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S1: Distribution of the disease burden 1
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Figure I. Distribution of the disease burden B0. Left column: absence of treatment
(c = 0). Middle column: medium treatment strength (c = 0.5). Right column: maximal
treatment strength (c = 1). Top row: Low infectivity (β = 1.5 × 10−5). Middle row:
Medium infectivity (β = 2.5×10−5). Bottom row: High infectivity (β = 4.5×10−5). Each
panel comprises of a histogram of the disease burden for≥ 1800 simulation runs per parameter
set (up to 20,000). The insets represent zoom-ins into the region of low disease burdens
(between 0 and 500). The blue vertical dashed line in these insets represents an arbitrary
threshold for defining a “successful outbreak”, set at 300 days. For most parameter values,
this threshold sets a clear limit between the two sub-distributions of B0. The simulation
runs are divided then into two types, one type produces small to nonexistent outbreaks
whereas the other produces full-fledged outbreaks. The only parameter sets for which this
distribution of disease burdens B0 is unimodal and concentrated around 0 correspond to high
doses combined with low transmission coefficients (top-right panel).
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S2: Derivation of the outbreak probability from the dis- 2

tribution of secondary cases 3

We define the outbreak probability as the probability that the disease burden reaches at least 4

300 days. Unless R0 is small and the dose high, the distribution of the burden is bimodal 5

with either very large or very small epidemics. We therefore can determine the outbreak 6

probability as the probability of non-extinction of a branching process. For this, we use the 7

distribution of secondary cases obtained from simulations, PABM(Y = k). The corresponding 8

probability generating function is given by 9

f(s) =

∞∑
k=0

PABM(Y = k)sk, (S2.1)

and the extinction probability q of the process is the smallest fixed point in [0, 1]: 10

q = f(q), (S2.2)

see e.g. [1]. We can determine q numerically, and obtain the outbreak probability as 11

Poutbreak = 1− q. 12

This approach is not suitable for small R0 and high doses, where the distribution of the 13

burden is unimodal but is in very good agreement with simulation results when the dis- 14

tribution is bimodal (see Fig II). Since the number of secondary infections is determined 15

in the absence of resistance evolution, this confirms that the possibility of resistance evolu- 16

tion is negligible for the assessment of the outbreak probability (at least when the burden 17

distribution is bimodal). 18
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Figure II. Comparison of the outbreak probability as observed from the mea-
sured disease burden and the outbreak probability calculated from the distribu-
tion of the secondary cases of the first infected individual. Values obtained with
three different transmission coefficients are presented. The squares represent the value cal-
culated from the distribution of secondary cases. The dots, in a lighter shade, represent the
value measured from the disease burden observed in the simulations. The truncated arrows
represent the 95% confidence intervals of the mean. As expected, the calculated outbreak
probability gives accurate results except for situations with low transmission coefficient and
high dose, as seen in the blue curves and, to a lesser extent, in the green curves. In blue:
β = 1.5 × 10−5. In green: β = 2.0 × 10−5. In orange: β = 3.0 × 10−5. Between 2200 and
22000 runs of simulation were performed per transmission coefficient and treatment dose.

S3: Relation between the nested agent-based model and 19

the classical SIR model 20

S3.1 Transition from the agent-based model to the SIR model 21

In this section, we describe in more detail the transition from the full nested model to the 22

classical SIR model defined by Eq (3) in the main text. The flow diagram of the SIR model 23

is shown in Fig III. 24
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Figure III. Diagram of the SIR model.

The parameter values for the SIR model directly derive from simulations of the within- 25

host model Eq (1) (see Fig 2B-C). The recovery rate γS (γR) is measured as the average time 26

a single individual infected with the sensitive (resistant) strain spends being infectious. It is 27

estimated over 105 stochastic runs of the within-host model. The probability of emergence 28

pe is measured as the fraction of runs where the resistant pathogen load reaches a threshold 29

of 100, after the host has been infected with the sensitive strain. 107 runs of simulations are 30

performed to estimate pe(c). The parameter β is the same as in the agent-based model. To 31

obtain analytical expressions for the recovery rates, we fit the function 32

γ(c) = a ·

(
c
c0

)b
1 +

(
c
c0

)b + v. (S3.3)

to the data obtained from the within-host simulations. For γS(c), we obtain a = 0.076, 33

b = 10.4, c0 = 0.30, v = 0.11. For γR(c), we obtain a = 0.072, b = 20.3, c0 = 0.60, v = 0.11. 34

To fit the probability of within-host evolution of resistance, we use the function 35

p(c) = a1e
−
(
c−b1
c1

)2

+ a2e
−
(
c−b2
c2

)2

+ d, (S3.4)

yielding a1 = 0.0079, b1 = 0.42, c1 = 0.10, a2 = 0.0015, b2 = 0.10, c2 = 0.25, d = 0.00083. 36

Fits are performed in R. 37

S3.2 Comparison of the basic reproductive number between both 38

models 39

The basic reproductive number R0 (defined as the mean number of secondary cases caused by 40

one sensitively infected individual in a fully susceptible population) turns out to be identical 41

in both models (Fig IV). 42
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Figure IV. Comparison of the basic reproductive numbers measured for the
agent-based and the SIR models. For the nested model, each data point averages the
number of secondary infections that a single individual infected with the wild-type strain
caused in an otherwise fully-susceptible population of 10, 000 individuals, for a transmission
coefficient β, over 300 simulation runs. For the SIR model, each data point calculates the
R0 corresponding to the transmission coefficient β, following the formula R0 = βS0/γS(0).
As in the rest of our analysis, γS(0) = 0.1063 days−1. The dashed blue line corresponds to
y = x.

S3.3 Comparison of the disease burden to results from agent based 43

simulations 44

The SIR model does not allow for co-infection with both strains or for superinfection of 45

already-infected hosts. Moreover, the model allows for transitions between the two com- 46

partments for infected individuals in one direction only: from the compartment of hosts 47

infected with the sensitive-to-treatment strain to the compartment of hosts infected with the 48

resistant-to-treatment strain. Despite these strong simplifying assumptions, the results for 49

the disease burden are similar in both models (see Fig V) which justifies the introduction 50

of such a simpler model for the analysis of our results (even though the “valley” is more 51

pronounced in the deterministic SIR model). 52
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Figure V. Comparison of the disease burden in the SIR and nested models.
For the nested model (red dots), each dot represents the mean value over 800 to 4000 runs
of simulation. The transmission coefficients are given by: (A) β = 1.5 × 10−5; (B) β =
2.5× 10−5; (C) β = 3.5× 10−5; (D) β = 4.5× 10−5.

