ìg per rat at 1 h after arterial occlusion. Staining of consec-

utive brain sections demonstrated that 3-AP greatly reduced the infarct size. Computer-as-

sisted quantitative analysis revealed a 59% reduction in total infarct volume for 3-AP-

treated rats. We also investigated the effect of a single intravenous (i.v.) bolus injection of

3-AP at a dose of 1 mg�kg at 1 h after arterial occlusion to determine whether the com-

pound remained effective when delivered systemically. Again, 3-AP significantly reduced

the infarct size, showing a 35% decrease in total infarct volume (41). Thus, 3-AP can

reduce ischemic neurodegeneration in vivo. By systemic delivery, it has maximal efficacy

at a dose of 1 mg�kg. By i.c.v. administration the maximal effect of 3-AP is achieved at a

dose of 50 ìg�rat within tested dose range (41).

3-AP also prevents glutamate-, veratridine (a sodium channel opener related to Ca2+ in-

flux; 4,29)-, and staurosporine (apoptosis inducer; 21,46)-induced neuronal cell death (9).

These effects may be due to its calcium chelating activity. Glutamate neurotoxicity is me-

diated by activation of NMDA receptors on the membrane of neurons, which causes influx

of [Ca2+]e and accumulation of [Ca2+]i. Excessive [Ca2+]i induces ROS overproduction in

the mitochondria leading to neuronal cell death (35,42,66). Inhibition of calcium influx

with a NMDA receptor antagonist, such as MK-801 or memantine, can also block gluta-

mate-induced neuronal cell death (63,64). Treatment with 10 ìM 3-AP reduced 100 ìM

glutamate-induced neuronal cell death by 89% (9). Staurosporine is typically used as an

apoptotic inducer. It has been shown to increase [Ca2+]i and ROS, release of cytochrome c

from mitochondria, and to activate caspases (7,21,34,48). In cortical neurons 3-AP, at

10 ìM for 24 h prior to and during the insult, reduced neurotoxicity of 1 ìM staurosporine

by 47% (9). Veratridine causes depolarization of excitable cells by binding to voltage-

dependent Na+ channels and by maintaining Na+ channels in an open state for a prolonged

period of time (4). Veratridine also induces neuronal apoptosis by triggering calcium
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influx, ROS production, and caspase activation (30). 3-AP suppresses veratridine-induced

neuronal cell death by 42% (9). The blockade of glutamate (25 ìM)-induced excitatory

neurotoxicity by 3-AP is illustrated in Fig. 3. In the presence of 3-AP, both the neuronal

soma and neuritic processes were well preserved.

Intracellular Targets of 3-AP

The potent neuroprotective activity of 3-AP may be due to its effects, in excitatory

neurotoxic pathway, on both intracellular targets — excessive free calcium and ROS accu-

mulation. The following four observations support this hypothesis. First, 3-AP inhibits

both ischemic and hypoxic neuronal cell death, indicating that it is likely to suppress accu-

mulation of intracellular free calcium as well as ROS. The results obtained from double

staining and DNA gel electrophoresis demonstrated that H�H induced a mixture of ne-

crotic and apoptotic neuronal cell death, where necrosis is dominant and the required

insult duration is only 3–6 h. In contrast, a hypoxic insult typically induces apoptotic cell

death and the duration of insult needed to cause cell death is at least 18 h (28). These re-

sults correlate well with the in vivo findings that stroke leads to a rapid cellular necrosis in

the central core of the infarct and initiates delayed neuronal cell death in the penumbral

area (33,36,38,47). The intracellular signaling molecules for H �H- and hypoxia-induced

cell death seem to be different (28). MK-801, a NMDA receptor antagonist with a function

of blocking calcium influx suppresses at a concentration of 5 ìM H�H-induced neurotoxi-

city by 83% while memantine at an equivalent dose or green tea (GT, containing antioxi-

dative chemicals) has little effect. In contrast, MK-801, at 5 ìM, only slightly affects

hypoxia-induced neuronal cell death, while memantine, at the same concentration, pro-
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vides 50% protection and GT, at a dilution of 1:200, prevents hypoxic neurotoxicity.

These findings suggest that intracellular accumulations of free calcium and ROS are likely

to mediate ischemic and hypoxic neuronal cell death respectively. 3-AP, at a 2.5-fold

lower concentration than MK-801, completely blocks ischemia- and hypoxia-induced

neurotoxicity. This implies that 3-AP is able to suppress accumulation of excessive intra-

cellular free calcium as well as ROS.

