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ABSTRACT

Nociceptin�orphanin FQ modulates various biological functions at central and pe-

ripheral levels by selectively activating a G-protein coupled receptor named N�OFQ

peptide (NOP) receptor. For extending our knowledge on the biological roles of the

N�OFQ – NOP receptor system the identification of selective NOP ligands, especially an-

tagonists, is mandatory. [Nphe1, Arg14, Lys15] N�OFQ-NH2 (UFP-101) is a novel NOP

ligand that was designed by combining, in the same molecule, the [Nphe1] chemical modi-

fication which eliminates efficacy and the [Arg14, Lys15] substitution which increases

ligand potency and duration of action in vivo. In the present article, we summarize the

pharmacological features of UFP-101 as determined in a series of in vitro and in vivo

assays. Moreover, some biological actions and possible therapeutic indications of NOP

ligands are discussed on the basis of results obtained with UFP-101. Data obtained with

this compound were compared with those generated using other NOP antagonists, espe-

cially J-113397 and [Nphe1]N�OFQ(1–13)-NH2, receptor or peptide knockout mice and

other pharmacological tools useful for blocking N�OFQ – NOP receptor signaling.
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The analysis of the available data demonstrates that UFP-101 is a useful pharmaco-

logical tool for the investigation of the central and peripheral biological functions regu-

lated by the N�OFQ – NOP receptor system and for defining the therapeutic potential of

NOP receptor ligands

INTRODUCTION

Drugs interacting with G-protein coupled receptors (GPCRs) have a variety of thera-

peutic indications from pain to hypertension, respiratory and gastrointestinal diseases,

neurological and psychiatric pathologies, and control of food intake, making this class of

membrane receptors the most important biological target for drug discovery (94). This

may remain true in the future as at least 360 different genes coding for putative GPCRs

(excluding sensory GPCRs) have been identified in the human genome yet the natural

ligand is known only for approximately 210 receptors, the others being still orphan (94).

Novel drugs acting at orphan GPCRs are likely to provide innovative treatments for a va-

riety of pathological conditions and diseases (57,93,94). The first step in understanding

the function and the potential of an orphan GPCR as drug target is the identification of its

endogenous ligand (58). This process, defined as reverse pharmacology (20), has already

led to the pairing of several previously orphan GPCRs with their endogenous ligands: in

this way, several novel ligand-receptor systems have been recognized. These appear to be

important in the regulation of a range of various biological functions including sleep, pain

transmission, cardiovascular homeostasis, airways physiology, and inflammatory pro-

cesses (21,44,57).

Nociceptin�orphanin FQ (N�OFQ) and its N�OFQ peptide receptor (NOP) represent

the first successful example of the reverse pharmacology approach (20). The cloning of

classical opioid receptors in the early 90s (14,29,46,97) led several groups to the simulta-

neous identification of an opioid-like receptor in 1994 which did not bind opioid ligands

(66). A heptadecapeptide was identified as the natural ligand for the opioid-like receptor at

the end of 1995 and was named nociceptin (67) or orphanin FQ (80). This novel pep-

tide�receptor system is now considered “a non-opioid branch of the opioid family” of pep-

tides and receptors (22); this definition is based from one side on close structural and

transductional similarities and from the other on the pharmacological and functional dif-

ferences between the N�OFQ – NOP receptor and the classical opioid systems (9,68).

The genes coding for the N�OFQ precursor (ppN�OFQ) and the NOP receptor proteins

are now cloned in various species. The structural organization of ppN�OFQ is similar to

opioid peptide precursors, supporting the view of a common origin for the opioid systems

and the N�OFQ-NOP receptor system (69,75). In addition to N�OFQ, the precursor may

encode two other biologically active peptides, named nocistatin (77) and N�OFQ2 (87),

which do not bind the NOP receptor. Anatomic studies have revealed high levels of ex-

pression of the N�OFQ messenger RNA in brain structures involved in sensory, emotional

and cognitive processing (81). NOP receptors are located both pre- and post-synaptically

in various areas of the central nervous system, in particular in the forebrain (cortical areas,

olfactory regions, limbic structures, thalamus), throughout the brainstem (central peri-

aqueductal gray, substantia nigra, several sensory and motor nuclei), and in both the dorsal

