
Supplementary Methods  

Data Overview: We analyzed the publicly available SRA data, the latest (v6) release of 
GTEx samples, and the latest release of TCGA. The SRA data consisted of 49,848 publicly 
available samples spanning over 146 terabases of reads. These reads were downloaded 
and analyzed, resulting in a final set of48,558 samples that could be fully downloaded and 
processed (1,290 samples could be downloaded only partially and were excluded, see 
Supplementary Methods). The GTEx data consisted of 9,662 samples spanning nearly 900 
billion reads, 550 individuals and the K562 cell line, and 32 tissues. These reads were 
downloaded and analyzed, resulting in a final set of 9,479 samples that could be fully 
downloaded and processed (183 could be downloaded only partially; see Supplementary 
Methods). The TCGA data consisted of 11,350 samples spanning over 1.6 trillion reads, 
10,040 individuals, and 33 cancer types. With the exception of reads from one sample for 
which the raw data was formatted incorrectly (see below), all TCGA RNA-seq samples 
were fully downloaded and processed. 

Alignment. GTEx and public SRA samples were selected by searching the SRA website as 
discussed in selecting GTEx, SRA and TCGA samples subsection. Samples that could not 
be downloaded using fastq-dump were eliminated as described in incomplete and invalid 
input data. Samples were aligned in a spliced fashion to the hg38 assembly of the human 
genome using Rail-RNA. Alignments were performed in batches on computer clusters rented 
from the Amazon Web Services Elastic MapReduce service. The alignment pipeline was 
divided into two phases, where the first phase (“preprocessing”) downloads and reformats 
the data and the second phase performs spliced alignment. Outputs of the pipeline include, 
for each sample, a junction coverage file (similar to a TopHat “junctions.bed” file) and a 
BigWig file37 containing a genome-wide coverage vector. Further details are presented in 
alignment with Rail-RNA section below and the Rail-RNA study21. Gene and exon counts 
were compiled using the BigWig files output by Rail-RNA and the Gencode v25 annotation38. 
For exon counts, we first obtained a set of non-overlapping “unioned” exons. Gene and exon 
counts were compiled into per-project tables and RangedSummarizedExperiment objects. 
We expanded the tables with several metadata columns containing, for example, read count, 
paired-end status, GEO accession, and the tissue type as predicted by the SHARQ beta 
resource (http://www.cs.cmu.edu/~ckingsf/sharq/). For GTEx and TCGA we included 
metadata provided by the respective projects as detailed in the counting genes and exons. 

 
Use cases. All R code used for the analyses performing the use cases is available from the 
website: http://leekgroup.github.io/recount-analyses/ including HTML version of the following 
PDF files (Supplementary Code 2).  

• Use case 1. GTEx comparison, Supplementary Note 1: 
http://leekgroup.github.io/recount-
analyses/example_gtex/compare_with_GTEx_reproducible.pdf 

• Use case 2. Meta-analysis, Supplementary Note 2: http://leekgroup.github.io/recount-
analyses/example_meta/meta_analysis.pdf 

• Use case 3. Multi-level differential expression analyses gene/exon, Supplementary 
Note 3: http://leekgroup.github. io/recount-
analyses/example_de/recount_SRP032789.pdf and annotation agnostic, 
Supplementary Note 4: http://leekgroup.github.io/recount-
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analyses/example_de/recount_DER_SRP032789.pdf and validation of results in a 
second study, Supplementary Note 5: http://leekgroup.github.io/recount-
analyses/example_de/recount_SRP019936.pdf 

Selecting GTEx samples. On November 21, 2015, we queried the SRA website at 
http://www.ncbi.nlm.nih.gov/sra for RNA-seq samples in the GTEx project (accession: 
SRP012682). Precise search terms were (SRP012682) AND "strategy rna seq"[Properties]. 
A screenshot is available at 
https://github.com/nellore/runs/raw/master/gtex/SRA_GTEx_search_screenshot_6.37.16_P
M_ET_11.21.2015.png (Supplementary Code 3). We used the “send to file” function to 
download search results to a table, available at 
https://github.com/nellore/runs/raw/master/gtex/SraRunInfo.csv. The table lists 9,795 run 
accessions, some of which were mmPCR-seq. We restricted our attention to the 9,662 
mRNA-seq samples in the v6 release of the GTEx consortium. 