S3.4 Comparison to a stochastic SIR model 53

For the disease burden, we only consider large outbreaks where the number of pathogens are 54

high. These large numbers allow us to use a deterministic SIR model. Since the R0 is similar 55

in the SIR model and the agent-based model, we find good agreement between both models. 56

In other cases, stochastic effects matter, and we therefore briefly discuss the relation of 57

the agent-based model to a stochastic SIR model. 58

S3.4.1 Comparison of the distribution of the number of secondary cases 59

The number of secondary cases caused by a sensitively infected individual in a fully susceptible 60

population is a random variable, which we denote by Y in the following. Since the probability 61

of resistance emergence is small for any one individual, we ignore it in the following discussion 62

for simplicity. 63

In the SIR model, the waiting times for the next event (recovery or infection) are expo- 64

nentially distributed. This implies that the random variable Y is geometrically distributed 65
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with parameter 66

p =
γS(c)

βS0 + γS(c)
, (S3.5)

i.e., the probability that there are k secondary infections is given by 67

PSIR(Y = k) = (1− p)kp. (S3.6)

For the nested agent-based model, the recovery time is not exponentially distributed, and 68

the distribution of the number of secondary cases differs from a geometric distribution (see 69

Fig VI). 70
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Figure VI. Distribution of the number of secondary cases for an infectious in-
dividual in an otherwise fully-susceptible population, in the nested model. The
distributions are shown for four different transmission coefficients (one per panel) and for
three different treatment doses. Colours are used to distinguish between the doses. The
dashed lines represent a geometric distribution of mean identical to its corresponding distri-
bution. This would be the expected distribution for a stochastic SIR model with parameters
similar to the nested model presented here. The R0 indicated in each panel is the basic repro-
duction number in the absence of treatment associated with the transmission coefficient used
there. From left to right and top to bottom: β = 1.5× 10−5, β = 2.0× 10−5, β = 3.0× 10−5,
β = 4.0× 10−5. Between 1700 and 2100 runs of simulation were performed per transmission
coefficient and treatment dose.
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S3.4.2 The outbreak probability in a stochastic SIR model and in the nested 71

agent-based model 72

As long as infected individuals are rare in the population, the dynamics are highly stochastic 73

and the distribution of secondary cases is important. It is therefore not surprising that the 74

outbreak probability differs quantitatively between the agent based model and a stochastic 75

SIR model. As we argue in the main text and discuss in more detail below, the possibility 76

of resistance evolution usually does not influence the outbreak probability. It is therefore 77

sufficient to focus on patients that are infected with the sensitive strain. 78

The outbreak probability in the SIR model can be obtained using a branching process 79

approach based on Eq (S3.6) (or directly on a continuous-time birth-death process), leading 80

to the well-known result 81

Poutbreak(c) = 1− 1

R0(c)
. (S3.7)

For R0 = 2.3 and c = 0, this predicts an outbreak probability of about 57%, which is 82

considerable lower than in the agent based model (≈ 85%, see Fig 4). However, both models 83

agree in their qualitative predictions. In particular, Eq (S3.7) also predicts that high dose 84

treatment reduces the outbreak probability more strongly for low R0 than for high R0. 85

S4: SIR model with partial treatment coverage 86

We extend the SIR model by considering that only a fraction of the infected population
receives the treatment. Upon infection, the newly infected individuals are separated in two
compartments: a fraction f gets treatment (superscript T ) and a fraction 1− f is untreated
(superscript U). Here, γS(0), γS(c) are respectively the recovery rates of the untreated and
treated infected with the susceptible pathogen; γR(0), γR(c) are the recovery rates of the
untreated and treated infected with the resistant pathogen; pe(0), pe(c) are the probability
of emergence for untreated and treated individuals. The dynamics of the epidemics with
partial coverage is described by the system of differential equations:

Ṡ = −βS(IUS + ITS + IUR + ITR) (S4.8a)

˙IUS = βS(IUS + ITS )(1− f)− γS(0)IUS (S4.8b)

˙ITS = βS(IUS + ITS )f − γS(c)ITS (S4.8c)

˙IUR = βS(IUR + ITR)(1− f)− γR(0)IUR + pe(0)γS(0)IUS (S4.8d)

˙ITR = βS(IUR + ITR)f − γR(c)ITR + pe(c)γS(c)ITS (S4.8e)

Ṙ = (1− pe(0))γS(0)IUS + (1− pe(c))γS(c)ITS + γR(0)IUR + γR(c)ITR . (S4.8f)

The total burden is measured as 87

B =

∫ ∞
0

(IUS (t) + ITS (t) + IUR (t) + ITR(t))dt. (S4.9)

S5: Emergence of resistance in an endemic disease 88

We here consider an SIR model with birth and death (immigration and emigration), in which 89

the disease can persist rather than going extinct due to a shortage of susceptibles as in the 90

main text. Within this framework, we derive the hazard rate for the emergence of resistance. 91

For simplicity, we assume that the population is in endemic equilibrium prior to the emergence 92

of resistance. 93
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S5.1 Complete treatment coverage and lifelong immunity 94

By adding birth of susceptible individuals at total rate Λ and death at per-capita rate δ to
the model defined in Eq (3), we obtain:

Ṡ = Λ − β S (IS + IR)− δS, (S5.10a)

İS = β S IS − γS(c) IS − δIS , (S5.10b)

İR = pe(c) γS(c) IS + β S IR − γR(c) IR − δIR, (S5.10c)

Ṙ = (1−pe(c)) γS(c) IS + γR(c) IR − δR. (S5.10d)

We assume here that the death rate is the same for all individuals, independent of their 95

status (susceptible, infected, recovered). 96

As in the main text, we denote by R0 the basic reproductive number of the sensitive strain
in a fully susceptible population, R0 = βS0

γS(c)+δ = βΛ
(γS(c)+δ)δ . We assume that resistance has

not yet emerged (IR = 0). For R0 > 1, an endemic equilibrium with IS > 0 exists, and we
focus on this case. In equilibrium:

Seq(c) =
δ + γS(c)

