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A – Introduction and Background 

A1 – Approaches to Two-Party Decryption using PRE 
In this article, smart contracts allow delegator 𝐴 ∈ 𝒰 to delegate controlled access to its 

encrypted data to delegatee 𝐵 ∈ 𝒰 by way of an enforcing, semi-trusted intermediary 𝑅 ∈

ℛ (e.g., nodes), where 𝒰 and ℛ are the set of all users and intermediaries respectively. The 

proxy re-encryption (PRE) scheme used herein – Ateniese et al.’s improved, second attempt 
[1] – can facilitate this function through a series of repeated encryption and decryption 

processes. However, this scheme, as well as others published, does not allow for secure 
two-party decryption. The following section illustrates various implementation 

possibilities and potential threats; thus, supporting the requirement of a new approach. 

A1.1 – PRE Two-Party Decryption Scenarios 
One implementation might be for 𝑅 to decrypt the ciphertext 𝑐𝐴 from 𝐴 using the re-

encryption key 𝑟𝑘𝐴→𝑅 , encrypt the resulting plaintext message 𝑚𝐴 using 𝐵’s public key 𝑝𝑘𝐵 , 

and transmit 𝑐𝐵 to 𝐵. However, this requires full confidence in 𝑅 as it now is in possession 

of 𝑚𝐴. In response, one can alter 𝑟𝑘𝐴→𝑅  to 𝑟𝑘𝐴→𝐵, necessitating the secret key of 𝐵 (𝑠𝑘𝐵) to 

decrypt the message (secret is equivalent to private, but allows shorthand distinct as 𝑠𝑘). 

This can be implemented in two ways; both with security concerns. 

The first eliminates exposure of 𝑚𝐴 to 𝑅 by using 𝑅 as a verification system that forwards 
ciphertexts and 𝑝𝑘𝐵-encrypted re-encryption keys to 𝐵 for decryption as valid under smart 

contract provisions. The issue is, once 𝐵 has 𝑟𝑘𝐴→𝐵, it can decrypt any 𝑐𝐴 (this key does not 

support encryption) without verification. Meaning, 𝐵 can decrypt, with impunity, blocks 

owned by 𝐴 after, for instance, smart contract termination. Accounting for this, the second 
approach eliminates re-encryption key exposure to 𝐵 by requiring 𝑠𝑘𝐵  be sent to 𝑅 who 

facilitates decryption. However, 𝑅 can now decrypt any 𝑐𝐴 by way of 𝑟𝑘𝐴→𝐵, decrypt and 

forge any 𝑐𝐵 using 𝑠𝑘𝐵 , and masquerade as 𝐵 in the system (e.g., sign contracts as 𝐵). 

Clearly, two challenges persist. One, how to prevent 𝑅 from gaining access to any message 
𝑚𝒰, and two, how to ensure 𝐵 never possesses a re-encryption key 𝑟𝑘𝒰→𝐵 . The remainder 

of this section provides an essentials-only overview of the PRE scheme used as well as our 

extensions to address the aforementioned concerns. 

A2 – Improved Second Attempt PRE Scheme – Background 
The modified PRE scheme is Ateniese et al.’s improved “Second Attempt” [1]. In this section 

we introduce relevant components and definitions, and refer the reader to Ateniese et al. 

[1] for complete details. 

It is said that 𝑒 ∶ 𝐺1 ×  𝐺1 → 𝐺2 is a bilinear map if (1) 𝐺1, 𝐺1 are groups of the same prime 

order 𝑞; (2) for all 𝑎, 𝑏 ∈ ℤ𝑞  (ℤ𝑞 is the set of all integers mod 𝑞), 𝑔 ∈ 𝐺1, and ℎ ∈ 𝐺1, then 



𝑒(𝑔𝑎, ℎ𝑏) = 𝑒(𝑔, ℎ)𝑎𝑏 is efficiently computable; and (3) the map is nondegenerate (i.e., if 𝑔 

generates 𝐺1 and ℎ generates 𝐺1, then 𝑒(𝑔, ℎ) generates 𝐺2). 

The scheme itself is based on BBS [2] and ElGamal [3], operating over two groups 𝐺1, 𝐺2 of 

prime order 𝑞 with a defined bilinear map 𝑒 ∶ 𝐺1 × 𝐺1 → 𝐺2 (here, 𝐺1 = 𝐺1). The system 

parameters are random generators 𝑔 ∈ 𝐺1 and 𝑍 = 𝑒(𝑔, 𝑔) ∈ 𝐺2. 