and ventral horns of the spinal cord (70). NOP mRNA and binding sites exhibit approxi-
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mately the same distribution pattern, indicating that the NOP receptor is mainly located on

local neuronal circuits. The NOP receptor is also expressed in the peripheral nervous

system (70). The diffuse distribution of NOP mRNA and binding in the central nervous

system supports an extensive role for N�OFQ in a multitude of functions. Indeed, animal

studies demonstrated that N�OFQ, via NOP receptor activation, modulates several bio-

logical functions including pain transmission, stress and anxiety, learning and memory,

locomotor activity, food intake, and the motivational properties of drugs of abuse. N�OFQ

may also intervene in the regulation of the functions of peripheral systems such as the car-

diovascular, gastrointestinal, renal, genitourinary and respiratory (9,68). It is worthy of

mention that the inhibitory effect of N�OFQ on the micturition reflex, well documented in

rodents (56), has been recently confirmed in patients with neurogenic bladder (54,55).

Understanding of the biological roles played by the N�OFQ-NOP receptor system is, to

a major extent, dependent upon the identification of highly potent and NOP selective

ligands, especially antagonists. Currently available ligands for the NOP receptor have

been recently reviewed (99). They can be divided into three groups based on their chemi-

cal nature: i) small molecules discovered via high throughput screening within pharma-

ceutical industry, e.g., the NOP selective antagonists J-113397 (1-[(3R,4R)-1-cyclooctyl-

methyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1,3-dihydro-benzimidazol-2-one, (78)) and

SB-612111 {(–)-cis-1-methyl-7-[[4-(2,6-dichlorophenyl) piperidin-1-yl]methyl]-6,7,8,9-

tetrahydro-5H-benzocyclohepten-5-ol, (98)}, or the selective agonist Ro 64-6198

{[(1S,3aS)-8-(2,3,3a,4,5,6-hexahydro-1H-phenalen-1-yl)-1-phenyl-1,3,8-triaza-spiro[4.5]de-

can-4-one], (40)}; ii) short peptides identified by screening of synthetic peptide combi-

natorial libraries, e.g., the NOP selective partial agonists Ac-RYYRWK-NH2 and

Ac-RYYRIK-NH2 (28) or the non-selective NOP antagonist peptide III-BTD (2); and iii)

N�OFQ related peptides identified by classical structure-activity relationship studies. Our

research group contributed in this latter area with the identification and pharmacological

characterization of the following NOP ligands: the full agonists N�OFQ(1–13)-NH2 and

N�OFQ-NH2 (5,33), the partial agonist [Phe1Ø(CH2-NH)Gly2]N�OFQ(1–13)-NH2 (6,34),

and the pure antagonist [Nphe1]N�OFQ(1–13)-NH2 (8,35). More recently, two highly

potent NOP agonists were identified by addition of a fluorine atom at the para position

of Phe4, generating [(pF)Phe4]N�OFQ(1–13)-NH2 (4,36,83), or through introduction in

position 14 and 15 an extra couple of basic residues Arg, Lys generating [Arg14,

Lys15]N�OFQ (76,86). We combined in the N�OFQ-NH2 sequence the chemical modifi-

cations which reduce ([Phe1Ø(CH2-NH)Gly2]) or eliminate ([Nphe1]) agonist efficacy

with those which increase agonist potency ([(pF)Phe4] and [Arg14Lys15]) thus generating a

novel series of NOP ligands (37). Among these, the most interesting molecules were the

pure antagonist [Nphe1, Arg14, Lys15]N�OFQ-NH2 (UFP-101), the full agonist [(pF)Phe4,

Arg14, Lys15]N�OFQ-NH2 [UFP-102, (12)] and the partial agonist [Phe1Ø(CH2-NH)Gly2,

(pF)Phe4, Arg14, Lys15]N�OFQ-NH2.

In the present article, we summarized the pharmacological features of UFP-101 as de-

termined in a series of in vitro and in vivo assays. Moreover, some biological actions

and possible therapeutic indications of NOP ligands are discussed on the basis of results

obtained with UFP-101 and i) other NOP antagonists, especially J-113397 and

[Nphe1]N�OFQ(1–13)-NH2; ii) results obtained in knockout animals (NOP receptor

(NOP–�–, (73)) and ppN�OFQ (ppN�OFQ–�– (48) mice), iii) other pharmacological tools
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useful for blocking N�OFQ – NOP receptor signaling such as oligo antisense or anti-

bodies targeting the peptide or the receptor.