β
, (S5.11a)

Ieq
S (c) =

Λ

δ + γS(c)
− δ

β
, (S5.11b)

Req(c) =
Λ

δ
− Seq(c)− Ieq

S (c). (S5.11c)

We now consider the stochastic emergence of resistance. Instead of the deterministic system 97

defined by Eq (S5.10), we study the corresponding stochastic system, where events happen at 98

the respective rates. With this, resistant infections appear de novo at rate pe(c)γS(c)Ieq
S (c). 99

Once there, resistance can either disappear after few infections or spread in the population. 100

Importantly, even if superior to the sensitive strain under sufficiently strong treatment, the 101

resistant strain can be lost from the population due to stochasticity. We therefore need to 102

determine the probability that resistance becomes endemic. The basic reproductive number 103

of the resistant strain, when the sensitive strain is at equilibrium, is given by 104

Rr,eq
0 (c) =

βSeq(c)

γR(c) + δ
. (S5.12)

From the basic reproductive number, the establishment probability of the resistant strain, 105

initially appearing in a single infection, can be obtained as 106

Pres(c) =

{
1− 1

Rr,eq0 (c)
if Rr,eq

0 (c) > 1,

0 else,
(S5.13)

[see e.g. 2, p. 107]. The condition Rr,eq
0 (c) > 1 is equivalent to γR(c) < γS(c). Note that 107

Pres(c) is independent of β. The advantage of higher infectivity with higher β is exactly 108

counterbalanced by a lower pool of targets of infection. Panels A and B in Fig VII show the 109

establishment probability of the resistant strain Pres(c) at the between-host level along with 110

the probability of resistance emergence at the within-host level pe(c). For low doses, resistance 111

cannot spread in the population since the pool of susceptibles is too low (γS(0) < γR(0)). 112

For high doses, the resistant strain has a low establishment probability since it is only very 113

slightly better than the sensitive strain. For intermediate doses, Pres(c) displays a maximum 114

just as the within-host probability of resistance. Both probabilities peak at similar doses. 115

This essentially comes since the within-host growth rates of both strains (determining pe) 116

determine the recovery rates (which in turn determine Pres). The peak in pe is close to doses 117

where the difference in the growth rates of the two strains is largest and spread of resistance 118

easiest (the higher number of de novo mutations for lower doses only has a small effect on 119
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the location of the peak in the parameter ranges considered); the peak in Pres is where the 120

difference in the recovery rates is largest. 121

Overall, we obtain the hazard rate for resistance emergence at the between host level as: 122

hres(c) = pe(c)γS(c)Ieq
S (c)Pres(c). (S5.14)

Fig VII shows the hazard rate and its components for two different values of R0. For 123

R0 = 1.75, the number of individuals that are infected by the sensitive strain drops by more 124

than 95% if a high dose is used, while this reduction is only ≈ 55% for R0 = 4 (Panels B 125

and F). For R0 = 4, the rate of appearance of the resistant strain peaks at the same dose 126

as the within-host probability of resistance, pe(c). As discussed before, the establishment 127

probability of the resistant strain at the population level, Pres(c), peaks at a similar dose as 128

well. Hence, there are no antagonistic effects between both components, and the hazard rate 129

is highest at the same dose as pe(c). In contrast, for R0 = 1.7, the sharp drop in susceptibles 130

with increasing drug dosage strongly affects the rate of appearance of the double resistant 131

strain, which therefore is highest for low doses. As a consequence, the hazard rate peaks at 132

lower doses than pe and Pres. 133

Ultimately, this implies that for low R0, the peaks of the hazard rate and the probability 134

of resistance emergence at the within-host level are shifted. There is hence a regime, where 135

lowering the drug dose reduces the probability that resistance emerges within a given patient 136

but increases the probability that resistance emerges and spreads at the between-host level. 137

The equilibrium population size of sensitively infected patients for a given dose c is given 138

by 139

Ieq(c) =
Λ

δ + γS(c)
− δ

β
=
δ

β
(R0 − 1) . (S5.15)

The ratio between the number of sensitively infected patients at dose 0 and dose 1 is hence 140

given by 141

F (R0,Γ) =
Ieq(c = 0)

Ieq(c = 1)
=
R0(0)− 1

R0(1)− 1
=

R0 − 1

ΓR0 − 1
(S5.16)

with

Γ =
γS(0) + δ

γS(1) + δ
.

The function F decreases in R0 and in Γ. In other words, the relative difference in the 142

equilibrium number of sensitively infected patients is large if R0 or Γ are small. R0 is small 143

if (1) the transmission coefficient β is small (2) the population size S0 is low (3) the natural 144

recovery rate in the absence of drug is large. Γ is low if γS(1)� γS(0). All these conditions 145

make it likely that the peak in the hazard rate is at a lower dose than the peak in the within- 146

host probability of resistance. (Note that the natural death rate δ has a double-edged effect: 147

it decreases R0 but increases Γ. However, δ is not the primary focus here.) 148
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Figure VII. Emergence of resistance in an SIR model with birth and death as defined
in Eq (S5.10) for two different values of R0. (A) and (E): Probability of establishment
of the resistant strain in the population (solid line) and probability of within-host resistance
(dotted line). (B) and (F): Number of individuals infected by the sensitive strain at endemic
equilibrium before resistance has emerged. (C) and (G): Rate of appearance of the resistant
strain in the population. (D) and (H): Hazard rate of resistance emergence (combining de
novo appearance and spread) at the population level. The gray bars illustrate the shift and
alignment, respectively, in the peaks between the hazard rate and the probability of within-host
resistance. All quantities got evaluated at discrete points (denoted by the symbols), for which we
had obtained simulation results for the within-host probability of resistance. Lines are included
for readability. Parameters: Λ = 10, δ = 10/S0 = 0.001. The within-host parameters are chosen
as in the main text.
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S5.2 Waning immunity (SIRS model) 149

Up to now, we have considered life-long immunity. We here discuss how results change if
immunity is lost at rate q:

Ṡ = Λ − β S (IS + IR)− δS + q R, (S5.17a)

İS = β S IS − γS(c) IS − δIS , (S5.17b)

İR = pe(c) γS(c) IS + β S IR − γR(c) IR − δIR, (S5.17c)

Ṙ = (1−pe(c)) γS(c) IS + γR(c) IR − δR − q R. (S5.17d)