The public/secret key pair for user 𝐴 is in the form 𝑝𝑘𝐴 = 𝑔𝑎 and 𝑠𝑘𝐴 = 𝑎 respectively, 

where 𝑎 is randomly selected from ℤ𝑞. The relevant enciphering of message 𝑚𝐴 is defined 

as the pairing 𝜀𝐴 = (𝑔𝑎𝑘𝐴 , 𝑐𝐴), where 𝑘𝐴 is randomly selected from ℤ𝑞 such that 𝑘𝐴 ≠ 𝑎, 

𝑔𝑎𝑘𝐴  is the public cipher parameter, and 𝑐𝐴 = 𝑚𝐴𝑍𝑘𝐴  is the encrypted message from 𝐴. 

Decrypting 𝜀𝐴 can be accomplished in several ways, two of which are examined. First, 𝐴 can 

use 𝑠𝑘𝐴 in the following manner: 
𝜀𝐴

1

𝑒(𝜀𝐴
0 ,𝑔)

−𝑠𝑘𝐴
=

𝑐𝐴

𝑒(𝑔𝑎𝑘𝐴 ,𝑔)
−𝑎 =

𝑚𝐴𝑍𝑘𝐴

𝑒(𝑔,𝑔)𝑎𝑘𝐴 𝑎⁄ =
𝑚𝐴𝑍𝑘𝐴

𝑍𝑘𝐴
= 𝑚𝐴. The 

second approach relies on the re-encryption key 𝑟𝑘𝐴→𝐵 = 𝑔𝑏 𝑎⁄  , where 𝐴 delegates 

decryption rights to delegatee 𝐵. 𝐴 computes  𝑟𝑘𝐴→𝐵 = 𝑝𝑘𝐵
−𝑠𝑘𝐴 = (𝑔𝑏)−𝑎 = 𝑔𝑏 𝑎⁄ . 

Decryption by 𝐵 is as follows: 
𝜀𝐴

1

𝑒(𝜀𝐴
0 ,𝑟𝑘𝐴→𝐵)

−𝑠𝑘𝐵
=

𝑐𝐴

𝑒(𝑔𝑎𝑘𝐴 ,𝑔𝑏 𝑎⁄ )
−𝑏 =

𝑚𝐴𝑍𝑘𝐴

𝑒(𝑔,𝑔)𝑎𝑘𝐴𝑏 𝑎𝑏⁄ =
𝑚𝐴𝑍𝑘𝐴

𝑍𝑘𝐴
= 𝑚𝐴. 

B – Two-Party PRE Decryption Scheme 
In this section, we submit a two-party PRE decryption scheme, which modifies the 

algorithms expressed in Section A2 to address the concerns raised in Section A1.1. This 

approach masks 𝑚𝐴 to 𝑅 and prevents 𝐵 from learning 𝑟𝑘𝐴→𝐵, and is available in full and 
fragmented-block configurations. The process is ordered, requiring 𝑅 to complete its 

intermediate re-encryption prior to 𝐵’s decryption.  

B1 – Full-Block Configuration 

Full-block configuration is an implementation option where block data are stored in a single 

container. All operations performed are done so over its entire contents. The following 
section describes the submitted PRE extensions and definitions necessary to achieve full-

block two-party PRE. 

To begin, the temporal nature of 𝑘𝐴 is revised from fixed to dynamic. Each time a message 

is encrypted, 𝑘𝐴 is randomly chosen – i.e., 𝑘𝐴
𝑖  for temporal index 𝑖 ∈ 𝒯. The next step is for 𝐴 

to compute 𝑐𝐴
𝑖 = 𝑚𝐴

𝑖 𝑍𝑘𝐴
𝑖
 as previously defined. 𝐴 then calculates three parameters. The first 

is the public cipher parameter 𝑝𝑘𝑅
𝑠𝑘𝐴𝑙𝐴 = 𝑔𝑟𝑎𝑙𝐴 . The second is the intermediate (𝑅) re-

encryption key 𝑟𝑘𝐴→𝑅𝐵
𝑖 =

𝑒(𝑔𝑘𝐴
𝑖

,𝑝𝑘𝑅)

𝑒(𝑔𝑘𝐴
𝑖

,𝑔)
=

𝑒(𝑔𝑘𝐴
𝑖

,𝑔𝑟)