Selecting SRA samples. Public SRA samples were selected from SRA as follows. On 
February 3, 2016, we queried the SRA website at http://www.ncbi.nlm.nih.gov/sra for publicly 
available human RNA-seq samples. Precise search terms were "platform 
illumina"[Properties] AND "strategy rna seq"[Properties] AND "human"[Organism] AND 
"cluster public"[Properties] AND "biomol rna"[Properties]. A screenshot is available at 
https://github.com/nellore/ runs/raw/master/sra/v2/hg38/SRA_RNA-
seq_search_screenshot_3.33.19_PM_ET_02.03.2016. png. We used the “send to file” 
function to download the search results to a table, available at 
https://github.com/nellore/runs/raw/master/sra/v2/hg38/SraRunInfo.csv. The table lists 
50,186 run accessions, each with metadata fields including layout (SINGLE or PAIRED) and 
number of reads (i.e., read pairs for paired-end samples).  

Selecting TCGA samples. On September 29, 2016, we used the SPARQL query interface 
of  Seven Bridges Genomics Cancer Genomics Cloud (CGC)39 to retrieve storage paths of 
the 11,350 RNA-seq samples in TCGA. The script 
https://github.com/nellore/runs/blob/master/tcga/ tcga_file_list.py reproduces this query, and 
the resulting table is available at https://raw. 
githubusercontent.com/nellore/runs/master/tcga/tcga_file_list.tsv. 

Alignment with Rail-RNA. We used Rail-RNA v0.2.321 to align all GTEx and SRA samples 
we could download to the hg38 assembly. We used Rail-RNA v0.2.4b to align TCGA 
samples; v0.2.4b differs from v0.2.3 only by adding preprocessing capabilities that 
accommodate the TAR archives in which raw TCGA RNA-seq data on CGC are stored. 
Alignment was performed using the Amazon Web Services Elastic MapReduce commercial 
cloud computing service. Spot instances allow users to bid for excess computing capacity. If 
the fluctuating market price drops below a users’s bid, the instances could be lost, halting 
the computation. So saving money by bidding for spot instances comes with risk, and rather 
than aligning all samples in one batch, we distributed this risk by dividing alignment up into 
batches. For GTEx, we randomly divided the set of 9,662 samples up into 30 batches, each 
with 322 or 323 samples; for other SRA samples, we randomly divided the set of samples 
into 100 batches, each with 501 or 502 samples; for TCGA samples, we randomly divided 
the set of 11,350 samples up into 30 batches, each with 378 or 379 samples. Analysis of 
each batch was itself divided into a preprocessing job flow and an alignment job flow. A 
preprocessing job flow writes preprocessed reads to Amazon’s cloud storage service S3 
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after either (a) using SRA Tools fastq-dump (https://github.com/ncbi/sra-tools) to download 
compressed reads from the National Center for Biotechnology Information server (for 
samples stored on SRA) or (b) downloading TAR archives storing raw reads via temporary 
links to Amazon’s cloud storage service S3 produced by the CGC API (for TCGA samples). 
Preprocessing and alignment job flows was run on clusters of m3.xlarge instances, 
c3.2xlarge instances, or c3.8xlarge instances. Each m3.xlarge instance has 4 Intel Xeon E5-
2680 v2 (Ivy Bridge) processing cores and 15 GB of RAM; each c3.2xlarge instance has 8 
Intel Xeon E5-2680 v2 (Ivy Bridge) processing cores and 15 GB of RAM; each c3.8xlarge 
instance has 32 Intel Xeon E5-2680 v2 (Ivy Bridge) processing cores and 60 GB of RAM. 
Our GTEx alignment runs may be reproduced by following instructions at 
https://github.com/nellore/runs/blob/master/gtex/README.md. Our SRA alignment runs may 
be reproduced by following instructions at 
https://github.com/nellore/runs/blob/master/sra/v2/README.md. Our TCGA alignment runs 
may be reproduced by following instructions at 
https://github.com/nellore/runs/blob/master/tcga/README.md. Alignment of GTEx data is 
described in more detail in the supplementary material of 22. 