This assumes that q is independent of dose (it is, however, conceivable that q is dose depen- 150

dent). 151

In the endemic equilibrium before the emergence of resistance, we have

Seq(c) =
δ + γS(c)

β
, (S5.18)

Ieq
S (c) =

δ + γS(c)

δ + δγS(c)
δ+q

×
(

Λ

δ + γS(c)
− δ

β

)
, (S5.19)

Req(c) =
Λ

δ
− Seq(c)− Ieq

S (c). (S5.20)

Note that the number of susceptibles does not change, i.e., the initial spread of resistance – 152

once there – is not altered (Pres(c) remains the same). However, the number of individuals 153

infected with the sensitive strain increases. The de novo appearance of resistance in the 154

population is hence increased. The hazard rate is obtained analogously to before. 155

In Fig VIII, one sees that the drug concentration at which the hazard rate is maximal 156

does not strongly depend on the duration of immunity. 157

S5.3 Incomplete treatment coverage 158

Analogously to before, we can add birth and death to Eq (S4.8). In the endemic equilibrium
before the emergence of resistance, we then have

Seq(c) =
(γS(c) + δ)(γS(0) + δ)

β((1− f)γS(c) + fγS(0) + δ)
, (S5.21a)

IT,eq(c) =
fΛ

γS(c) + δ
− fδ(γS(0) + δ)

β((1− f)γS(c) + fγS(0) + δ)
, (S5.21b)

IU,eq(c) =
(1− f)Λ

γS(0) + δ
− (1− f)δ(γS(c) + δ)

β((1− f)γS(c) + fγS(0) + δ)
, (S5.21c)

Req(c) =
Λ

δ
− Seq(c)− IT,eq(c)− IU,eq(c). (S5.21d)

In treated individuals, resistance appears at rate pe(c)γS(c)IT,eq
S (c), and in untreated in- 159

dividuals at rate pe(0)γS(0)IU,eq
S (c). The establishment probability of the resistant strain 160

differs, depending on whether it appeared in a treated or in an untreated individual. We 161

denote the respective probabilities by PTest(c) and PUest(c). In order to derive these establish- 162

ment probabilities, we approximate the initial phase of spread of resistance at the popula- 163

tion level by a two-type branching process, where one type corresponds to treated and the 164

other to untreated infections. We denote the corresponding extinction probabilities by QT (c) 165

and QU (c) (we give a derivation of QT (c) and QU (c) below). We can then approximate 166

PTest(c) ≈ 1−QT (c) and PUest(c) ≈ 1−QU (c). 167

With this, we obtain for the hazard rate 168

hres(c) = pe(c)γS(c)IT,eq
S (c)PTest(c) + pe(0)γS(0)IU,eq

S (c)PUest(c). (S5.22)
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Figure VIII. Emergence of resistance in an SIR model with birth and death and
waning immunity for two different birth/immigration rates and R0 = 1.75. Top row
(A-B): hazard rate as a function of treatment dose. Bottom row (C-D): number of infecteds
with the sensitive strain as a function of treatment dose. Panels A-C: Λ = 10, panels B-D:
Λ = 30. All quantities got evaluated at discrete points (denoted by the symbols), for which
we had obtained simulation results for the within-host probability of resistance. Lines are
included for readability. The within-host parameters are chosen as in the main text.
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δ = 10/S0 = 0.001. The within-host parameters are chosen as in the main text.

Fig IX shows the hazard rate for two different values of R0. We see that for small R0, the 169

hazard rate is largest for intermediate treatment coverage and intermediate doses. This is the 170

regime where competition with the sensitive strain is released while the “resistance input” is 171

high. 172

We now derive the extinction probabilities QT (c) and QU (c) of a two-type branching process
that is founded by a treated and an untreated resistant infection, respectively. An infected in-

dividual fails to cause a secondary infection with probability δ+γR(c)
βSeq(c)+δ+γR(c) if treated and with

probability δ+γR(0)
βSeq(c)+δ+γR(0) if untreated (this is the probability that it recovers or dies before it in-

fects anybody). In that case, the resistant strain goes extinct immediately. The probability that

at any time, the next event is an infection event (rather than death) is given by βSeq(c)
βSeq(c)+δ+γR(c)

( βSeq(c)
βSeq(c)+δ+γR(0) ). The newly infected individual receives treatment with probability f and re-

mains untreated with probability 1 − f . For the resistant strain to go extinct, both infected
individuals need to fail to cause a resistant outbreak. Putting all together, it therefore holds:

QT (c) =
δ + γR(c)

βSeq(c) + δ + γR(c)
+

βSeq(c)

βSeq(c) + δ + γR(c)
(fQT (c) + (1− f)QU (c))QT (c), (S5.23a)

QU (c) =
δ + γR(0)

βSeq(c) + δ + γR(0)
+

βSeq(c)

βSeq(c) + δ + γR(0)
(fQT (c) + (1− f)QU (c))QU (c). (S5.23b)
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The equations can be solved to give three pairs of solutions. Following the general theory 173

of branching processes, the extinction probability is given by the solution within the unit 174

cube that is closest to the origin [1]. 175

Solution 1 is given by 176

QT1 (c) = QU1 (c) = 1. (S5.24)

Solution 2 is given by:

QT2 (c) =
γR(c) + δ

2fSeq(c)β(γR(c)− γR(0))

×
(
βSeq(c) + γR(c)− γR(0) +

√
(βSeq(c) + γR(c)− γR(0))2 − 4fSeq(c)β(γR(c)− γR(0))

)
,

(S5.25a)

QU2 (c) =
γR(0) + δ

−2(1− f)Seq(c)β(γR(c)− γR(0))

×
(
βSeq(c)− γR(c) + γR(0) +

√
(βSeq(c) + γR(c)− γR(0))2 − 4fSeq(c)β(γR(c)− γR(0))

)
.

(S5.25b)

Solution 3 is given by:

QT3 (c) =
2(γR(c) + δ)

βSeq(c) + γR(c)− γR(0) +
√

(βSeq(c) + γR(c)− γR(0))2 − 4fSeq(c)β(γR(c)− γR(0))
,

(S5.26a)

QU3 (c) =
2(γR(0) + δ)

βSeq(c)− γR(c) + γR(0) +
√

(βSeq(c) + γR(c)− γR(0))2 − 4fSeq(c)β(γR(c)− γR(0))
.