𝑒(𝑔𝑘𝐴
𝑖

,𝑔)
=

𝑒(𝑔,𝑔)𝑘𝐴
𝑖 𝑟

𝑒(𝑔,𝑔)𝑘𝐴
𝑖 =

𝑍𝑘𝐴
𝑖 𝑟

𝑍𝑘𝐴
𝑖 = 𝑍𝑘𝐴

𝑖 (𝑟−1). The final 

parameter is the delegatee re-encryption key 𝑟𝑘𝐴𝑅→𝐵
𝑖 = 𝑝𝑘𝐵

𝑘𝐴
𝑖 𝑠𝑘𝐴𝑙𝐴⁄

= 𝑔𝑏𝑘𝐴
𝑖 𝑎𝑙𝐴⁄ , where 𝑙𝐴 is 

randomly selected from ℤ𝑞 such that 𝑙𝐴 ≠ 𝑎, 𝑘𝐴
𝑖 . The addition of 𝑘𝐴

𝑖  to 𝑟𝑘𝐴𝑅→𝐵
𝑖  binds the key 

temporally to 𝑐𝐴
𝑖 , eliminating the possibility of using the key to attack future or former 



version of the ciphertext (refer to Propositions 1 and 2) and minimizing transitivity threats 

(Propositions 3 and 4). 

Now that the keys have been established, 𝑅 applies 𝑟𝑘𝐴→𝑅𝐵
𝑖  to 𝑐𝐴

𝑖  as a simple scalar, 

resulting in the re-encrypted cipher 𝑐𝐴→𝑅
𝑖 = 𝑚𝐴

𝑖 𝑍𝑘𝐴
𝑖 𝑟 (refer to Proposition 5). Thus, 𝑚𝐴

𝑖  

remains hidden from 𝑅. Delegatee 𝐵 recovers 𝑚𝐴
𝑖  through a normal decryption-by-proxy 

process where 𝜀𝐴→𝑅
𝑖 = (𝑔𝑟𝑎𝑙𝐴 , 𝑐𝐴→𝑅

𝑖 ) and the re-encryption key is 𝑟𝑘𝐴𝑅→𝐵
𝑖 = 𝑔𝑏𝑘𝐴

𝑖 𝑎𝑙⁄
𝐴  (refer 

to Proposition 6). As the public cipher parameter contains 𝑟, 𝐵 cannot compute 𝑍𝑘𝐴
𝑖

, thus 

preventing it from directly decrypting 𝑐𝐴
𝑖 . Only the intermediate cipher 𝑐𝐴→𝑅

𝑖  can be 

decrypted, ensuring 𝑅 partakes in the transaction. Of note, if 𝐵 has access to 𝑐𝐴
𝑖 , then after 

the first re-encryption, it is possible for 𝐵 to deduce 𝑟𝑘𝐴→𝑅𝐵
𝑖  (refer to Proposition 7); 

bypassing the intermediary in subsequent re-encryption events on 𝑐𝐴
𝑖 .  

While 𝐵 cannot use this deduced re-encryption key to decrypt any 𝑐𝐴
𝑗
 where 𝑗 ≠ 𝑖, to ensure 

complete security, we propose an additional encryption layer imposed by 𝑅, one in which it 

encrypts and stores 𝑐𝐴
𝑖  with an ephemeral key 𝑥𝑅

𝑖  (𝑐𝐴
𝑖 𝑍𝑥𝑅

𝑖
= 𝑐𝐴𝑅

𝑖 ). The intermediate and 

delegatee phases of two-party PRE must be slightly augmented as done in Propositions 8 

and 9. As 𝑍𝑥𝑅
𝑖

 is a simple scalar, it is still trivial to compute 𝑟𝑘𝐴→𝑅𝐵
𝑖  as shown in Proposition 

10. However, if 𝑅 re-encrypts 𝑐𝐴𝑅
𝑖  under a new 𝑥𝑅

𝑗
 after access, this no longer poses a threat 

(see Proposition 11). This can be augmented to reduce the number of operations 

performed by the delegatee, who may be operating in a limited or constrained 
environment, without sacrificing security. The approach is quite intuitive and shown in 

Proposition 12. The ephemeral layer 𝑍𝑥𝑅
𝑖
 is removed by 𝑅 prior to re-encryption, then 

updated to 𝑥𝑅
𝑗
. This returns the two-party PRE process to the simplified version presented 

in Propositions 5 and 6, while holding to the security of Proposition 11. Of note: it is still 
possible for the encrypted value to change without the ephemeral key if 𝐴 re-encrypts the 

data under a dynamic encryption key mode. However, this requires 𝐴’s participation, which 

cannot be guaranteed. Conversely, 𝑅 can perform this action on demand or periodically 

without access to avoid “stale” keys or if it suspects any 𝑥𝑅
∗  may have been compromised. 