Incomplete and invalid input data. For the analysis of the public SRA samples, some 
samples could not be downloaded, due to failures of the fastq-dump software. The issue 
persisted even when we attempted to restart the fastq-dump process. Samples exhibiting 
this issue can be excluded from analysis. These samples are listed here: 
https://github.com/nellore/runs/raw/master/sra/v2/hg38/NOTES. That file also describes two 
other preprocessing issues that led us to exclude a few other samples from analysis: (1) 
sequence input encoded in a manner we did not recognize; (2) miscellaneous errors 
reported by fastq-dump. In addition, for each of a small number of both GTEx and public 
SRA samples, fastq-dump would return success (an exit code of 0) when an error had 
occurred and the number of reads output by the tool disagreed with the number of reads 
from SRA metadata given in the SraRunInfo.csv file for that sample. So for each sample, we 
compared the number of reads ingested by Rail-RNA with the number of reads reported in 
SraRunInfo.csv. Sometimes, the sample was listed as paired-end when the number of mates 
(i.e., twice the number of read pairs listed in SRARunInfo.csv) was exactly twice the number 
of reads Rail-RNA processed; other times, the sample was listed as single-end but the 
number of reads Rail-RNA processed was greater than the number of reads listed. In these 
cases, we made note of our suspicion that the library layout listed on SRA was incorrect. 
The table https://github.com/nellore/runs/raw/master/gtex/incomplete.tsv (respectively, 
https://github.com/nellore/runs/raw/master/sra/v2/incomplete.tsv) lists all GTEx (respectively, 
public SRA) samples that either could not be downloaded or were incompletely down- 
loaded, and it includes these suspected layout misreports in a column. This table was 
generated by the script https://github.com/nellore/runs/raw/master/gtex/incomplete.py 
(respectively, https://github.com/nellore/runs/raw/master/sra/v2/incomplete.py) for GTEx 
(respectively, public SRA) samples. Finally, the numbers of records in the two FASTQ files 
for the paired-end TCGA sample corresponding to the TAR archive “TCGA-AB-2909-03A-
01T-074413 rnaseq fastq.tar” were mismatched, so we did not align it. Details are available 
at https://github.com/nellore/runs/ blob/master/tcga/NOTES. 

Alignment cost. Costs to run preprocessing/alignment job flows on Amazon Elastic 
MapReduce as well as store data on Amazon S3 and transfer results back to our local 
cluster are broken down by day and Amazon Web Services service in three CSV files: for 
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our GTEx runs, see https://github.com/nellore/runs/blob/master/gtex/costs.csv; for our runs 
on other SRA samples, see https://github.com/nellore/runs/blob/master/sra/v2/costs.csv; and 
for our runs on TCGA samples, see 
https://github.com/nellore/runs/blob/master/tcga/costs.csv. The total cost of our GTEx runs 
was US $28,368.15, the total cost of our runs on other SRA samples was US $82,343.47, 
and the total cost of our TCGA runs was US $30,913.24. For a fine-grained picture of cluster 
activity in time during our GTEx runs, see Section 3.1 of the Supplementary Material of 22.  

Counting genes and exons. When creating the count tables, genes and exons (features) 
were determined using the Gencode v25 (CHR regions) annotation; specifically 
ftp://ftp.sanger. 
ac.uk/pub/gencode/Gencode_human/release_25/gencode.v25.annotation.gff3.gz. For each 
gene, we first obtained a set of non-overlapping exonic intervals by taking the “union” of the 
gene’s annotated exons. We call these “unioned exons”. We summed per-base coverage 
across each unioned exon using bwtool40 version 1.0. We obtained gene-level counts by 
summing per-base coverage totals of its constituent unioned exons. For each SRA project 
and each feature type we created a RangedSummarizedExperiment object41 containing 
columns for: 