PHARMACOLOGY

Basic Pharmacological Profile of UFP-101

The cellular actions induced by N�OFQ via NOP receptor activation are similar (if not

superimposable) to those elicited by classical opioids. In fact, in different cell types, NOP

receptor activation inhibited adenylyl cyclase and Ca2+ channels while activating K+

channels via pertussis toxin-sensitive G-proteins (39). This indicates that NOP receptors

couple to the Gi�o class of G-proteins. Via these cellular actions, NOP receptors located

on neurons produced robust inhibitory effects either by reducing neurotransmitter release

(presynaptic localization) or cellular excitability (postsynaptic localization). Thus, the

ability of N�OFQ to promote GTPã[35S] binding and to inhibit forskolin stimulated cAMP

accumulation in cell cultures, to reduce neurogenic contractions in isolated tissues, and to

inhibit neurotransmitter release and stimulate K+ conductance in various brain prepara-

tions, was used for developing a rather large series of in vitro pharmacological prepara-

tions suitable for investigating novel NOP ligands with different biochemical, bioassay,

neurochemical and electrophysiological approaches. UFP-101 data obtained by different

laboratories with such approaches are summarized in Table 1.
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TABLE 1. In vitro pharmacological profile of UFP-101

Preparation N�OFQ action pEC50 UFP-101 action pA2

Refer-
ences

CHOhNOP � GTPã[35S] 8.7 comp antagonism 9.1 (11)

CHOhNOP � cAMP 11.0 comp antagonism 7.1 (11)

CHOhNOP � NOP internalization ND antagonism — (27)

Vas deferens (m) � contractions 7.7 comp antagonism 7.3 (11)

Vas deferens (r) � contractions 7.2 comp antagonism 7.3 (11)

Ileum (gp) � contractions 8.1 comp antagonism 7.2 (11)

Bronchus (h) � contractions �7 antagonism ND (1)

Monocytes (h) � chemotaxis �12 comp antagonism 7.0 (92)

CC synaptosomes (r) � 5-HT release 7.5 comp antagonism 7.7 (11)

CC synaptosomes (r) � NE release 7.7 antagonism ND (61)

CC synaptosomes (m) � 5-HT release 8.6 antagonism ND (65)

Locus coeruleus slices (r) � K+ current ND antagonism ND (31)

Dorsal raphe slices (r) � K+ current ND antagonism ND (31)

Periaquedutal gray slices (r) � K+ current 7.3 antagonism ND (16)

Substantia nigra slices (r) � DA neuron firing ND antagonism ND (63)

Abbreviations: h, human; m, mouse; r, rat; gp, guinea pig; CC, cerebrocortical; 5-HT, serotonin; NE,

norepinephrine; DA, dopamine; comp, competitive.



UFP-101 binds with high affinity (pKi 10.2) and selectivity (�3000 fold over classical

opioid receptors) to the human recombinant NOP receptor expressed in CHO cells (11). In

functional studies, such as the stimulation of GTPã[35S] binding and the inhibition of

forskolin stimulated cAMP accumulation in CHOhNOP cells, UFP-101 competitively an-

tagonized N�OFQ effects being inactive per se (Table 1). In the GTPã[35S] binding assay,

UFP-101 antagonistic properties were also confirmed against a panel of NOP agonists

including the peptides N�OFQ(1–13)NH2, [(pF)Phe4]N�OFQ(1–13)-NH2 and [Arg14,

Lys15]N�OFQ, and the non-peptide Ro 64-6198 (64). In the same CHOhNOP preparation,

UFP-101 also prevented the internalization of NOP binding sites induced by N �OFQ,

being inactive when tested alone (27).

The pure and competitive antagonistic profile of UFP-101 was confirmed using prepa-

rations expressing native NOP receptors and bioassay, neurochemical and electrophysiolo-

gical techniques (see Table 1 and, as an example of Schild analysis, Fig. 1). Similar results

were also obtained using tissues of human origin such as the isolated bronchus and mono-

cytes where UFP-101 antagonized N�OFQ inhibition of electrically induced contractions

(1) and chemotaxis (92), respectively.

