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Supplementary Figures 

Supplementary Fig. 1. 
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Supplementary Figure 1. Morphology and viability of primary human mesenchymal stem cells 

(hMSCs) subjected to cyclic tensile strain (CTS). (a) Representative images of hMSCs cultured for 

three days on collagen-I coated polyacrylamide hydrogels with stiffnesses between 2 and 50 kPa, with 

phalloidin and DAPI staining. (b) Representative images of hMSCs cultured for two days on collagen-

I coated silicone elastomer BioFlex plates, followed by CTS as indicated, with phalloidin and DAPI 

staining. (c) Donor-by-donor analysis of cell spread areas of hMSCs subjected to 1 hour of CTS at 1 

or 2 Hz (0 – 4% strain), compared to control cells. (d) hMSCs subjected to CTS (0 – 4% strain at 1 Hz, 

or 2.6 – 6.2% strain at 5 Hz, for 1 hour; n = 3 donors) showed no significant changes to viability, as 

determined by live/dead assay. Minimum numbers of cells analysed per condition for figure part (d): 

donor d105 used ≥16 cells per condition; d101, ≥11; d125, ≥12. (e) Quantification of DNA in hMSCs 

treated with CTS showed no significant changes to rates of proliferation. In plots (d) and (e), bars show 

mean and s.e.m.; dots represent data from individual donors; a lack of significant variation was 

determined from ANOVA testing. (f) Donor-by-donor analysis of nuclear areas of hMSCs following 1 

hour of CTS at 5 Hz (2.6 – 6.2% strain), compared to control cells, p-values were determined from 

unpaired two-tailed t-tests. There was a significant decrease in nuclear area following strain in 3 out 

of 5 donors (d100, p = 0.0008; d111, p = 0.01; d175, p = 0.04). In (c) and (f), box-whisker plot centre 

lines show medians, bounds of box show quartiles, whiskers show data spread and outliers 

determined by the Tukey method. ≥14 cells analysed in donor d100, per condition; ≥31 cells analysed 

for d111, per condition; ≥40 cells analysed for d114, per condition; ≥42 cells analysed for d134, per 

condition; ≥33 cells analysed for d175, per condition. 
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Supplementary Fig. 2. 

 

 

 
Supplementary Fig. 2. Role of ion channels in modulating responses to CTS in nuclear area. (a) 

Changes to nuclear areas in primary hMSCs immediately following CTS (1 hour, 2.6 – 6.2% strain at 5 

Hz), normalized to unstrained controls. Ion channel activity was inhibited using: 10 µM GdCl3, (n = 6 

donors), a broad spectrum inhibitor of stretch-activated ion channels1; 3 µM GsMTx (n = 4 donors), a 

specific inhibitor of piezo channels2; 100 µM amiloride (n = 4 donors), an inhibitor of acid-sensing ion 

channels (ASICs)1; 10 µM RN9893 (n = 6 donors), a specific inhibitor of transient receptor potential 

vanilloid type 4 (TRPV4) channels3. Effects were compared to water or DMSO vehicle controls. Strain-

induced reduction in nuclear area (water vehicle control, p = 0.02; DMSO vehicle control, p = 0.05) 

was prevented by inhibition of stretch-activated ion channels (GdCl3 inhibitor), specifically TRPV4 

(RN9893 inhibitor), but not piezo inhibitor GsMTx4 (p = 0.0003). Nuclear areas of hMSCs recovered to 

pre-strained values 24 hours after CTS, with no significant residual effect from ion channel inhibition. 

p-values determined from linear modeling (ANOVA). Bars show mean ± s.e.m. (b) Distributions of 

nuclear areas between individual donors, used to make figure part (a). Box-whisker plot centre lines 

show means, bounds of box show quartiles, whiskers show data spread and outliers determined by 

the Tukey method. Minimum numbers of cells analysed per condition: donor d211 used ≥31 cells per 

condition; d224, ≥21; d226, ≥28; d230 ≥20; d144 ≥28; d007 ≥14. 
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Supplementary Fig. 3. 
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Supplementary Fig. 3. CTS-induced changes to texture of nuclear DAPI staining. (a) Changes to 

the texture of nuclear DAPI stains are indicative of chromatin condensation state2, 4. Plot shows that a 

parameter quantifying nuclear texture was increased by strain (1 hour, 0 – 4% strain at 1 Hz, p < 

