Supplementary Information ## **GSTA4** Mediates Reduction of Cisplatin Ototoxicity in Female Mice Hyo-Jin Park^{1,9}, Mi-Jung Kim^{1,9}, Christina Rothenberger^{1,9}, Ashok Kumar², Edith M. Sampson³, Dalian Ding⁴, Chul Han¹, Karessa White¹, Kevin Boyd¹, Manohar Senthilvelan⁴, Yong-Hwan Kim⁵, Maria S. Ticsa¹, Aaron S. Gomez¹, Isabela Caicedo¹, Upal Bose¹, Paul J. Linser⁶, Takuya Miyakawa⁷, Masaru Tanokura⁷, Thomas C. Foster², Richard Salvi^{4,8}, and Shinichi Someya^{1,*} ¹Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, 32610, USA. ²Department of Neuroscience, University of Florida, Gainesville, FL, 32611, USA. ³Monoclonal Antibody Core, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA ⁴Center for Hearing and Deafness, State University of New York at Buffalo, NY, 14214, USA. ⁵Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, 85013, USA ⁶Whitney Laboratory, University of Florida, St Augustine, FL, 32080, USA. ⁷Department of Applied Biological Chemistry, University of Tokyo, Yayoi, Tokyo, 113-8657, Japan. ⁹These authors contributed equally to this work. ^{*}Correspondence and request for materials should be addressed to S. S. (someya@ufl.edu) **Supplementary Fig. 1.** Genotyping of $Gsta4^{+/+}$, $Gsta4^{+/-}$, and $Gsta4^{-/-}$ mice. **a** PCR products were separated on a 1.5% agarose gel. The expected band sizes for the wild-type and mutant alleles were 135 and 140 bps, respectively. The full-length gel is presented in the Source Data file. **b** The Cdh23 gene in three $Gsta4^{+/+}$ and three $Gsta4^{-/-}$ mice was sequenced. All the mice examined had the same wild-type $Cdh23^{753G/753G}$ genotype. **Supplementary Fig. 2.** Assessment of body weight. The body weight of male and female $Gsta4^{+/+}$ and $Gsta4^{-/-}$ mice was measured at 3 months of age. n=8, error bars represent \pm s.e.m. Source data are provided as a Source Data file. **Supplementary Fig. 3.** Assessment of ABR hearing thresholds. **a** ABR hearing thresholds were measured at 4, 8, 16, 32, 48 and 64 kHz prior to, after 2 cycles or 3 cycles of cisplatin treatment at 3.0 or 3.5 mg/kg/day of cisplatin. The quantification shows mean of at least five independent experiments (n = 5), error bars represent \pm s.e.m. **b** The body weight of female CBA/CaJ mice was measured during cisplatin treatment. The quantification shows mean of at least five independent experiments (n = 5), error bars represent \pm s.e.m. Source data are provided as a Source Data file. **Supplementary Fig. 4**. Cochleograms. **a-f**: Hair cell regions in the apical, middle and basal regions of cochlear basilar membranes from male $Gsta4^{+/+}$ and $Gsta4^{-/-}$ mice after cisplatin treatment. Arrows indicate missing hair cells. Scale bar = 50 µm. **g-h**: Cochleograms were recorded and averaged in the cochlear tissues of male $Gsta4^{+/+}$ and $Gsta4^{-/-}$ mice. Graphs show percent loss of IHCs (g) and OHCs (h) as function of percent distance from the apex. The quantification shows mean of at least five independent experiments (n = 4), error bars represent \pm s.e.m. Lower x-axes show the frequency-place map for the mouse cochlea. Source data are provided as a Source Data file. **Supplementary Fig. 5**. Cochleograms. **a-f**: Hair cell regions in the apical, middle and basal regions of cochlear basilar membranes from female $Gsta4^{+/+}$ and $Gsta4^{-/-}$ mice after cisplatin treatment. Arrows indicate missing hair cells. Scale bar = 50 μ m. **g-h**: Cochleograms were recorded and averaged in the cochlear tissues of female $Gsta4^{+/+}$ and $Gsta4^{-/-}$ mice. Graphs show percent loss of IHCs (g) and OHCs (h) as function of percent distance from the apex. The quantification shows mean of at least four independent experiments (n=4), *p < 0.05 vs. +/+ (two-way ANOVA), error bars represent \pm s.e.m. Lower x-axes show the frequency-place map for the mouse cochlea. Source data are provided as a Source Data file. b Male а **Supplementary Fig. 6.** Assessment of GST activity. **a-b** GST activities toward CDNB were measured in the cytosol of inner ear tissues from males (**a**) and female (**b**) $Gsta4^{+/+}$ and $Gsta4^{-/-}$ mice prior to and after cisplatin treatment. n=3, error bars represent \pm s.e.m. Source data are provided as a Source Data file. Female **Supplementary Fig. 7.** Assessment of oxidative protein damage. **a-b** Levels of protein carbonyl as an oxidative protein damage marker were measured in the inner ear tissues from male, female, and ovariectomized female $Gsta4^{-/-}$ mice. n=5, error bars represent \pm s.e.m. Source data are provided as a Source Data file. 10 - Male а (left), GSSG (middle), and GSH/GSSG (right) were measured in the cytosol of inner ear tissues from males (a) and female (b) $Gsta4^{+/+}$ and $Gsta4^{-/-}$ mice after cisplatin treatment. The quantification shows mean of at least five independent experiments (n=4), error bars represent \pm s.e.m. Source data are provided as a Source Data file.