(S5.26b)

Since 177

βSeq(c)− γR(c) + γR(0) +
√

(βSeq(c) + γR(c)− γR(0))2 − 4fSeq(c)β(γR(c)− γR(0))

= βSeq(c)− γR(c) + γR(0) +
√

(βSeq(c)− γR(c) + γR(0))2 + 4(1− f)Seq(c)β(γR(c)− γR(0))

> βSeq(c)− γR(c) + γR(0) +
√

(βSeq(c)− γR(c) + γR(0))2 ≥ 0,

(S5.27)

we know that QU2 (c) < 0. Solution 2 hence does not lie within the unit cube. For solution 3,
it holds that QT3 (c) > 0 and QU3 (c) > 0. We hence obtain for the extinction probabilities of
the branching process:

(
QT (c)
QU (c)

)
=


(
QT3 (c)
QU3 (c)

)
if QT3 (c) < 1 and QU3 (c) < 1,(

1
1

)
otherwise.

(S5.28a)

S6: Additional figures showing a trade-off between min- 178

imising resistance at the two scales 179

In Fig 3, we see that trade-offs appear for low transmission coefficients β. As discussed in 180

the main text, similar trade-offs appear for low S0 and for a strong treatment efficacy. This 181

can be seen in Fig X. In all these cases, the number of transmission events of the resistant 182

strain peaks at lower doses than the within-host probability of resistance. As pointed out 183

in the main text, for a very bad immune system, the opposite trade-off can appear. This is 184

shown in Fig XI. Note, however, the extremely high probability of within-host resistance for 185

this parameter regime. 186

15 SI



 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0  0.2  0.4  0.6  0.8  1

A
P

ro
b
a

b
ili

ty
 o

f 
e

m
e

rg
e

n
c
e

Initial Population size S0

 0

 200

 400

 600

 800

 1000

 0  0.2  0.4  0.6  0.8  1

B

S0=10000

R
e
s
is

ta
n
t−

s
tr

a
in

 t
ra

n
s
m

is
s
io

n
 e

v
e
n

ts

 0

 2000

 4000

 6000

 8000

 0  0.2  0.4  0.6  0.8  1

C

S0=15000

R
e
s
is

ta
n
t−

s
tr

a
in

 t
ra

n
s
m

is
s
io

n
 e

v
e
n

ts

 0

 5000

 10000

 15000

 20000

 0  0.2  0.4  0.6  0.8  1

D

S0=20000

R
e
s
is

ta
n
t−

s
tr

a
in

 t
ra

n
s
m

is
s
io

n
 e

v
e
n
ts

Dose

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0  0.2  0.4  0.6  0.8  1

E

P
ro

b
a

b
ili

ty
 o

f 
e

m
e

rg
e

n
c
e

Threshold for the onset of symptoms

50
75

100

 0

 2000

 4000

 6000

 0  0.2  0.4  0.6  0.8  1

F

threshold:
50 pathogens

R
e
s
is

ta
n
t−

s
tr

a
in

tr
a

n
s
m

is
s
io

n
 e

v
e
n

ts

 0

 2000

 4000

 6000

 0  0.2  0.4  0.6  0.8  1

G

threshold:
75 pathogens

R
e
s
is

ta
n
t−

s
tr

a
in

tr
a
n
s
m

is
s
io

n
 e

v
e

n
ts

 0

 2000

 4000

 6000

 0  0.2  0.4  0.6  0.8  1

H

threshold:
100 pathogens

R
e
s
is

ta
n
t−

s
tr

a
in

tr
a
n
s
m

is
s
io

n
 e

v
e
n
ts

Dose

Figure X. The effect of the population size S0 and the threshold for the onset of
symptoms on the optimal drug dose at the between-host level in comparison to
the within-host level. For Panels A-D, we used β = 1.5 × 10−5; for Panels E-H, we used
β = 2.5× 10−5.
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S7: Alternative measures of the overall disease impact 187

S7.1 Symptomatic disease burden 188

In the main text, we consider the disease burden based on the number of days that individuals 189

spend being infectious. This allows for a direct comparison of results from the agent-based 190

model to results from the SIR model. However, depending on context, the number of days 191

during which people show symptoms might be more relevant. We therefore considered this 192

measure as well (Fig XII). We see that it shows a very similar behavior. 193
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Figure XII. Total number of days spent suffering from symptoms by individu-
als of the infected population, as a function of the treatment dose, for various
transmission coefficients. Mean for 4600 to 18000 simulation runs per data point. The
confidence intervals are not shown as they are too small to be clearly seen on the plot. This
measure of the disease burden behaves very similarly to the burden measure introduced in
the main text.
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S7.2 The “valley” in the total number of infecteds 194

Another measure of treatment success is the total number of infecteds during the epidemic. 195

Fig XIII shows that the number of infecteds also shows a minimum followed by a maximum for 196

intermediate doses. However, contrarily to the disease burden, the total number of infected 197

hosts as a function of R0 shows no minimum at intermediary doses. 198
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Figure XIII. Number of infected hosts during the course of the epidemic as a
function of the treatment dose, for various R0.

S8: The “valley” in the disease burden and in the total 199

number of infected individuals 200

S8.1 The influence of pe on the valley 201

To investigate the influence of the within-host emergence of resistance on the disease burden, 202

we analyzed the SIR model with various values of pe. 203

We simulated the SIR model with the recovery rates γS and γR estimated from the within- 204

host simulations (see section S3.1), but we set different functions for how pe varies with the 205

dose. We considered four cases : pe estimated from the within-host simulations, pe divided 206

by 20, pe multiplied by 10, and pe set to a constant value (2.010−3), and we measured the 207

disease burden when varying the dose. 208

We observed that pe has little influence on the existence of a valley (Fig XIV). In particu- 209

lar, there is almost no difference between a constant pe and the pe estimated from within-host 210

simulations. However, the lower pe, the deeper the valley. 211
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Figure XIV. Influence of pe on the existence of a valley. The disease burden is
plotted as a function of dose for R0 = 2, with parameters γS and γR given in section S3.1.
Four scenarios are represented for the within-host probability of emergence of resistance:
the probability pe(c) given in section S3.1 (red), 1

20pe(c) (green), 10 × pe(c) (blue), and the
constant value pe = 2.010−3 (purple).