0.0001, n = 4 donors; or 2.6 – 6.2% strain at 5 Hz, p = 0.002, n = 3 donors) and that this increase was 

unaffected by 10 µM GdCl3 treatment (p = 0.02, n = 3 donors), suggesting that CTS-induced nuclear 

texture changes occurred independently of stretch-activated ion channels. p-values determined from 

linear modeling (ANOVA). Bars show mean ± s.e.m. (b) Distributions of texture parameters, 1 Hz CTS 

(0 – 4% strain) vs. control, in 4 donor samples, used to make figure part (a). (c) Distributions of texture 

parameters, 5 Hz CTS (2.6 – 6.2% strain) vs. control, with 10 µM GdCl3 treatment or vehicle, in 3 donor 

samples, used to make figure part (a). Minimum numbers of cells analysed per condition for figure 

parts (a)-(c): donor d100 used ≥33 cells per condition; d111, ≥38; d114, ≥41; d134, ≥87; d075, ≥24; 

d144, ≥28; d007, ≥21. Box-whisker plot centre lines show medians, bounds of box show quartiles, 

whiskers show data spread and outliers determined by the Tukey method. (d) The texture parameter 

was significantly increased in DAPI stained nuclei of hMSCs treated with calcium and magnesium ions 

(2 mM) (p = 0.048, n = 3 donors), conditions shown previously to result in chromatin condensation5. p-

value determined from linear modeling (ANOVA). Bar shows mean ± s.e.m. (e) Distributions of texture 

parameters from 3 donor samples, used to make figure part (d); representative images of nuclei with 

chromatin condensation induced by treatment with bivalent ions. Minimum numbers of cells analysed 

per condition for figure parts (d), (e): donor d044 used ≥21 cells per condition; d125, ≥19; d144, ≥21. 

Box-whisker plot centre lines show means, bounds of box show quartiles, whiskers show data spread 

and outliers determined by the Tukey method. 
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Supplementary Fig. 4. 
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Supplementary Figure 4. Recovery of initial transcriptomic and proteomic states 24 hours after 

5 Hz CTS. (a) Histogram showing that transcript levels were recovered 24 hours after high-intensity 

CTS (1 hour at 5 Hz, 2.6 – 6.2 % strain; n = 6 donors; Gaussian width = 0.14, compared to 0.21 

immediately following CTS). See Supplementary Data 1 and 2 for transcriptomics data. (b) Volcano 

plot of changes to the proteome of hMSCs immediately following high-intensity CTS (1 hour at 5 Hz, 

2.6 – 6.2 % strain; n = 3 donors). (c) Histogram and (d) volcano plot of data showing that protein levels 

were also recovered 24 hours after high-intensity CTS (Gaussian width of the histogram = 0.25, 

compared to 0.61 immediately following CTS), n = 3 donors. (e) Correlation plot between proteome 

and transcriptome 24 hours after high-intensity CTS (1007 genes quantified by RNA-seq and in 

proteomics by three-or-more peptides per protein; selected outlying genes/proteins of interest are 

annotated; R-squared = 0.002). All p-values were calculated using empirical Bayes-modified t-tests 

with Benjamini-Hochberg correction. See Supplementary Data 3 and 4 for proteomics data. (f) Data 

from proteomic analysis following CTS was split into four groups using a k-means clustering algorithm. 

The decision to use four clusters was based on the use of silhouette plots, wherein silhouette values 

denoted the similarity between the cluster centroid and each constitutive point within it. The number 

of clusters was chosen to maximize the average silhouette value. 
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Supplementary Fig. 5. 
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Supplementary Figure 5. Proteomic and transcriptomic changes to hMSCs subjected to 1 Hz 

CTS for one hour. (a) Histogram of proteomic changes quantified by mass spectrometry (MS) 

immediately following low intensity CTS (1 hour at 1 Hz, 0 – 4 % strain; n = 4 donors); data displayed 

as log2-fold change following CTS, versus unstrained controls, and shows proteins quantified by three-

or-more peptides. A Gaussian fit to the distribution had a width of 0.30, suggesting a smaller 

perturbation to the proteome than that caused by 5 Hz CTS (Fig. 2c). There was no significant change 

in SUN2 protein levels. Cytoskeletal proteins ACTB, DNM2, TUBA1B and VIM, and the nuclear 

intermediate filament protein LMNA were upregulated with strain, while YAP1 and MYL6B were down 

regulated (p < 0.05). These changes were suggestive of cytoskeletal remodeling. (b) Volcano plot 