With respect to antagonist potency, in the various preparations UFP-101 displayed pA2

values in the range 7.0–7.7, with the only exception of the GTPã[35S] binding assay

where a pA2 value of 9.1 was obtained. Similar pA2 values in the various preparations

have been obtained with other NOP selective antagonists such as the peptide
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[Nphe1]N�OFQ(1–13)-NH2 (range 6.0–6.7) (8,10) and the non peptide J-113397 (range

7.4–8.2) (3,10). Collectively, these data demonstrated that the functional sites, which me-

diated the effects of N�OFQ in the various preparations belong to the same receptor type,

i.e., the NOP receptor.

The antagonist potency of UFP-101 is approximately ten fold higher than that of the

NOP antagonist [Nphe1]N�OFQ(1–13)-NH2 (8,9); this difference in potency is similar to

that of the agonists N�OFQ and [Arg14, Lys15]N�OFQ (76,86). Therefore, the insertion of

Arg-Lys in position 14 and 15 produces the same effects (increase of potency, no changes

in efficacy) when applied to either the agonist (N�OFQ) or antagonist ([Nphe1]N�OFQ)

chemical templates (37).

Collectively data obtained in vitro in a variety of preparations with different ap-

proaches demonstrated that UFP-101 behaves as a potent, competitive and selective

antagonist at NOP receptors.

In Vivo Actions of UFP-101

In vivo, UFP-101 has been challenged with N�OFQ in a series of experiments aimed at

the investigation of the role of the N�OFQ-NOP receptor system in regulating various

biological functions including pain transmission, locomotor activity, mood-related be-

haviors, drug abuse, food intake and cardiovascular, kidney and gastrointestinal functions

(Table 2). In the following sections the actions of UFP-101 will be briefly summarized

and discussed relative to data obtained with other NOP antagonists (particularly J-113397

and [Nphe1]N�OFQ(1–13)-NH2), with NOP–�– and ppN�OFQ–�– mice, and oligo anti-

sense or antibodies targeting the peptide or the receptor.

Pain transmission

The relationships between the N�OFQ – NOP receptor system and pain transmission

are complex (100). Most of the available data suggest that N �OFQ signaling has opposite

actions at supraspinal and spinal levels being pronociceptive in the brain and antinocicep-

tive in the spinal cord. The data we obtained using the tail withdrawal assay in mice are

consistent with this view. In fact, N�OFQ given intracerebroventricularly (i.c.v.) in the

0.1–10 nmol dose range produces clear pronociceptive effects (7) while it evokes

antinociceptive actions when administered intrathecally (i.t.) (84). Both these actions of

N�OFQ are no longer evident in animals treated with 10 nmol of UFP-101 (11) (Fig. 2).

This indicates that NOP receptors are involved in both actions. This conclusion is corrobo-

rated by knockout studies which demonstrated that both the supraspinal pronociceptive

and spinal antinociceptive effects of N�OFQ are no longer evident in NOP–�– mice (73,

84). Worthy of mention are the effects produced by UFP-101 alone: the peptide evoked a

clear antinociceptive effect when given i.c.v. (11) whilst being inactive following spinal

administration (Fig. 2). These results may suggest a tonic activation of the endogenous

N�OFQ – NOP receptor supraspinal (but not spinal) system and this view is strengthened

by the fact that i.c.v. administration of other NOP receptor peptide antagonists such as

[Nphe1]N�OFQ(1–13)-NH2 (8) and retroN�OFQ-methyl-ester (41) produced similar ef-

fects. However, it should be noted that conflicting results have been reported with non-

peptide NOP antagonists given systemically with no effect reported for J-113397 (78) and
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TABLE 2. In vivo pharmacological profile of UFP-101

Test�Assay N�OFQ action Effective dose UFP-101 action Effective dose References

Tail withdrawal (m, i.c.v.) � TW latencies 1 nmol antagonism* 10 nmol (11)

Tail withdrawal (m, i.t.) � TW latencies 1 nmol antagonism 10 nmol (84)

Locomotion (m, i.c.v.) � spontaneous LA 1 nmol antagonism 10 nmol (11)

Locomotion (m, i.c.v.) ��� spontaneous LA 0.1–5 nmol antagonism 10 nmol (53)

Rotarod (r, SNc) � performance 0.1 nmol antagonism* 1 nmol (63)