Proposition 1. For temporal index 𝑖 ∈ 𝒯, if 𝜀𝐴
𝑖  consisting of 𝑔𝑎𝑘𝐴

𝑖
  and 𝑐𝐴

𝑖  are public, 𝐵 can 

decrypt any 𝑐𝐴
𝑖  upon learning 𝑟𝑘𝐴→𝐵. 

Proof. Let 𝜀𝐴
𝑖 = (𝑔𝑎𝑘𝐴

𝑖
, 𝑐𝐴

𝑖 ), 𝑐𝐴
𝑖 = 𝑚𝐴

𝑖 𝑍𝑘𝐴
𝑖
, 𝑟𝑘𝐴→𝐵 = 𝑔𝑏 𝑎⁄ , and 𝑠𝑘𝐵 = 𝑏. Thus: 

𝜀𝐴
𝑖,1

𝑒(𝜀𝐴
𝑖,0, 𝑟𝑘𝐴→𝐵)

−𝑠𝑘𝐵
=

𝑐𝐴
𝑖

𝑒 (𝑔𝑎𝑘𝐴
𝑖

, 𝑔𝑏 𝑎⁄ )
−𝑏 =

𝑚𝐴
𝑖 𝑍𝑘𝐴

𝑖

𝑒(𝑔, 𝑔)𝑎𝑘𝐴
𝑖 𝑏 𝑎𝑏⁄

=
𝑚𝐴

𝑖 𝑍𝑘𝐴
𝑖

𝑍𝑘𝐴
𝑖

= 𝑚𝐴
𝑖  ∀ 𝑖 ∈ 𝒯 



As 𝑍𝑘𝐴
𝑖

 can be computed using 𝑒 (𝑔𝑘𝐴
𝑖

, 𝑔), 𝑔𝑎𝑘𝐴
𝑖

 requires only an inverse of 𝑎 to satisfy the 

same equation. This is fulfilled by 𝑔𝑏 𝑎⁄ , which is not bound to 𝑖. Thus, receipt of 𝑟𝑘𝐴→𝐵 once 

grants permanent decryption rights to 𝐵 regardless of the temporal index.                              ∎ 

Proposition 2. Binding 𝑟𝑘𝐴→𝐵 to 𝑖 (i.e., 𝑟𝑘𝐴→𝐵
𝑖 ) addresses the problem identified in 

Proposition 1; namely that 𝑟𝑘𝐴→𝐵 can decrypt any ciphertext regardless of temporality. 

Proof. Let 𝜀𝐴
𝑖 = (𝑔𝑎𝑙𝐴 , 𝑐𝐴

𝑖 ) where 𝑙𝐴 is randomly selected from ℤ𝑞 such that 𝑙𝐴 ≠ 𝑎, 𝑘𝐴
𝑖 ; 𝑐𝐴

𝑖 =

𝑚𝐴
𝑖 𝑍𝑘𝐴

𝑖
; 𝑟𝑘𝐴→𝐵

𝑖 = 𝑔𝑏𝑘𝐴
𝑖 𝑎𝑙𝐴⁄ ; and 𝑠𝑘𝐵 = 𝑏. Thus: 

𝜀𝐴
𝑖,1

𝑒(𝜀𝐴
𝑖,0, 𝑟𝑘𝐴→𝐵

𝑖 )
−𝑠𝑘𝐵

=
𝑐𝐴

𝑖

𝑒 (𝑔𝑎𝑙𝐴 , 𝑔𝑏𝑘𝐴
𝑖 𝑎𝑙𝐴⁄ )

−𝑏 =
𝑚𝐴

𝑖 𝑍𝑘𝐴
𝑖

𝑒(𝑔, 𝑔)𝑎𝑙𝐴𝑏𝑘𝐴
𝑖 𝑎𝑙𝐴𝑏⁄

=
𝑚𝐴

𝑖 𝑍𝑘𝐴
𝑖

𝑍𝑘𝐴
𝑖

= 𝑚𝐴
𝑖  

shows 𝑟𝑘𝐴→𝐵
𝑖  still decrypts at temporal index 𝑖. The following proves this no longer holds 

when 𝑗 ≠ 𝑖: 

                    
𝜀𝐴

𝑗,1

𝑒(𝜀𝐴
𝑗,0

, 𝑟𝑘𝐴→𝐵
𝑖 )

−𝑠𝑘𝐵
=

𝑐𝐴
𝑗

𝑒 (𝑔𝑎𝑙𝐴 , 𝑔𝑏𝑘𝐴
𝑖 𝑎𝑙𝐴⁄ )

−𝑏 =
𝑚𝐴

𝑗
𝑍𝑘𝐴

𝑗

𝑒(𝑔, 𝑔)𝑎𝑙𝐴𝑏𝑘𝐴
𝑖 𝑎𝑙𝐴𝑏⁄

=
𝑚𝐴

𝑗
𝑍𝑘𝐴

𝑗

𝑍𝑘𝐴
𝑖

 

                                                        = 𝑚𝐴
𝑗
𝑍𝑘𝐴

𝑗
−𝑘𝐴

𝑖
≠ 𝑚𝐴

𝑗
                                                                                 ∎ 

Proposition 3. The re-encryption key 𝑟𝑘𝐴→𝐵 is transitive if 𝐵 colludes with 𝐶. 