S8.2 Simplification: Two sequential epidemics 212

In our model, the resistant strain is absent initially and needs to arise de novo within a 213

host before it can spread in the population. The spread of the resistant strain therefore 214

occurs with a time delay compared to the spread of the sensitive strain. We here consider 215

the extreme case, where the two epidemics caused by the sensitive and the resistant strains 216

respectively occur strictly one after the other (cf. [3]): the first epidemic is caused by the 217

sensitive strain, the second epidemic is caused by the resistant strain, spreading among the 218

“leftover” susceptibles. This a drastic simplification of the true dynamics but we will see 219

below that the simplified model still reproduces the general pattern in the total number of 220

infecteds as observed in the full model. 221

The number of infecteds at the end of the sensitive epidemic is the solution to the equation 222

R∞S = S0

(
1− e−

β
γS(c)

R∞S
)
, (S8.29)

see e.g. [4, p. 28]. Likewise, the number of infecteds at the end of the subsequent resistant 223

epidemic is given through 224

R∞R = (S0 −R∞S )
(

1− e−
β

γR(c)
R∞R
)
. (S8.30)

The total number of infecteds once both epidemics are over is the sum 225

R∞ = R∞S +R∞R . (S8.31)

Figure XV shows this for three values of R0. 226

The basic reproductive number of the resistant strain after the first epidemic is RRes0 (c) = 227

βS0(c)
γR(c) , where S0(c) is the number of leftover susceptibles. The resistant strain hence needs 228

more than γR(c)
β susceptible individuals left to be able to spread. In Fig XV, the total 229
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number of infecteds is lowest at the concentration c? for which S0 − R∞S (c?) = γR(c?)
β . For 230

higher concentrations, the sensitive strain does not infect sufficiently many individuals to 231

generate herd immunity that would prevent a secondary epidemic by the resistant strain 232

(“overshooting”, see [3]). The critical concentration c? is shifted to the right with increasing 233

R0 (compare Fig XVA and B). IfR0 is too large, no such c? exists because at all concentrations 234

sufficiently many individuals gain immunity through infection with the sensitive strain. We 235

also observe that for low R0 and intermediate doses, a higher proportion of all infections is 236

caused by the resistant strain than for high R0 (cf. [5] for a similar observation on the effect 237

of R0 on the proportion of resistant cases in a model on optimal treatment coverage). 238

In the following, we derive an approximate formula for when a “valley” exists in the total
number of infecteds. It holds in the general case that:

R0 = βN0/γ.

Therefore, we have at dose c = c?:

RRes0 (c?) = β(S0 −RS∞(c?))/γR(c?)

We now use the above observation and put RRes0 (c?) = 1. We furthermore assume that the
resistant strain is not affected by the drug at concentration c?, which is a plausible assumption
and can also be seen from Fig XV and the recovery rates shown in Fig 2. We therefore set
γR(c?) = γR(0) = αγS(0) ≡ αγ0. With these rearrangements, we obtain:

RS∞(c?) =
γ0

β
(R0 − α)

with R0 the basic reproduction number of the sensitive strain in the absence of treatment,
R0 = βS0/γ0. It also holds true for all doses that:

RS∞(c) = S0(1− e−
β

γS(c)
RS∞(c))

Using the two equations above, we have at the valley:

γ0

β
(R0 − α) = S0(1− e−

β
γS(c?)

γ0
β (R0−α)

).

Thus,
γ0

βS0
(R0 − α) = 1− e−

γ0
γS(c?)

(R0−α)
.

After rearrangement of terms, we get:

α

R0
= e
− γ0
γS(c?)

(R0−α)
.

Then,

ln(
α

R0
) = − γ0

γS(c?)
(R0 − α).

And so, 239

γS(c?) =
γ0(R0 − α)

ln(R0)− ln(α)
≈ γ0(R0 − 1)

ln(R0)
. (S8.32)

The approximation holds for α close to 1, i.e. if the fitness cost of the resistant strain is 240

small. Since γS as a function of the dose c is generally strictly increasing (such as is the case 241

of a sigmoid function), the value of γS(c?) directly gives the value of c?, provided that such a 242

dose exists. If it does not exist, then there is no valley for the set of parameters considered. 243

We can read off several observations from Eq (S8.32). For this, first note that R0−1
ln (R0) 244

increases monotonically with R0. We therefore see that the valley shifts to the right for 245
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increasing R0 as also observed in Fig XV. When R0 becomes so large that γ0(R0−1)
ln(R0) ≥ 246

γmax := limc→∞ γS(c), then no valley exists. Putting differently, a valley exists if 247

R0 − 1

ln (R0)
<
γmax

γ0
, (S8.33)

i.e., the stronger the maximal effect of the drug, the larger the R0 for which we stop observing 248

a valley. In section S8.3, we will confirm these observations in a formal analysis of the full 249

model (considering the disease burden as in the main text). 250

From Eq (S8.33), we can calculate the maximal value of R0 for which a valley can be 251

observed. For the parameters used throughout the article, it holds that γmax/γ0 ≈ 1.7. With 252

this, we obtain Rmax
0 ≈ 2.7, which is lower than the value of R0 above which the valley 253

disappears in the full deterministic SIR model (close to R0 = 4, see Fig XIII). This is not 254

surprising since in the full model, the epidemics caused by the sensitive and the resistant 255

strain are overlapping. I.e., by the time the resistant strain starts spreading, the sensitive 256

strain has not used up all susceptible hosts that it could use up on its own for a given R0. 257

S8.3 Formal analysis of the full model and identification of the de- 258

cisive composite parameters 259

S8.3.1 An equivalent SIR model with time-dependent recovery rate 260

Our objective in this section is to simplify the SIR model (3) and to analytically show the 261

existence of a valley for certain sets of parameters. We transform the system of equations (3) 262

by considering the new variables I(t) = IS(t) + IR(t) and ϕ(t) = IS(t)
IS(t)+IR(t) . We obtain the 263

differential equation for ϕ 264

ϕ̇ =
İSI − IS İ

I2

=
βSIS − γSIS

I
− IS

I

İ

I

= (βS − γS)ϕ− ϕ
(
βS − (1− pe)γSϕ− γR(1− ϕ)

)
= ((1− pe)γS − γR)ϕ2 − (γS − γR)ϕ. (S8.34)

This is a Bernoulli equation, the solution of which depends on whether the coefficients are
equal to 0 or not. With the condition ϕ(0) = 1, it can be solved and leads to the three
possible solutions

ϕ(t) =



e−peγSt if γS =
γR

1− pe

1

1 + peγSt
if γS = γR

1

1 + peγS
γS−γR (e(γS−γR)t − 1)

otherwise.