(significance versus fold change) of changes to the proteome of hMSCs immediately following low 

intensity CTS (1 hour at 1 Hz, 0 – 4 % strain; n = 4 donors). (c) Analysis of Reactome pathways 

significantly affected at the protein level following low intensity CTS (p < 0.05, including proteins 

quantified by three-or-more peptides). Pathways associated with cellular metabolism and signal 

transduction were significantly affected by 1 Hz CTS. (d) Histogram and (e) volcano plot of changes to 

the proteome 24 hours after low intensity CTS (1 hour at 1 Hz, 0 – 4 % strain; n = 4 donors); a Gaussian 

fit to the histogram had a width of 0.26, suggesting a return to a baseline state when compared to the 

distribution immediately following CTS. However, there was evidence of persistent remodeling of the 

cytoskeleton, with levels of FLNA, SPTBN2 and TUBA1B upregulated, while ACTB was downregulated 

(p < 0.05). SUN2 remained unresponsive. All p-values were calculated using empirical Bayes-modified 

t-tests with Benjamini-Hochberg correction. Peptide lists, protein fold-changes and p-values are 

provided in Supplementary Data 8 and 9.  (f) Transcript levels of vimentin (VIM) in hMSCs, n = 3 donors, 

subjected to low intensity CTS (0 – 4% strain at 1 Hz for 1 hour). A significant spike was observed 

immediately following strain, suggestive of cytoskeletal remodeling (p = 0.0003). (g) Transcript levels 

of alpha-actin-2 (aortic smooth muscle actin, ACTA2) following low intensity CTS; levels were 

significantly increased after 24 hours (p = 0.004), n = 3 donors. In figure parts (f) and (g), measurements 

were made relative to housekeeping gene PPIA (peptidyl-prolyl cis-trans isomerase A) and normalized 

to unstrained controls; significance determined by ANOVA testing. 
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Supplementary Fig. 6. 
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Supplementary Figure 6. Quantitation of proteins at the nuclear envelope (NE) in hMSCs 

following 5 Hz CTS. (a) Immunofluorescence (IF) quantification of SUN domain-containing protein 2 

(SUN2) at the NE in hMSCs subject to high-intensity CTS (1 hour at 5 Hz, 2.6 – 6.2 % strain) and 

compared to unstrained controls; n = 3 donors; donor d185, ≥4 cells analysed per condition; donor 

d188, ≥18 cells per condition; donor d189, ≥10 cells per condition. All data points are shown; bars 

show quartile ranges with centre line indicating the median. (b) IF quantification of SUN domain-

containing protein 1 (SUN1) at the NE in hMSCs subject to high-intensity CTS and compared to 

unstrained controls; n = 3 donors; donor d164, ≥24 cells analysed per condition; donor d185, ≥21 cells 

per condition; donor d189, ≥17 cells per condition. (c) IF quantification of lamin-A/C (LMNA) at the NE 

in hMSCs subjected to high-intensity CTS, compared to unstrained controls. (d) IF quantification of 

lamin-B1 (LMNB1) at the NE in hMSCs subject to high-intensity CTS and compared to unstrained 

controls. Analysis for (c) and (d) had n = 4 donors; donor d221, ≥22 cells analysed per condition; donor 

d228, ≥16 cells per condition; donor d242, ≥21 cells per condition; donor d248, ≥19 cells per condition. 

(e) Emerin (EMD) quantified by IF at the NE in hMSCs subjected to high-intensity CTS and compared 

to unstrained controls; n = 4 donors; donor d211, ≥31 cells analysed per condition; donor d224, ≥22 

cells per condition; donor d226, ≥28 cells per condition; donor d230, ≥32 cells per condition. In figure 

parts (a)-(e), the location of the NE was determined from DAPI staining. Images show representative 

nuclei. Linear modeling (ANOVA) to account for donor variation showed CTS to significantly decrease 

SUN2 (p = 0.03), while LMNB1 and EMD were increased (p = 0.001 and p < 0.0001, respectively), see 

Fig. 4b. Images show representative nuclei. In box-whisker plots in figure parts (b)-(e) centre lines 

show medians, bounds of box show quartiles, whiskers show data spread and outliers determined by 

the Tukey method. 
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Supplementary Figure 7. 