Proof. Let 𝑠𝑘𝐵 = 𝑏, 𝑠𝑘𝐶 = 𝑐, 𝑟𝑘𝐴→𝐵 = 𝑔𝑏 𝑎⁄ , and 𝑟𝑘𝐴→𝐶 = 𝑔𝑐/𝑎. Thus: 

((𝑟𝑘𝐴→𝐵)−𝑠𝑘𝐵)𝑠𝑘𝐶 = ((𝑔𝑏/𝑎)
−𝑏

)
𝑐

= (𝑔𝑏/𝑎𝑏)
𝑐

= (𝑔−𝑎)𝑐 = 𝑔𝑐/𝑎 = 𝑟𝑘𝐴→𝐶  

This can be done in a manner protective of 𝑠𝑘𝐶  by 𝐵 computing and sending to 𝐶 𝑔−𝑎, who 

then calculates 𝑔𝑐/𝑎.                                                                                                                                      ∎ 

Proposition 4. Binding 𝑟𝑘𝐴→𝐵 to temporal index 𝑖 ∈ 𝒯 (Proposition 2) does not prevent re-
encryption key transitivity from 𝐵 to 𝐶, but renders it mute as access is not granted beyond 
what could have been given by 𝐵. 

Proof. Let 𝑠𝑘𝐵 = 𝑏, 𝑠𝑘𝐶 = 𝑐, 𝑟𝑘𝐴→𝐵
𝑖 = 𝑔𝑏𝑘𝐴

𝑖 /𝑎, and 𝑟𝑘𝐴→𝐶
𝑖 = 𝑔𝑐𝑘𝐴

𝑖 /𝑎. Thus: 

((𝑟𝑘𝐴→𝐵
𝑖 )

−𝑠𝑘𝐵
)

𝑠𝑘𝐶

= ((𝑔𝑏𝑘𝐴
𝑖 /𝑎)

−𝑏
)

𝑐

= (𝑔𝑏𝑘𝐴
𝑖 /𝑎𝑏)

𝑐
= (𝑔𝑘𝐴

𝑖 /𝑎)
𝑐

= 𝑔𝑐𝑘𝐴
𝑖 /𝑎 = 𝑟𝑘𝐴→𝐶

𝑖  

Though 𝐶 is capable of decrypting 𝑐𝐴
𝑖  using 𝑟𝑘𝐴→𝐶

𝑖 , it cannot do so with 𝑐𝐴
𝑗
 where 𝑗 ≠ 𝑖 

(Proposition 2). Thus, this is no better than 𝐵 simply giving 𝐶 𝑚𝐴
𝑖 , as no privileges are 

extended to 𝐶 beyond what could be shared directly.                                                                       ∎ 

 



Proposition 5. The result of the intermediate re-encryption of 𝑐𝐴
𝑖  given 𝑟𝑘𝐴→𝑅𝐵

𝑖  is 𝑐𝐴→𝑅
𝑖 =

𝑚𝐴
𝑖 𝑍𝑘𝐴

𝑖 𝑟 ≠ 𝑐𝐴
𝑖 , 𝑚𝐴

𝑖 . 

Proof. Let 𝑐𝐴
𝑖 = 𝑚𝐴

𝑖 𝑍𝑘𝐴
𝑖

 and 𝑟𝑘𝐴→𝑅𝐵
𝑖 = 𝑍𝑘𝐴

𝑖 (𝑟−1). Thus: 

              𝑐𝐴→𝑅
𝑖 = 𝑐𝐴

𝑖 (𝑟𝑘𝐴→𝑅𝐵
𝑖 ) = 𝑚𝐴

𝑖 𝑍𝑘𝐴
𝑖

(𝑍𝑘𝐴
𝑖 (𝑟−1)) = 𝑚𝐴

𝑖 𝑍𝑘𝐴
𝑖

(𝑍𝑘𝐴
𝑖 𝑟−𝑘𝐴

𝑖
) = 𝑚𝐴

𝑖 𝑍𝑘𝐴
𝑖 +𝑘𝐴

𝑖 𝑟−𝑘𝐴
𝑖

 