If pe = 0, ϕ is a constant equal to 1, and otherwise, goes asymptotically to 0 for γS ≥ γR. In 265

the case where γS < γR, the asymptotic value of ϕ is not 0 but 266

lim
t→∞

ϕ(t) =
1

1 + peγS
γR−γS

. (S8.35)

Considering G(t) = (1−pe)γSϕ(t)+γR(1−ϕ(t)), which can be regarded as the global recovery 267

rate of the infected population, we obtain the SIR system of equations with a time-dependent 268

22 SI



 0

 2000

 4000

 6000

 8000

 10000

 0  0.2  0.4  0.6  0.8  1

A

in
fe

c
te

d
 i
n
d
iv

id
u

a
ls

R0 = 1.75

 0

 2000

 4000

 6000

 8000

 10000

 0  0.2  0.4  0.6  0.8  1

B

in
fe

c
te

d
 i
n
d
iv

id
u
a
ls

R0 = 2.2

 0

 2000

 4000

 6000

 8000

 10000

 0  0.2  0.4  0.6  0.8  1

C

in
fe

c
te

d
 i
n
d

iv
id

u
a

ls

dose

R0 = 4

sensitive

resistant

total

Figure XV. Number of infecteds in sequential epidemics caused by the sensitive
and the resistant strains. Blue line: number of infected in the epidemic caused by the
sensitive strain. Red line: number of infected in the subsequent epidemic caused by the
resistant strain. Black line: sum of both. Simulations are shown for three values of the basic
reproduction number R0. Panel A: R0 = 1.75, Panel B: R0 = 2.2, Panel C: R0 = 4. For
R0 = 4, the resistant strain cannot spread at all. The number of infected got determined at
discrete points (denoted by the symbols), for which we had obtained simulation results for
the recovery rates. Lines are included for readability.

23 SI



recovery rate 269

Ṡ = −βSI
İ = βSI −G(t)I (S8.36)

Ṙ = G(t)I.

The analytical solution of the SIR model and the exact value of the burden, even for a 270

constant recovery rate, cannot be obtained explicitly. For a review of mathematical analysis 271

of the SIR model, see [6]. In the next sections, we reduce the system of equations (S8.36) 272

and make several approximations to formally show the presence of a valley and to determine 273

the parameter regimes in which this valley exists. 274
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Figure XVI. Exploration of the conditions of existence of a valley in the disease
burden (A) Disease burden B̃ (see Eq (S8.40)) as a function of b, for fixed values β̃ = 5.010−4

and pe = 2.010−4. (B) Number of infected individuals I(t̃) (continuous lines) and reduced
recovery rate H(t̃) (dashed lines) as a function of time for β̃ = 5.010−4 and various values of
b (in blue, b = 0, in red, b = 1 and in yellow, b = 6). (C) Surface plot of the reduced disease
burden B̃ as a function of b and β̃. The black contours indicate regions of equal burden. The
blue and red lines show how the value of the burden varies when increasing doses, for R0 = 2
(red) and R0 = 5 (blue). The arrow indicates increasing doses. (D) Normalized disease
burden B/B(dose = 0) as a function of the dose. Colors are the same as in panel (C).
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S8.3.2 Reduction of the system of equations 275

We introduce the new variables b = γS−γR
γR

, β̃ = β
γR

, t̃ = βt. We first rewrite the function G 276

(for b 6= 0 and b 6= pe
1−pe ) and obtain 277

G(t) = γR

(
(1− pe)(b+ 1)ϕ(t) + (1− ϕ(t))

)
= γR

(
1 + (b+ pe(1 + b))ϕ(t)

)
(S8.37)

We use the approximation 278

G(t) = γR

(
1 + bϕ(t)

)
. (S8.38)

This approximation is justified because pe has little influence on the existence of a valley 279

(Fig XIV). In particular, we showed that the disease burden has a very similar shape when 280

we chose a small, constant pe rather than a dose-dependent pe. In the following, to explore 281

the parameters that display or not a valley, we will therefore consider pe to have a small 282

constant value. 283

By dividing the equations of the system (S8.36) by γR, and with the change of time t̃, we 284

obtain the system of equations 285

dS

dt̃
= −SI

dI

dt̃
= SI −H(t̃)I (S8.39)

dR

dt̃
= H(t̃)I,

where H(t̃) = 1
βG(βt) is the reduced recovery rate. Note that H is independent of the

variables of the system of equations S, I and R. It is given by

H(t̃) =



1
β̃

(
1 + 1+pe

1−pe e
− pe
β̃
t̃
)

if b = pe
1−pe

1
β̃

(
1 + pe

1+ pe
β̃
t̃

)
if b = 0

1
β̃

(1 + b

1+pe
b+1
b (e

b
β̃
t̃
−1)

) otherwise.

S8.3.3 Minimization of the burden 286

We now consider the reduced burden B̃, which we define as 287

B̃ =

∫ ∞
0

I(t̃)dt̃

= β

∫ ∞
0

I(t)dt

= βB. (S8.40)

When β̃ is fixed, there is a value of b > 0 that minimizes B̃ (provided that there is an 288

outbreak). An illustration of this minimum is shown for β̃ = 5.010−4 in Fig XVIA. Finding b 289

that minimizes the burden can be related to optimization problems in epidemiological models 290

(see for instance [7]). 291
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To understand why there is a minimum in the burden B̃, we examined in more detail the 292

time course of I and of the reduced recovery rate H for various values of b (Fig XVIB). We 293

find that, when b = 0, H is almost a constant equal to 1
β̃

. In this case the burden is the 294

solution to the transcendental equation 295

B̃ = β̃S0(1− e−B̃). (S8.41)

In the case of large b, at the beginning of the outbreak the scaled recovery rate is H(0) = 1+b
β̃