• SRA study id 

• SRA sample id 

• SRA experiment id 

• SRA run id 

• read counts as reported by SRA 

• number of reads downloaded from SRA and subsequently aligned with Rail-RNA 

• proportion of reads reported by SRA that aligned 

• whether the sample was paired-end or not 

• whether SRA likely misreported the paired-end label (as explained above) 

• mapped read count by Rail-RNA 

• coverage area under the curve (AUC), i.e. total number of aligned bases not including soft- 
clipped bases 

• tissue type as predicted by SHARQ (http://www.cs.cmu.edu/~ckingsf/sharq/) 

• cell type as predicted by SHARQ 

• biosample submission date 

• biosample publication date 

• biosample update date 

• average read length as reported by SRA 
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• GEO accession id 

• sample title as reported by GEO 

• sample characteristics as reported by GEO 

• name of the coverage BigWig file 

 

For GTEx we included the metadata from the file “GTEx Data V6 Annotations 
SampleAttributesDS.txt” available from http://www.gtexportal.org/home/datasets. For TCGA, 
we consolidated metadata from three sources: a query via the Genomic Data Commons 
(GDC) API (https://gdc.cancer.gov/developers), queries via the CGC API39, and queries 
using TCGAbiolinks42. We merged the information from all three sources and found 
metadata information for 11,285 samples (including the sample that we later discarded). For 
each sample we normalized the coverage to 40 million 100 base-pair reads using the AUC 
information. We then computed the base-level coverage sum for each project using the 
sample normalized coverage with bwtool40 version 1.0 and divided the coverage sum by the 
number of samples in the project resulting in the project mean coverage. We then stored the 
mean coverage for each SRA project in a BigWig file37. The mean coverage can then be 
used to identify expressed regions with derfinder23 via the recount Bioconductor package. 
The code and log files for creating these files as well as the recount2 website are available 
at https://github.com/leekgroup/recount-website (Supplementary Code 4).  

 

Exon-exon junction output processing. We postprocessed Rail-RNA’s cross-sample 
junction TSVs to obtain two gzip-compressed files for each project on SRA: [SRA project 
accession number].junction id with transcripts.bed.gz, a file in BED format that contains 
junction coordinates, assigns each junction a unique identifier in the name column, and also 
lists which tran- scripts in GENCODE v2438 contain the junction or its corresponding donor 
and acceptor site; and [SRA project accession].junction coverage.tsv.gz, which for each 
junction identifier gives the number of reads that map across the junction in each sample in 
the project. This postprocessing was performed by two scripts run in succession: 
https://github.com/nellore/runs/blob/master/sra/v2/hg38/junctions_by_project.py and 
https://github.com/nellore/runs/blob/master/sra/v2/hg38/add_knowngene.py. For each 
project, we created a RangedSummarizedExperiment using the sample metadata as in the 
exon and gene cases while annotating the exon-exon junctions with the: 

• exon-exon junction id 

• GENCODE v24 transcript id 

• transcript name, gene id and gene symbol based on Gencode v25 

• class: annotated, exon skip, alternative end, fusion, novel 

• proposed gene id and gene symbol based on Gencode v25 

The code is available at https://github.com/leekgroup/recount-website. 
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Meta-analysis use case. We downloaded processed data from the recount2 website using 
the recount Bioconductor package. We selected colon samples labeled as controls from 
studies SRP029880 (a study of colorectal cancer25, n=19) and SRP042228 (a study of 
Crohn’s disease26, n=41). Whole blood samples labeled as controls were taken from 
SRP059039 (a study of virus-caused diarrhea, unpublished, n=24), SRP059172 (a study of 
blood biomarkers for brucellosis, unpublished, n=47) and SRP062966 (a study of lupus, 
unpublished, n=18). We then compared these control blood to control colon using limma-
voom17 to identify genes that were differentially expressed. We then selected samples from 
the GTEx project, processed and downloaded from recount2 project SRP01268224. We 
performed three different differential expression analyses: (1) comparing whole blood to 
colon, (2) comparing whole blood to lung, and (3) comparing different batches of expression 
data. For both the meta-analysis and the GTEx analyses we get rankings of the genes for 
differential expression. We then made concordance at the top plots comparing the rankings 
of the analysis from SRA43. In the SRA analysis we compared control blood samples to 
control colon examples. When we compare the ranking of genes for differential expression in 
this analysis to the ranking for the same analysis in GTEx we see strong concordance. 
Comparison of blood to lung shows worse concordance of differential expression results. 
Finally, as a negative control we plotted concordance between differential expression for 
colon versus blood in SRA against differential expression between batches in GTEx. As 
expected, we observed limited concordance in this case.  