                        = 𝑚𝐴
𝑖 𝑍𝑘𝐴

𝑖 𝑟 ≠ 𝑐𝐴
𝑖 , 𝑚𝐴

𝑖                                                                                                                 ∎ 

Proposition 6. The result of delegatee decryption on 𝑐𝐴→𝑅
𝑖  given 𝜀𝐴→𝑅

𝑖 , 𝑟𝑘𝐴𝑅→𝐵
𝑖 , and 𝑠𝑘𝐵  

is 𝑚𝐴
𝑖 . 

Proof. Let 𝜀𝐴→𝑅
𝑖 = (𝑔𝑟𝑎𝑙𝐴 , 𝑐𝐴→𝑅

𝑖 ), 𝑐𝐴→𝑅
𝑖 = 𝑚𝐴

𝑖 𝑍𝑘𝐴
𝑖 𝑟 , 𝑟𝑘𝐴𝑅→𝐵

𝑖 = 𝑔𝑏𝑘𝐴
𝑖 𝑎𝑙𝐴⁄ , and 𝑠𝑘𝐵 = 𝑏. Thus: 

       
𝜀𝐴→𝑅

𝑖,1

𝑒(𝜀𝐴→𝑅
𝑖,0 , 𝑟𝑘𝐴𝑅→𝐵

𝑖 )
−𝑠𝑘𝐵

=
𝑐𝐴→𝑅

𝑖

𝑒 (𝑔𝑟𝑎𝑙𝐴 , 𝑔𝑏𝑘𝐴
𝑖 𝑎𝑙𝐴⁄ )

−𝑏 =
𝑚𝐴

𝑖 𝑍𝑘𝐴
𝑖 𝑟 

𝑒(𝑔, 𝑔)𝑟𝑎𝑙𝐴𝑏𝑘𝐴
𝑖 𝑎𝑙𝐴𝑏⁄

=
𝑚𝐴

𝑖 𝑍𝑘𝐴
𝑖 𝑟 

𝑍𝑟𝑘𝐴
𝑖

= 𝑚𝐴
𝑖      ∎ 

Proposition 7. Using 𝑐𝐴
𝑖  and 𝑐𝐴→𝑅

𝑖 , 𝐵 can infer 𝑟𝑘𝐴→𝑅𝐵
𝑖 .  

Proof. Let 𝑐𝐴
𝑖 = 𝑚𝐴

𝑖 𝑍𝑘𝐴
𝑖

, 𝑐𝐴→𝑅
𝑖 = 𝑚𝐴

𝑖 𝑍𝑘𝐴
𝑖 𝑟, and 𝑟𝑘𝐴→𝑅𝐵

𝑖 = 𝑍𝑘𝐴
𝑖 (𝑟−1). Thus: 

                     
𝑐𝐴→𝑅

𝑖

𝑐𝐴
𝑖

=
𝑚𝐴

𝑖 𝑍𝑘𝐴
𝑖 𝑟

𝑚𝐴
𝑖 𝑍𝑘𝐴

𝑖
=

𝑍𝑘𝐴
𝑖 𝑟

𝑍𝑘𝐴
𝑖

= 𝑍𝑘𝐴
𝑖 𝑟𝑍−𝑘𝐴

𝑖
= 𝑍𝑘𝐴

𝑖 𝑟−𝑘𝐴
𝑖

= 𝑍𝑘𝐴
𝑖 (𝑟−1) = 𝑟𝑘𝐴→𝑅𝐵

𝑖                      ∎ 

Proposition 8.  The result of the intermediate re-encryption of 𝑐𝐴𝑅
𝑖  given 𝑟𝑘𝐴→𝑅𝐵

𝑖  is 𝑐𝐴𝑅→𝑅
𝑖 =

𝑚𝐴
𝑖 𝑍𝑘𝐴

𝑖 𝑟+𝑥𝑅
𝑖

≠ 𝑐𝐴
𝑖 , 𝑐𝐴𝑅

𝑖 , 𝑚𝐴
𝑖 . 

