# **Additional Results**

## Assembly statistics

Table S1: characteristics of the assembly. Shown are technical characteristics of the complete and reduced transcriptome assemblies according to TransRate [42]. The explanation of the terms can be found at http://hibberdlab.com/transrate/metrics.html.

| assembly           | EveBCdTP1_all | EveBCdTP1_ani | $EcyBCdTP1_all$ | $EcyBCdTP1_ani$ | GlaBCdTP1_all | $GlaBCdTP1_ani$ |
|--------------------|---------------|---------------|-----------------|-----------------|---------------|-----------------|
| n_seqs             | 790,102       | 30,237        | 1,070,909       | 34,579          | 82,9471       | 38,650          |
| smallest           | 201           | 201           | 201             | 201             | 201           | 201             |
| largest            | 22,553        | 22,553        | 23,639          | 23,639          | 21,537        | 21,503          |
| n_bases            | 359,353,035   | 34,877,874    | 482,300,499     | 39,864,864      | 387,496,885   | 43,751,838      |
| mean_len           | 455           | 1153          | 450             | 1153            | 467           | 1132            |
| n_over_1k          | 55,880        | 10,911        | 73,613          | 12,046          | 65,886        | 13,966          |
| n_over_10k         | 92            | 46            | 93              | 38              | 76            | 40              |
| n_with_orf         | 61,709        | 18,815        | 77,108          | 21,875          | 74,993        | 26,518          |
| $mean_orf_percent$ | 57            | 80            | 56              | 80              | 58            | 81              |
| n90                | 230           | 458           | 229             | 460             | 230           | 486             |
| n70                | 318           | 1069          | 313             | 1031            | 323           | 981             |
| n50                | 497           | 1870          | 488             | 1869            | 530           | 1673            |
| n30                | 954           | 2889          | 948             | 2987            | 1051          | 2658            |
| n10                | 2456          | 5158          | 2520            | 5299            | 2556          | 4894            |
| gc                 | 0.43          | 0.50          | 0.43            | 0.49            | 0.44          | 0.47            |

### Mapping rate



Figure S1: The percent of mapped reads was calculated by mapping raw reads of each species to each of the assemblies with salmon [47] and extracting the mapping rate from salmon output. Each box plot summarizes ca. 60 values.

#### Text S1: Checks for mislabeled samples

To check for consistency of samples and variability between replicates, we used the transcript abundance data generated by mapping of all samples to one transcriptome assembly to perform principal component analysis (PCA).

Two first principal components showed a clear distinction between the species. Moreover, while PC1 differentiates between *Eulimnogammarus* and *Gammarus*, PC2 differentiates between *E. verrucosus* and *E. cyaneus*.

However, several samples were located not in the expected places on the plot (an example is show below). A possible explanation could be that two samples have been swapped during library preparation, and one was a mixture of material in between the two species.



All species, control vs temperature

An example PCA plot of control and LT10 exposure samples showing the problematic samples. Other samples not shown on this plot were correctly attributed to the species.

To checke for potential wrong assignment of the sample to species, we analyzed 18S rRNA sequences as a phylogenetic marker. The 18S sequences of these species are known (Qiu, Y., Smith, J.E., Sherbakov, D.Y. and Kamaltynov, R.M., unpublished).

FJ752394.1 Eulimnogammarus verrucosus voucher EVER8 18S ribosomal RNA gene, partial sequence; FJ752393.1 Eulimnogammarus cyaneus voucher ECYA9 18S ribosomal RNA gene, partial sequence; FJ752398.1 Gammarus lacustris voucher GLAC1 18S ribosomal RNA gene, partial sequence

We aligned these sequences and then manually chose the most variable region for faster check:

```
>FJ752394.1_Eulimnogammarus_verrucosus_v
TTGGGGCTTGCTTGTCTTGC-CCTGCGCTGCTCTGACGGATGCTTTATTAG
ACCAAGCCGCTGAGGACTTGAGGGTTCGCGCTCTCTTGTTTGACTCGTGTG
>FJ752393.1_Eulimnogammarus_cyaneus_vouc
TTTGTGCTTGCTTGTCTTGCGCTTGCGCGCTCCTGACGGATGCTTTATTAG
ACCAAGCCGCTGAGGACTTGAGGGTTCGCGCTCTCTTGTCTGACTCGTGTG
>FJ752398.1_Gammarus_lacustris_voucher_G
GTTGTGCTTGCTTGTCTTGCGCTCTCACTGCTCTGACGGATGCTTTTATTAG
ACCAAACCGCTGAGGACTTGGGGGTT--CGCTCTCTTGTCTGACTCGTTAT
```

Then we looked up these sequnces in the raw reads with bbmap (bbduk, https://sourceforge.net/projects/bbmap/) against the three species.

Here are the data for a subset of samples (including the most "interesing" ones). The vertical scale shows number of reads with the corresponding species-specific 18S sequence in the reads:



Indeed, we found two samples that have been most probably swapped and one more sample that potentially contained mixed materials of two different species. Two swapped samples were renamed, while the mixed sample was removed from further analysis. Thus, we renamed Ecy10LT3\_3 and Gla10LT3\_4 and excluded EveB24\_2\_6 and GlaB24\_1 from the analysis.

### Figure S2: transcripts of glutathione S transferase gene family

Eve TRINITY\_DN376419\_c0\_g2\_i6 XP\_018013540.1 PREDICTED: glutathione S-transferase D1-like [Hyalella azteca]



50 40 M 30 10

10LT24

Cd3

Cd24





Ecy TRINITY\_DN493696\_c0\_g1\_i5 ERE88714.1 glutathione S-transferase Mu 7-like protein [Cricetulus griseus]

10LT3

fcondition

B3

B24







Figure S2: Abundance of different transcripts encoding glutathione S transferases in different conditions. TPM, transcript per million. The three-letter species designations, contig names and annotation are shown on the top of each plot. The conditions are listed along the horisontal axis. B3, parallel control for the 3-hr treatments. B24, parallel control for the 24-hr treatments. 10LT3, LT10 treatment for 3 hrs. 10LT24, LT10 treatment for 24 hrs. Cd3, LC10 CdCl<sub>2</sub> treatment for 3 hrs. Cd24, LC10 CdCl<sub>2</sub> treatment for 24 hrs.

Ecy TRINITY\_DN489637\_c0\_g2\_i2 XP\_018007492.1 PREDICTED: glutathione S-transferase Mu 1-like isoform X2 [Hyalella a

### Figure S3: Putative metallothionein (MT) transcripts

Figure S3: Putative MT transcripts

The upper panel features alignment of the sequences of most abundant potential MT transcripts from E. vertucosus and E. cyaneus (the same as shown in Figure 4D) with the sequence from A. tomentosa. Note the absolute conservation of the cystein residues. The remaining panels feature the abundance of different transcripts encoding all MT-like transcripts in different conditions. TPM, transcript for million counts. The labels of the horizontal axis are the same as in Figure S2.