Second, PAN-811 has been found to suppress both intracellular free calcium and ROS

by Fura Red and DHR123 analyses (28). [Ca2+]i levels in hypoxic or H�H- insulted

neurons were measured using the fluorescent dye Fura Red. Intracellular Ca2+ levels in-

creased 19-fold due to H�H assault whereas hypoxic assault resulted in only a marginal,

statistically insignificant enhancement of intracellular calcium. In contrast, H �H and

hypoxia caused 1.85- and 1.4-fold enhancements in the intensity of DHR-123 fluores-

cence, respectively. It appears that MK-801 efficiently blocks H �H-induced calcium in-

flux and neuronal cell death, but does not significantly reduce the fluorescent strength of

DHR123. Therefore, it is more likely that [Ca2+]i plays a significant role in H�H-induced

neuronal cell death, whereas ROS predominantly mediates hypoxic neurotoxicity. 3-AP

reduces both [Ca2+]i and mitochondrial ROS, and, therefore, inhibits both H �H- and hypo-

xia-induced neurotoxicity (28).

Third, PAN-811 inhibits glutamate-induced elevation of intracellular free calcium.

Ischemic neuronal cell death is predominantly mediated by excitatory neurotoxicity. Glu-

tamate is an agonist at the NMDA receptor, playing an important role in excitatory neuro-

toxicity. Therefore, the capability of 3-AP to suppress [Ca2+]i was also examined in a

model of glutamate-insult (Fig. 4). Neurons treated with 20 ìM glutamate display 2.8-fold

elevated [Ca2+]i levels. 3-AP, at 5 ìM, fully suppresses this effect.

Finally, 3-AP can directly chelate free calcium and scavenge free radicals in a cell-free

environment (28). 3-AP is capable of direct chelation of free calcium. Co-incubation of

3-AP, 2 ìM, with 1 ìM Ca2+ in a cell free environment, chelates over 50% of free calcium

(28). 3-AP also directly scavenges free radicals and this effect is independent of its calci-

um-binding function. At 10 ìM 3-AP scavenges about 60% of 500 ìM diphenylpicryl-

hydrazyl (DPPH), a stable free radical, in a cell-free and metal free environment (28).

3-AP also inhibits the H�H- and hypoxia-induced down-regulation of Bcl-2 and

Bcl-XL. This effect is likely to be dependent on the chelation of calcium by 3-AP, since

MK-801 also preserves the levels of Bcl-2 and Bcl-XL (9,28). In general, 3-AP independ-

ently affects at least two intracellular targets — excess free calcium and ROS (Fig. 5),

which play important roles in acute and delayed (or chronic) neurodegeneration,

respectively.

The ability of 3-AP to kill cancer cells while preserving neurons is likely to be deter-

mined by the mitotic status of each cell type. For example, RNR shows a greater increase

in activity in tumor as compared to normal cells (55,65). Thus 3-AP exerts a greater effect

in suppressing tumor growth. Neurons are terminally-differentiated cell types. It is con-

ceivable that RNR becomes less important for neuronal cell survival and, therefore, 3-AP

exerts little or no effect on this cell type under normal conditions. In contrast, 3-AP pro-

tects from excitatory neurotoxicity or from hypoxic neuronal cell death by acting upon

different intracellular targets, chelation of [Ca2+]i and scavenging of free radicals.
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HUMAN PHARMACOKINETICS

The pharmacokinetics of 3-AP has been investigated in several Phase I clinical trials.

Using a single intravenous dosing schedule (infusion for 8 h), the data generated from the

serum and urine of 27 patients with advanced cancer demonstrated that the serum concen-

tration-time curve (AUC) and peak serum concentration (Cmax) are linear with 3-AP dose

up to 105 mg�m2. At lower doses of 3-AP (<60 mg�m2), the elimination half-life (t1�2)

ranged from 30 to 120 min with a median value of approximately 1 h. 3-AP was detected

in urine during 8 h after drug administration. The cumulative urinary recovery averaged

2–5% of the administered dose. At the higher doses (60 and 80 mg�m2), the following

pharmacokinetic data were obtained: t1�2 = 66 ± 32 min, body clearance (Cl) 0.79 ± 0.47

mL�min per m2, volume of distribution at steady state (Vdss) 59.9 ± 6.6 L�m2, Cmax

0.97 ± 0.32 ìg�mL, and urinary excretion 1.4 ± 0.3% of dose (15). In a separate regimen,