Proof. Let 𝑐𝐴
𝑖 = 𝑚𝐴

𝑖 𝑍𝑘𝐴
𝑖

, 𝑐𝐴𝑅
𝑖 = 𝑐𝐴

𝑖 𝑍𝑥𝑅
𝑖

 where 𝑥𝑅
𝑖  is an ephemeral, randomly selected value in 

ℤ𝑞 by 𝑅 for each temporal index, and 𝑟𝑘𝐴→𝑅𝐵
𝑖 = 𝑍𝑘𝐴

𝑖 (𝑟−1). Thus: 

𝑐𝐴𝑅→𝑅
𝑖 = 𝑐𝐴𝑅

𝑖 (𝑟𝑘𝐴→𝑅𝐵
𝑖 ) = 𝑐𝐴

𝑖 𝑍𝑥𝑅
𝑖

(𝑍𝑘𝐴
𝑖 (𝑟−1)) = (𝑚𝐴

𝑖 𝑍𝑘𝐴
𝑖

) 𝑍𝑥𝑅
𝑖

(𝑍𝑘𝐴
𝑖 𝑟−𝑘𝐴

𝑖
) = 𝑚𝐴

𝑖 𝑍𝑘𝐴
𝑖 +𝑥𝑅

𝑖 +𝑘𝐴
𝑖 𝑟−𝑘𝐴

𝑖
 

             = 𝑚𝐴
𝑖 𝑍𝑘𝐴

𝑖 𝑟+𝑥𝑅
𝑖

≠ 𝑐𝐴
𝑖 , 𝑐𝐴𝑅

𝑖 , 𝑚𝐴
𝑖                                                                                                              ∎ 

Proposition 9. The result of delegatee decryption on 𝑐𝐴𝑅→𝑅
𝑖  given 𝑟𝑘𝐴𝑅→𝐵1

𝑖 , 𝑟𝑘𝐴𝑅→𝐵2

𝑖 , and 

𝑠𝑘𝐵  is 𝑚𝐴
𝑖 . 

Proof. Let 𝜀𝐴𝑅→𝑅
𝑖 = (𝑔𝑟𝑎𝑙𝐴 , 𝑐𝐴𝑅→𝑅

𝑖 ), 𝜀𝐴𝑅→𝑅1

𝑖 = (𝑝𝑘𝑅 , 𝑐𝐴𝑅→𝑅1

𝑖 ), 𝑐𝐴𝑅→𝑅
𝑖 = 𝑚𝐴

𝑖 𝑍𝑘𝐴
𝑖 𝑟+𝑥𝑅

𝑖
, 𝑐𝐴𝑅→𝑅1

𝑖 =

𝑚𝐴
𝑖 𝑍𝑥𝑅

𝑖
, 𝑟𝑘𝐴𝑅→𝐵1

𝑖 = 𝑔𝑏𝑘𝐴
𝑖 𝑎𝑙𝐴⁄ , 𝑟𝑘𝐴𝑅→𝐵2

𝑖 = 𝑔𝑏𝑥𝑅
𝑖 𝑟⁄ , and 𝑠𝑘𝐵 = 𝑏. Thus: 

Layer 1: 𝑐𝐴𝑅→𝑅1

𝑖 =
𝜀𝐴𝑅→𝑅

𝑖,1

𝑒(𝜀𝐴𝑅→𝑅
𝑖,0 ,𝑟𝑘𝐴𝑅→𝐵1

𝑖 )
−𝑠𝑘𝐵

=
𝑐𝐴𝑅→𝑅

𝑖

𝑒(𝑔𝑟𝑎𝑙𝐴 ,𝑔𝑏𝑘𝐴
𝑖 𝑎𝑙𝐴⁄ )

−𝑏 =
𝑚𝐴

𝑖 𝑍𝑘𝐴
𝑖 𝑟+𝑥𝑅

𝑖
 

𝑒(𝑔,𝑔)𝑟𝑎𝑙𝐴𝑏𝑘𝐴
𝑖 𝑎𝑙𝐴𝑏⁄

=
𝑚𝐴

𝑖 𝑍𝑘𝐴
𝑖 𝑟+𝑥𝑅

𝑖
 

𝑍𝑟𝑘𝐴
𝑖  

                   = 𝑚𝐴
𝑖 𝑍𝑘𝐴

𝑖 𝑟+𝑥𝑅
𝑖 −𝑟𝑘𝐴

𝑖
= 𝑚𝐴

𝑖 𝑍𝑥𝑅
𝑖

                                                                                  



Layer 2: 
𝜀𝐴𝑅→𝑅1

𝑖,1

𝑒(𝜀𝐴𝑅→𝑅1

𝑖,0 ,𝑟𝑘𝐴𝑅→𝐵2
𝑖 )

−𝑠𝑘𝐵
=

𝑐𝐴𝑅→𝑅1
𝑖

𝑒(𝑝𝑘𝑅,𝑔𝑏𝑥𝑅
𝑖 𝑟⁄ )