, 296

but decreases quickly to its asymptotic value 1
β̃

. In the beginning, the recovery rate of the 297

infected sensitive to treatment is too large for the epidemics to spread in the population. The 298

outbreak builds up slowly with a delay in the establishment of the epidemics which can be 299

phrased in terms of R0: at the beginning of the infection, R0, which is proportional to 1
H(0) , is 300

therefore proportional to 1
1+b , which is small. A large value of b corresponds to a small value 301

of R0. Later in the infection, the recovery rate is equal to 1
β̃

and the burden is the same as 302

in the case b = 0. Therefore, when the resistant strain first arises in the population, the pool 303

of susceptible individuals is still almost untouched. The infection is almost the same as in 304

the case b = 0, with a delay, due to the absence of the resistant strain at the beginning of the 305

epidemic and its slow appearance through mutation (blue and yellow curves in Fig XVIB). 306

In the intermediate case b = 1, the overall epidemics is reduced. When b is not too large, 307

the basic reproductive number of the sensitive infection is still large enough for it to spread, 308

but at a lower rate than in the case b = 0. Before resistance can spread in the population, 309

the number of susceptibles has dropped, reducing in turn the burden (cf. section S8.2). 310

This phenomenon can also be explained by observing the recovery rate H (dashed red 311

curve in Fig XVIB): During the time course of the infection, the recovery rate is almost 312

constant and larger than 1
β̃

. In the case of a constant recovery rate, the higher the recovery 313

rate the smaller the burden (see Eq (S8.41) and [8]). 314

S8.3.4 When is there a valley? 315

Dose

R0

Dose Dose

A B CDisease burden (days) Sensitive Resistant

Figure XVII. Disease burden as a function of the dose and R0. (A) Total burden
B =

∫∞
0

(IS(t) + IR(t))dt. (B) Burden due to infections with the sensitive strain BS =∫∞
0
IS(t)dt. (C) Burden due to infections with the resistant strain BR =

∫∞
0
IR(t)dt.

To look more systematically at the effect of the parameters b and β̃ on the burden B̃, we 316

represented it as a surface plot (Fig XVIC). 317

We show the disease burden for varying dose and R0 = 2 and R0 = 5. Varying the dose is 318

equivalent to changing the ratio b = γS
γR
− 1, but also the normalized transmission coefficient 319

β̃ = β
γR

. On the surface plot, varying the dose corresponds first to a horizontal line (little 320

variation of γR with the dose, but large variations of γS), and for larger dosage the difference 321
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in recovery rates reduces. Thus, b becomes smaller, and β̃ also decreases due to the increase 322

in γR. 323

We observe that at R0 = 2 and R0 = 5, the regions explored for various doses are very 324

different. For R0 = 2, the disease burden first decreases, then increases, in a region where 325

β̃ is almost constant, and then decreases with decreasing b. These variations in the burden 326

correspond to the existence of a valley. 327

For R0 = 5, the disease burden almost continuously decreases. If b would have taken 328

larger values, it would have been possible to observe an increase in the burden even for such 329

high R0. This is in agreement with the predictions of section S8.2: we see that it is possible 330

to observe a valley even for large values of R0, provided that the difference in recovery rates 331

is large enough. To visualize more clearly the different behaviors of the burden, we also 332

represent the (non reduced) burden B as a function of the dose (Fig XVID) for R0 = 2 and 333

R0 = 5. 334

To conclude, we showed that the most important parameters for the existence of a valley 335

in the disease burden are the values explored by β/γR and the range of values taken by the 336

ratio γS/γR when varying the dose. 337

Other parameters, such as pe, certainly have an influence on the position of the local 338

minimum in the disease burden but little influence on the existence of a valley. Indeed, 339

taking a constant value for pe instead of the inverted U-shape shows little to no changes in 340

the disease burden (Fig XIV, blue and purple curves). 341
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S9: Sensitivity analysis 342

We conducted a sensitivity analysis to determine how the recovery rates and the resistance 343

probability of emergence varied with changes of one parameter. For this, we ran stochastic 344

simulation of the within-host model. The sigmoidal shape of the recovery rates and the 345

inverted U-shape of the probability of emergence are conserved in the range of explored 346

parameters (Fig XVIII, XIX and XX). (Only for extreme parameter choices for the immune 347

response do the recovery rates turn non-monotonic; we excluded these parameters since they 348

lead to very high probabilities of within-host resistance and do not appear relevant. If the 349

MIC of the two strains is very similar, the within-host probability of resistance becomes 350

monotonically decreasing; again, this is situation is not very relevant.) What is more, the 351

location of the peak in the within-host probability of resistance proves to be robust. It 352

corresponds to doses where spread of resistance is easiest. 353

In the main text, we defined the probability of within-host resistance as the probability 354

that the number of resistant pathogens crosses a threshold of 50. If we change the criterion 355

for the emergence of resistance to 100 pathogens as in [9], the probability of within-host 356

resistance is lower but the location of the peak remains the same (Fig XXI). It is again 357

robust to variations in single parameters (Fig XXII). 358

At the population level, we also varied parameters (the transmission rate and the popula- 359

tion size). We chose a subset of within-host parameters and performed stochastic simulations 360

of the nested model to determine how the outbreak probability, the number of resistant strain 361

transmission events, and the disease burden varied with dosage if we vary one of these within- 362

host parameters (Fig XXIII- XXV). 363
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Figure XVIII. Sensitivity analysis exploring the recovery rate of the wild-type strain in
stochastic simulations. In each panel, we vary one parameter with respect to the parameter
set used in the main text.
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Figure XIX. Sensitivity analysis of the recovery rate of the resistant strain. In each panel,
we vary one parameter with respect to the parameter set used in the main text.
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Figure XX. Sensitivity analysis of the probability of emergence of resistance at the within-
host scale. In each panel, we vary one parameter with respect to the parameter set used in
the main text.
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Figure XXII. Sensitivity analysis of the probability of emergence of resistance at the within-
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Figure XXIII. Sensitivity analysis of the number of resistant strain transmission events.
The influence of several within-host parameters (δ, α, κ, λ, µ, threshold for the appearance
of symptoms) and the population parameters β and S0 were tested.
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Figure XXIV. Sensitivity analysis of the outbreak probability. The influence of several
within-host parameters (δ, α, κ, λ, µ, threshold for the appearance of symptoms) and the
population parameters β and S0 were tested.
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Figure XXV. Sensitivity analysis of the infectious disease burden. The influence of several
within-host parameters (δ, α, κ, λ, µ, threshold for the appearance of symptoms) and the
population parameters β and S0 were tested.
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