Electromyography (r, SNc) � muscle tone 10 nmol antagonism* 30 nmol (63)

Bar test (r, SNc) ND — � catalepsia 30 nmol (62)

Forced swimming (m, i.c.v.) no effect — � immobility time 3 nmol (30)

Forced swimming (r, i.c.v.) ND — � immobility time 10 nmol (31)

Tail suspension (m, i.c.v.) no effect — � immobility time 10 nmol (31)

Microdialysis (r, SNc) � nigral Glu 10 µM antagonism* 10 ìM Marti et al., PC

Microdialysis (r, SNc) � striatal DA 10 ìM antagonism* 10 ìM (63)

Microdialysis (m, i.c.v.) � accumbal DA 7 nmol antagonism 5 nmol (47)

Food intake (r, i.c.v.) � food intake 4 nmol antagonism 12 nmol Polidori et al., PC

Cardiovascular (gp, i.v.) � heart rate & blood pressure 6 nmol antagonism 60 nmol (38)

Cardiovascular (gp, i.v.) � blood NE 6 nmol antagonism 60 nmol (38)

Kidney function (m, i.c.v.) � diuresis 3 nmol antagonism 30 nmol Kapusta et al., PC

Kidney function (r, i.c.v.) � diuresis 3 nmol antagonism 30 nmol Kapusta et al., PC

Gastric function (r, i.c.v.) � alcohol induced lesions 0.5 nmol antagonism 2 nmol (71)

Gastric function (r, i.p.) � alcohol induced lesions 2 nmol antagonism 20 nmol (71)

Abbreviations: m, mouse; r, rat; gp, guinea pig; SNc, substantia nigra parts compacta; i.c.v., intracerebroventricular; i.t., intrathecal; i.v., intravenous; TW, tail

withdrawal; LA, locomotor activity; ND, not determined; Glu, glutamate; DA, dopamine; NE, norepinephrine; PC, personal communication.

*In these assays UFP-101 per se induces changes opposite to that evoke by N�OFQ: This suggests a tonic control of these biological functions by N�OFQergic

pathways.



antinociceptive effects reported for JTC-801 (91) (which displays low NOP selectivity).

Moreover, the lack of effect of UFP-101 after spinal administration in the tail withdrawal

assay does not exclude the possibility that the spinal N�OFQ system can be activated

under different experimental conditions. The results obtained by the group of Zeilhofer are

worthy of mention: knockout mice for either the NOP receptor or the ppN�OFQ gene dis-

played a similar hyperalgesic phenotype in the formalin test (24) and, in this assay,

pronociceptive actions have been reported in response to systemic administration of

J-113397 to rats (96) and, more recently, to mice (85). Experiments are under way in our

laboratories to investigate the action of UFP-101 after i.c.v. and i.t. administration in the

mouse formalin test.

In summary, although much remains to be done before reaching a firm conclusion on

this topic, the available information indicates that the net effect on pain threshold of

blocking N�OFQergic signaling strongly depends on both the level of transmission (spinal

vs. supraspinal) and on the type of nociceptive stimulus adopted (acute vs. tonic).

Locomotor activity

In the first paper reporting the identification of N�OFQ as the endogenous ligand of the

NOP receptor it was shown that, after i.c.v. injection, the peptide reduces spontaneous lo-

comotor activity in mice (80). This effect was later confirmed both in mice (74,82) and in

rats (26) and was demonstrated to be exclusively due to NOP receptor activation by both

receptor antagonist {e.g., [Nphe1]NOFQ(1–13)-NH2 (82)} and in knockout (73) studies.

In agreement with these findings, UFP-101 prevented the inhibitory effect of i.c.v.