GTEx use case. We downloaded the processed GTEx v6 gene expression data from 
http://www.gtexportal.org (“GTEx Analysis v6 RNA-seq RNA-SeQCv1.1.8 gene 
reads.gct.gz”) and compared the provided gene counts to those generated by recount2 as 
described above. This involved creating a consensus dataset of genes and samples 
because the GTEx-processed data were quantified using GENCODE v1938 
(gencode.v19.genes.patched contigs.gtf) and the recount2 data were quantified using 
Gencode v25. We restricted our consideration to the 8,551 RNA-seq samples for which gene 
counts were available from http://www.gtexportal.org. Next, we matched genes between 
datasets using the Gencode gene IDs and GTEx Ensembl Gene IDs, which resulted in a 
common set of 51,491 genes in both the GTEx- and recount2-processed data (18,998 
protein-coding genes). We then computed Pearson correlations for each gene between the 
two processing approaches. Finally, we performed a differential expression analysis 
comparing colon and whole blood samples using limma and voom 17 in both processed 
datasets, adjusting for RNA integrity number (RIN). 

Multi-level use case with breast cancer data. Principal component analysis (PCA) was 
run to identify any sample outliers. All samples were retained for downstream analyses. The 
26,742 genes with an average normalized count greater than 5 across samples were 
included for downstream analysis. Similarly, 259,626 exons and 45,933 exon-exon junctions 
with reads overlapping these genes were also included for differential expression (DE) 
analysis. We further included analysis of data at the level of expressed regions to highlight 
the utility of summarizing expression in an annotation-agnostic manner. At the expressed-
region level, 130,518 regions with an average normalized read count greater than 5 across 
samples were included for DE analysis using derfinder23. DE between the two cancer 
subtypes was carried out using limma and voom17. For multiple comparison correction, we 
calculated q-values from the observed p-values after estimating the proportion of 
differentially expressed genes, exons, or exon-exon junctions in the experiment 44. Features 
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with calculated q-values smaller than 0.05 between different tissue types were declared 
statistically significant. To compare the results across these levels of data, we used Simes’ 
rule45 to calculate a gene-based p-value for all exons, exon-exon junctions, and differentially 
expressed regions that overlap genes. We then computed rank-based concordance between 
the gene and either the exon, junction, or expressed region level results. In the replication 
dataset, count data were filtered as before and PCA was utilized to identify global sample 
outliers. One TNBC tumor sample was identified as an outlier and removed from analysis. 
IHW30 uses a set of independent weights for each gene in one study to weight the 
hypothesis tests in the second study to increase power to detect differences. Here, for each 
gene the absolute value of the test statistic from study SRP032789 were used as weights for 
DE analysis in study SRP019936. This resembles using an empirical prior and treating the 
second study as a validation of the first. 

GitHub repository versions. The GitHub repositories that contain code used in this 
manuscript can be viewed at the precise version that was used at the time of publication. 
The full code for these repositories can be downloaded via GitHub or explored interactively 
via the following links: 

Supplementary	Code	1:	https://github.com/leekgroup/recount-
analyses/tree/074aa9a03228a4c52ecb765230911741d1ce7f02	

Supplementary	Code	2:	https://github.com/leekgroup/recount-
website/tree/39b3c0befd2021d0b99be9d46a16b05d30ad9ce5		

Supplementary	Code	3:	
https://github.com/nellore/runs/tree/09131db68125db26c0150ce59065f7366f40ef84	

Supplementary	Code	4:	https://github.com/leekgroup/recount-
contributions/tree/8deaa718432afc80d6a1543b4a0ac1d8bd8fc66a	
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