 

 

 

Supplementary Figure 7. Effect of CTS on ratio of total lamin-A/C to lamin-B1. (a) Ratio of total 

lamin-A/C (LMNA) to lamin-B1 (LMNB1) quantified by immunofluorescence in hMSCs immediately 

following CTS (n = 4 donors, cell images and numbers as in Supplementary Figure 6c, d). CTS 
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Supplementary Figure 8. 

 

 

 

Supplementary Figure 8. Ion channel inhibition prevents CTS-induced loss of SUN2 from the 

nuclear envelope (NE). (a) Changes to SUN2 levels measured by immunofluorescence at the NE in 

hMSCs immediately following CTS (1 hour, 2.6 – 6.2% strain at 5 Hz; n = 3 donors) with and without 

ion channel inhibition (10 µM GdCl3), normalized to unstrained controls. Functional ion channels were 

required for significant down-regulation of SUN2 at the NE following CTS (p < 0.0001, two-tailed 

student t test); bars show mean ± s.e.m. determined from linear modeling. (b) Donor-to-donor variation 

in the response of SUN2 levels at the NE of hMSCs following CTS (1 hour, 2.6 – 6.2% strain at 5 Hz) 

with ion channel inhibition (10 µM GdCl3) (data used to make figure part (a)). n = 3 donors: donor d007, 

≥21 cells analysed per condition; donor d075, ≥24 cells per condition; donor d144, ≥28 cells per 

condition. Centre lines show means, bounds of box show quartiles, whiskers show data spread and 

outliers determined by the Tukey method. 
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Supplementary Fig. 9. 

 

 

 

Supplementary Figure 9. Cellular proteomes of hMSCs following knockdown (KD), 

overexpression (OE) and rescue of SUN2 expression levels. Histograms of changes to intracellular 

protein levels, determined by mass spectrometry (MS) in primary hMSCs treated with (a) siRNA1 

targeting SUN2; (b) siRNA2 targeting SUN2, relative to scrambled controls (n = 3 donors; plots show 

proteins quantified by at least three peptides-per-protein). Both siRNAs were found to reduce SUN2 

levels to 35% of scrambled controls. Histograms of changes to intracellular protein levels, determined 

by MS in an immortalised hMSC line7 virally infected with a plasmid to enable SUN2 OE to (c) low 

(160% of control levels) and (d) high levels (410% of control levels), relative to vehicle-only controls (n 

= 3 replicates, plots show proteins quantified by at least three peptides-per-protein). See 

Supplementary Data 10-13 for peptide lists, protein fold-changes and p-values associated with figure 

parts (a)-(d). All p-values were calculated using empirical Bayes-modified t-tests with Benjamini-

Hochberg correction.  
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Supplementary Figure 10. 
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Supplementary Figure 10. Morphology of hMSCs following knockdown (KD), overexpression 

(OE) and rescue of SUN2 expression levels. (a) Example immunofluorescence (IF) images of 

immortalised hMSCs subjected to SUN2 KD (siRNA1, siRNA2 or scrambled control), with staining for 

SUN2 and DAPI. Quantification of (b) SUN2 at the NE by IF, (c) nuclear form factor (area multiplied by 

4π, divided by square of perimeter), (d) nuclear area and (e) cell area in immortalised hMSCs subjected 

to SUN2 KD (siRNA1 or siRNA2 compared to a scrambled control) or SUN2 OE/rescue (doxycycline 

(DOX)-induced OE, siRNA2 or DOX-induced OE + siRNA2 compared to a scrambled control). SUN2 

KD reduced SUN2 levels at the NE (p ≤ 0.0001), OE increased SUN2 (p < 0 .0001) and rescue returned 

SUN2 levels towards those of the control (SUN2 levels increased vs. KD, p = 0.005). In one replicate, 

SUN2 KD with siRNA2 caused a decrease in form factor vs. scrambled control (p = 0.002). Deformation 

of the nuclear membrane was observed in some OE cells (see example image with figure part (c) 

showing SUN2 and DAPI staining), and has been reported previously8. SUN2 KD with siRNA2 

increased nuclear area vs. control in one replicate (p = 0.0001); SUN2 OE increased nuclear area (p = 

0.0009), but this was reversed by rescue (p = 0.009). Cell area was also increased in a replicate SUN2 