3-AP was administered at a dose of 96 mg�m2 by 2-h i.v. infusion, daily for 5 days on on
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every-other-week schedule. In this trial 3-AP also displayed linear pharmacokinetic be-

havior. At the 96 mg�m2�day peak plasma levels of 3-AP averaged 8 ìM and t1�2 ranged

from 35 min to 3 h, with a median value of ~1 h. Cumulative urinary recovery averaged

1–3% of the administered dose (45). In a long-term intravenous infusion (96 h beginning

on day 1 and day 15 or day 1 and day 8 of the trial), the median steady-state plasma con-

centrations of 3-AP for patients receiving 140 and 160 mg�m2 per day were 0.68–0.75 and

0.93–1.05 ìM, respectively. The t1�2 associated with the 3-AP elimination rate at the end

of the infusion ranged from 1.67 to 2.30 h (22). In summary, 3-AP had a t1�2 of 1 h in the

serum, and there was no drug accumulation under multiple-dosing schedule (45). 3-AP is

excreted by the kidneys and is also metabolized. Importantly, 3-AP has been demonstrated

to cross the blood-brain barrier and to inhibit the growth of L1210 leukemia cells in the

brain by 95% (16). Its ability to enter the brain is likely to benefit its potential use in the

treatment of neurodegenerative diseases.

ADVERSE EFFECTS IN CLINICAL TRIALS

3-AP has been administered by single 2-h infusion every 4 weeks in 46 courses of

therapy. It was well tolerated at doses up to 105 mg�m2 and a dose limiting toxicity was

not identified. Hematological toxicity was uncommon. One patient developed grade 4

thrombocytopenia at the lowest dose level, and one patient had grade 3 anemia. Two pa-

tients developed grade 3 coagulation abnormalities. Mild (grade 1) nausea and diarrhea

occurred in a couple of patients at the highest dose levels (60 and 80 mg�m2). The only

other adverse effects of more than grade 1 occurring in more than 10% of the patients

were fever and asthenia (15). A separate trial indicated that the most common nonhemato-

logical adverse effects of 3-AP were asthenia, fever, nausea and vomiting, mucositis, de-

creased serum bicarbonate, and hyperbilirubinemia. These effects were predominantly

grade 1–2 in severity and were rapidly reversible. Adverse hematological effects on the

every-other-week schedule were leucopenia and anemia. Thrombocytopenia was less

common. The conclusion from this trial was that 3-AP administered at a dose of

96 mg�m2 by 2-h i.v. infusion, five times on an every-other-week schedule, had an ac-

ceptable safety profile (45).

CONCLUSION

3-AP represents a novel approach to the blockade of excitatory neurotoxicity, including

that associated with an ischemic stroke. Unlike other antagonists of NMDA or AMPA

receptors and ion channels, 3-AP chelates the intracellular free calcium at a site that is

downstream from the receptors. Under acute conditions, when multiple receptor and calci-

um channel openings occur, an antagonist blocking one receptor or channel may not be

sufficient to fully block the neurotoxic pathway. 3-AP has, therefore, an advantage over

available NMDA or AMPA antagonists. In addition, 3-AP scavenges free radicals and re-

duces intramitochondrial ROS. 3-AP not only blocks the excitatory neurotoxic pathway at
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multiple sites but also suppresses ROS induced by upstream signals other than intracellu-

lar free calcium. The maximal neuroprotective effect of 3-AP can be achieved at blood

levels that are much lower than in vitro drug concentrations that can still be tolerated by

neurons. This should allow the use of 3-AP in a wide dose range needed to achieve op-

timal therapeutic efficacy. Promising results have been seen with 3-AP in a MCAO animal

model where 3-AP was administered at a dose of 50 ìg per rat (the highest dose tried) by a

bolus i.c.v. administration 1 h after artery occlusion. 3-AP reduced infarct volume by 59%.

Furthermore, the effective window for administration of 3-AP, during and�or after ische-

mic insult, should be adequate for stroke therapy. Since 3-AP is currently in Phase II

clinical trials for cancer therapy, its human pharmacokinetic and toxicologic properties are

known. This knowledge is expected to shorten the time required for the development of

3-AP as a neuroprotective drug. At present, the only drug for stroke therapy that is ap-

proved by the FDA is tissue plasminogen activator (tPA), a thrombolytic drug. The devel-

opment of neuroprotective drugs has a priority in stroke therapy, since neurodegeneration

continues for hours or even days following reopening of an occluded artery. Some ques-

tions relevant to the use of 3-AP as a neuroprotectant remain, however. They include op-

timal delivery route, treatment duration, and quantitative assessment of the ability of 3-AP

to pass the BBB. After resolution of these issues, 3-AP will be on its way to enter clinical

trials in neuroprotection.
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