N�OFQ on spontaneous locomotor activity in mice (11). Similar results were also ob-

tained by Kuzmin et al. who demonstrated that UFP-101 antagonized the inhibitory effects

of the NOP selective non-peptide agonist Ro 64-6198 (53). At doses effective against

N�OFQ, UFP-101 did not modify locomotor activity per se (11) suggesting that this
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function is not under the tonic control of the N�OFQ endogenous system. Different and in-

teresting results were recently obtained by the group of Morari on the effects of N�OFQ

on rat rotarod performance. N�OFQ microinjected in the substantia nigra pars reticulata

impaired animal performance on the rotarod apparatus. This effect was sensitive to

UFP-101, which, when tested alone, produced an effect opposite to that of the natural

ligand enhancing animal performance (63). The involvement of the NOP receptor in this

action of UFP-101 is suggested by the fact that similar results were obtained by both

intranigral and systemic administration of J-113397 and that NOP–�– mice outperformed

NOP+�+ animals in the rotarod test (63). Collectively, these results indicate that endo-

genous N�OFQergic pathways are activated during exercise-driven locomotion and

inhibit motor performance. On the basis of these experimental data NOP selective anta-

gonists are worthy of evaluation in the treatment of conditions characterized by hypo-

locomotion, such as Parkinson’s disease. The very recent observation (62) that UFP-101

reverses haloperidol induced akinesia (a model of functional parkinsonism) further

strengthens this view.

Mood-related behaviors

Using the mouse forced swimming test, an animal model widely used for the screening

of potential antidepressants (23), it has been shown that two chemically unrelated NOP

receptor antagonists, [Nphe1]N�OFQ(1–13)-NH2 and J-113397 given i.c.v. and i.p., respec-

tively, produce a dose-dependent reduction of immobility time. Under the same experi-

mental conditions, N�OFQ and the non-selective opioid receptor antagonist naloxone are

inactive (79). This initial observation was later confirmed and extended using UFP-101.

This NOP receptor antagonist dose-dependently reduced the immobility time in the mouse

forced swimming assay and its effects were reversed by the co-administration of N�OFQ,

which was inactive when tested alone (30). In addition, NOP–�– mice showed a reduced

immobility time compared to that observed in wild-type animals (30). The antidepres-

sant-like properties of the NOP antagonist UFP-101 were further explored across species

(mice and rats) and assays (forced swimming and tail suspension tests). UFP-101 reduced

immobility time of mice subjected to the tail suspension test and NOP–�– animals also dis-

played an antidepressant-like phenotype in this assay (31). UFP-101 decreased immobility

time and increased climbing time in rats submitted to the forced swimming test (31). Thus,

results obtained using combined pharmacological and genetic approaches, indicate that

blockade of the N�OFQ-NOP receptor signaling in the brain produces antidepressant-like

effects in distinct species and animal models and support the NOP receptor as a candidate

target for the development of innovative antidepressant drugs.

Little is known about the mechanism by which UFP-101 (and the other NOP selective

antagonists) elicits its antidepressant-like effects. It should be noted at this point that

UFP-101 antagonizes N�OFQ-induced presynaptic inhibition of norepinephrine (61) and

serotonin (11) release in cortical preparations, and also prevents K+-channel-mediated hy-

perpolarization triggered by N�OFQ in both locus coeruleus and dorsal raphe neurons

(31). The antidepressant-like effects of UFP-101 in the mouse forced swimming test were

clearly reduced in animals pretreated with the serotonin synthesis inhibitor PCPA (31). Al-

though the involvement of other mechanisms and neurochemical systems can not be ruled

out, these series of experiments suggest that the serotoninergic system is implicated in the

antidepressant-like effects induced by NOP antagonists, which might be brought about by
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their ability to prevent the inhibitory actions of N�OFQ on dorsal raphe neurons and�or on

their terminals in the cerebral cortex.

Drug abuse

In contrast to opioids, N�OFQ does not produce either preference or aversion in the

conditioned place preference test (25). On the other hand, the peptide inhibits conditioned

place preference to various drugs of abuse including morphine (17,72,88), cocaine

(49,88), alcohol (18,52), amphetamine (50), and methamphetamine (101). In some of

these studies, the involvement of NOP receptors in the action of N�OFQ was demon-

strated with the use of the peptide antagonist [Nphe1]N�OFQ(1–13)-NH2 (18,101). More

recently, the ability of buprenorphine to modulate ethanol intake in alcohol-preferring rats

has been investigated (19). Buprenorphine is a partial agonist at classical opioid receptors

but is also able to activate the NOP receptor although with low potency (95). At low

doses, buprenorphine increased ethanol consumption whereas at high doses the drug re-

duced it. The effects of low doses of buprenorphine were antagonized by naltrexone while

those evoked by high doses were inhibited by UFP-101. These results suggest that

buprenorphine possesses dualistic effects on ethanol consumption; low doses stimulate al-

cohol intake via activation of classic opioid receptors while higher doses reduce alcohol

intake via activation of NOP receptors (19). Similar results were obtained investigating

by Lutfy et al. (59) who demonstrated, using receptor antagonist (J-113397) and knockout

(NOP–�– mice), that the reduced analgesic effect of high doses of buprenophine is due to

NOP receptor activation.