KD with siRNA2 (p = 0.008) and by SUN2 OE (p < 0.0001); this was restored in the rescue. (f) 

Representative images of nuclei stained against lamin-A/C (LMNA) in immortalised hMSCs following 

SUN2 KD or OE. (g) Analysis of LMNA protein levels quantified by IF at the NE in immortalised hMSCs 

with SUN2 KD (increased LMNA levels in siRNA1 SUN2 KD vs. scrambled control, p = 0.03; decreased 

LMNA levels in siRNA2 SUN2 KD vs. scrambled control, p = 0.05), and SUN2 OE (LMNA levels 

decreased vs. control, p < 0.0001). (h) Scatter plot of LMNA levels quantified by IF at the NE with SUN2 

KD, and DOX-induced SUN2 OE in an immortalised MSC line (data points indicate the nuclei of 

individual cells). All box-whisker plot centre lines show medians, bounds of box show quartiles, 

whiskers show data spread and outliers determined by the Tukey method. P-values were determined 

from one-way ANOVA tests followed by Dunnett’s multiple comparison tests. Figure parts (b)-(e) 

contain analysis of ≥11 hMSCs analysed per condition; (g) and (h), ≥54 hMSCs per condition. 
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Supplementary Fig. 11. 
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Supplementary Figure 11. Response to 5 Hz CTS in hMSCs following KD or OE of SUN2. (a) 

Donor-to-donor variation in SUN2 at the nuclear envelope, quantified by immunofluorescence, in 

primary hMSCs immediately following CTS at 5 Hz (1 hour, 2.6 – 6.2% strain), comparing SUN2 KD to 

scrambled controls. (b) Donor-to-donor variation in nuclear areas of primary hMSCs immediately 

following CTS at 5 Hz, comparing SUN2 KD to scrambled controls. (c) Fold changes to nuclear areas, 

summarised from figure part (b). Nuclear area was decreased following CTS (p = 0.0002). siRNA1 KD 

of SUN2 prevented a change in nuclear area following CTS. siRNA2 SUN2 KD led to an increase in 

nuclear area following CTS (p < 0.0001). (d) Donor-to-donor variation in cell spread areas of primary 

hMSCs immediately following CTS at 5 Hz, comparing SUN2 KD to scrambled controls. (e) Fold 

changes to cell areas, summarised from figure part (d). Cell area increased following siRNA2, but not 

siRNA1, KD of SUN2 plus CTS (p = 0.03). Figure parts (c) and (e) show mean ± s.e.m., n = 3 primary 

donors. (f) Donor-to-donor variation in nuclear texture of primary hMSCs immediately following CTS 

at 5 Hz, comparing SUN2 KD to scrambled controls. In figure parts (a), (b), (d) and (f), shaded bars 

indicate cells analysed immediately following CTS, unshaded bars show controls; box-whisker plot 

centre lines show means, bounds of box show quartiles, whiskers show data spread and outliers 

determined by the Tukey method; ≥174 cells analysed per donor, per condition. (g) Nuclear areas of 

immortalised hMSCs with SUN2 OE, SUN2 KD (siRNA2) and induced rescue of SUN2, immediately 

following CTS at 5 Hz, normalised to (-/-/-) controls. SUN2 rescue resulted in an increase in nuclear 

area following CTS (p = 0.002). No effect was observed in any other treatments. (h) Cytoplasmic areas 

of immortalised hMSCs with SUN2 OE, SUN2 KD (siRNA2) and induced rescue of SUN2, immediately 

following CTS at 5 Hz, normalised to (-/-/-) controls. Cell area increased following CTS (p = 0.02), but 

cell area remained unchanged for all other treatments. Figure parts (g), (h) and (i) had ≥35 cells per 

condition. (i) Ratios of nuclear to cytoplasmic areas in immortalised hMSCs with SUN2 OE 24 hours 

post CTS. Differences in nuclear to cytoplasmic area ratios induced by CTS in OE cells (Fig. 8e) were 

lost 24 hours after straining. A decrease in the ratio of nuclear to cytoplasmic area remained for 

unstrained cells with SUN2 OE (p = 0.04). In figure parts (g)-(i), box-whisker plot centre lines show 

medians, bounds of box show quartiles, whiskers show data spread and outliers determined by the 

Tukey method. All p-values determined from Dunnett’s multiple comparison tests. 
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Supplementary Figure 12. 