Cardiovascular and kidney function

N�OFQ produces significant changes in cardiovascular and renal function following

administration into the periphery or central nervous system in different animal species.

With respect to peripheral effects, i.v. bolus N�OFQ produces a rapid and dose-dependent

hypotension and bradycardia in conscious or anesthetized animals. These responses are in-

sensitive to treatment with the non-selective opioid antagonist, naloxone (13,32,60). In-

stead, as demonstrated in rats, mice and guinea pigs, the reduction in heart rate, mean ar-

terial pressure and corresponding decrease in plasma norepinephrine concentration

produced by i.v. bolus N�OFQ are prevented by i.v. pretreatment with the selective NOP

receptor antagonists [Nphe1]N�OFQ(1–13)-NH2 (15,89) or UFP-101 (38). At a time when

the cardiovascular responses to i.v. bolus N�OFQ (100 nmol�kg) are blocked by high dose

UFP-101 pre-treatment (900 nmol�kg, i.v.) the cardiovascular depressor, water diuretic

and renal sympathoinhibitory responses to injection of N�OFQ (or NOP receptor partial

agonists) into the brain (5.5. nmol, i.c.v.) are not altered (45). Collectively, these findings

suggest that UFP-101 has limited (if any) ability to cross the blood-brain barrier and that

this selective NOP receptor antagonist may be useful to differentiate cardiovascular re-

sponses evoked by activation of endogenous peripheral versus central NOP receptor

systems.

N�OFQ also produces hypotension, bradycardia and water diuresis following ad-

ministration into the brain (42). In urethane anesthetized rats, pretreatment with

[Nphe1]N�OFQ(1–13)-NH2 prevented the hypotensive and bradycardic responses pro-

duced by microinjection of N�OFQ into the lateral ventricle (15) and commissural subnu-

cleus of the nucleus tractus solitarius (90). Similarly, pretreatment of conscious rats with

UFP-101 into the paraventricular nucleus of the hypothalamus antagonized the cardiovas-
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cular depressor and diuretic responses to microinjection of N�OFQ into this brain site

(51). In recent studies and as demonstrated in Fig. 3, we have shown that central

pretreatment (2 h) of CD-1 mice with UFP-101 (10 or 30 nmol, i.c.v.), which itself did

not alter urine output, prevented the diuretic response produced by i.c.v. N�OFQ (1 or

3 nmol). In related studies, we have also observed that renal excretory function is not

altered in CD-1 mice following i.c.v. co-injection of N�OFQ (3 nmol) and UFP-101

(30 nmol) (Rizzi and Kapusta, personal communication). In contrast to these findings, it

should be noted that in rats (mice not tested), i.c.v. injection of NOP receptor partial

agonists [e.g., Phe1y(CH2-H)Gly2]N�OFQ(1–13)-NH2] produce cardiovascular (bradycar-

dia and hypotension) and renal excretory responses (water diuresis) similar to those

elicited by central N�OFQ (43). These findings indicate that the cardiovascular and renal

responses produced by i.c.v. N�OFQ involve central NOP receptor activation and that this

system can be affected differently by selective NOP receptor antagonists and partial

agonists.

CONCLUSIONS

Current in vitro and in vivo data obtained with different approaches, techniques and

models converge in demonstrating that UFP-101 is a useful pharmacological tool for the

investigation of the central and peripheral biological functions regulated by the
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Fig. 3. Effects of UFP-101 on changes in cumulative (2 h) urine output produced by the i.c.v. injection of

nociceptin�orphanin FQ (N�OFQ) in conscious CD-1 mice. i.c.v. UFP-101 (10 or 30 nmol) was administered as

a pretreatment 2 h prior to N�OFQ (1 or 3 nmol) injection. Data are mean ± S.E.M. of at least 10 mice per group.

*p < 0.05, significantly different from the effect of saline.



N�OFQ – NOP receptor system and for defining the therapeutic potential of NOP receptor

ligands.
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