 

 

 

Supplementary Figure 12. Phospho-γH2AX staining and half-lives of nuclear envelope proteins. 

(a) Donor-by-donor analysis of γH2AX phosphorylation assessed in primary hMSCs immediately 

following CTS (2 hour, 2.6 – 6.2%, 5 Hz). n = 4 primary donors; minimum 15 cells analysed per 

condition for donor d221; ≥22 cells, d228; ≥20 cells, d242; ≥21 cells, d248. Images show 

representative nuclei with γH2AX and DAPI staining. Box-whisker plot centre lines show medians, 

bounds of box show quartiles, whiskers show data spread and outliers determined by the Tukey 

method. (b) Plot of mean half-lives of linker of nucleoskeleton and cytoskeleton (LINC) complex and 

nuclear envelope (NE) proteins, determined in mouse fibroblasts by Schwanhausser et al.9. The 

turnover of SUN proteins was found to be faster than other NE and LINC components. 
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Supplementary Table 1 

Summary of numbers of cells analysed in each experiment. 

  

Main Figures Supplementary Figures Cell donor ID Range of cell numbers analysed per condition
1a, d d269 12 - 32

d270 42 - 52
d296 32 - 48
d305 62 - 81
d310 64 - 109
d320 68 - 86

1b, c, e-g 1c, f d100 14 - 46
d111 13 - 57
d114 27 - 91
d134 27 - 93

1f d175 33 - 69
4b 6b d164 24 -33

6a, b d185 4 - 25
6a d188 18 - 19

6a, b d189 10 - 21
6e d211 31 - 34

6c, d; 7a d221 22 - 23
6e d224 22 - 23
6e d226 28 - 30

6c, d; 7a d228 16 - 23
6e d230 32 - 39

6c, d; 7a d242 21 - 24
6c, d; 7a d248 19 - 23

8a, b d007 21 - 32
8a, b d075 24 - 60
8a, b d144 28 - 41

4c, d d211 53 - 55
d297 24 - 27
d299 20 -21

7b, c, d 10b-e Y201 (immortalised) 11 - 33
10g, h Y201 (immortalised) 54 - 93

8a, b, c 11a-f d211 280 - 912
d224 174 - 319
d226 179 - 285
d230 182 - 350

8d, e 11g, h Y201 (immortalised) 21 - 159
8f Y201 (immortalised) 17 - 80

11i Y201 (immortalised) 76 - 183
9a 12a d221 15 - 16

d228 22 - 27
d242 20 - 25
d248 21 - 26

9b Y201 (immortalised) 29 - 37
9c Y201 (immortalised) 27 - 80



Gilbert et al. Nuclear decoupling during mechanical loading 
	

Page 22 of 22 

Supplementary References 

1. Martinac, B. The ion channels to cytoskeleton connection as potential mechanism of 

mechanosensitivity. Biochim. Biophys. Acta-Biomembranes 1838, 682-691 (2014). 

2. Heo, S.J. et al. Biophysical regulation of chromatin architecture instills a mechanical memory 

in mesenchymal stem cells. Sci. Rep. 5, 14 (2015). 

3. Wei, Z.L. et al. Identification of orally-bioavailable antagonists of the TRPV4 ion-channel. 

Bioorg. Med. Chem. Lett. 25, 4011-4015 (2015). 

4. Irianto, J. et al. Osmotic challenge drives rapid and reversible chromatin condensation in 

chondrocytes. Biophys. J. 104, 759-769 (2013). 

5. Chalut, K.J. et al. Chromatin decondensation and nuclear softening accompany nanog 

downregulation in embryonic stem cells. Biophys. J. 103, 2060-2070 (2012). 

6. Swift, J. et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed 

differentiation. Science 341, 1240104 (2013). 

7. James, S. et al. Multiparameter analysis of human bone marrow stromal cells identifies distinct 

immunomodulatory and differentiation-competent subtypes. Stem Cell Rep. 4, 1004-1015 

(2015). 

8. Donahue, D.A. et al. SUN2 overexpression deforms nuclear shape and inhibits HIV. J. Virol. 

90, 4199-4214 (2016). 

9. Schwanhausser, B. et al. Global quantification of mammalian gene expression control. Nature 

473, 337-342 (2011). 

 