−𝑏 =
𝑚𝐴

𝑖 𝑍𝑥𝑅
𝑖

𝑒(𝑔𝑟,𝑔𝑏𝑥𝑅
𝑖 𝑟⁄ )

−𝑏 =
𝑚𝐴

𝑖 𝑍𝑥𝑅
𝑖

 

𝑒(𝑔,𝑔)𝑟𝑏𝑥𝑅
𝑖 𝑟𝑏⁄

=
𝑚𝐴

𝑖 𝑍𝑥𝑅
𝑖

 

𝑍𝑥𝑅
𝑖  

                                                        = 𝑚𝐴
𝑖                                                                                                           ∎ 

Proposition 10. Using 𝑐𝐴𝑅
𝑖  and 𝑐𝐴𝑅→𝑅

𝑖 , 𝐵 can infer 𝑟𝑘𝐴→𝑅𝐵
𝑖 .  

Proof. Let 𝑐𝐴𝑅
𝑖 = (𝑚𝐴

𝑖 𝑍𝑘𝐴
𝑖

) 𝑍𝑥𝑅
𝑖

, 𝑐𝐴𝑅→𝑅
𝑖 = (𝑚𝐴

𝑖 𝑍𝑘𝐴
𝑖 𝑟) 𝑍𝑥𝑅

𝑖
, and 𝑟𝑘𝐴→𝑅𝐵

𝑖 = 𝑍𝑘𝐴
𝑖 (𝑟−1). Thus: 

                          
𝑐𝐴𝑅→𝑅

𝑖

𝑐𝐴𝑅
𝑖

=
(𝑚𝐴

𝑖 𝑍𝑘𝐴
𝑖 𝑟) 𝑍𝑥𝑅

𝑖

(𝑚𝐴
𝑖 𝑍𝑘𝐴

𝑖
) 𝑍𝑥𝑅

𝑖
=

𝑍𝑘𝐴
𝑖 𝑟

𝑍𝑘𝐴
𝑖

= 𝑍𝑘𝐴
𝑖 𝑟−𝑘𝐴

𝑖
= 𝑍𝑘𝐴

𝑖 (𝑟−1) = 𝑟𝑘𝐴→𝑅𝐵
𝑖                           ∎ 

Proposition 11. Re-encrypting 𝑐𝐴𝑅
𝑖  to 𝑐𝐴𝑅

𝑖,𝑗
 by 𝑅 prevents 𝐵 from computing the 

intermediate re-encryption step by way of 𝑟𝑘𝐴→𝑅𝐵
𝑖  inferred via Proposition 10.  

Proof. Let 𝑐𝐴𝑅
𝑖 = (𝑚𝐴

𝑖 𝑍𝑘𝐴
𝑖

) 𝑍𝑥𝑅
𝑖

, 𝑟𝑘𝐴→𝑅𝐵
𝑖 = 𝑍𝑘𝐴

𝑖 (𝑟−1) as derived by 𝐵 (Proposition 10), and 𝑥𝑅
𝑗
 

is an ephemeral, randomly selected value in ℤ𝑞 by 𝑅 for each temporal index such that 𝑥𝑅
𝑗

≠

𝑥𝑅
𝑖 . Thus: 

𝑅 re-encrypts 𝑐𝐴𝑅
𝑖  under 𝑥𝑅

𝑗
 using the scalar 𝑠𝑅

𝑖→𝑗
= 𝑍𝑥𝑅

𝑗
−𝑥𝑅

𝑖
, yielding 𝑐𝐴𝑅

𝑖,𝑗
:  

𝑐𝐴𝑅
𝑖,𝑗

= 𝑐𝐴𝑅
𝑖 𝑠𝑅

𝑖→𝑗
= (𝑚𝐴

𝑖 𝑍𝑘𝐴
𝑖

) 𝑍𝑥𝑅
𝑖

(𝑍𝑥𝑅
𝑗

−𝑥𝑅
𝑖

) = 𝑚𝐴
𝑖 𝑍𝑘𝐴

𝑖 +𝑥𝑅
𝑖 +𝑥𝑅

𝑗
−𝑥𝑅

𝑖
= 𝑚𝐴

𝑖 𝑍𝑘𝐴
𝑖 +𝑥𝑅

𝑗

 

𝐵 performs the intermediate re-encryption step (Proposition 8) using 𝑟𝑘𝐴→𝑅𝐵
𝑖  inferred by 

Proposition 10: 

𝑐𝐴𝑅→𝑅
𝑖,𝑗

= 𝑐𝐴𝑅
𝑖,𝑗

(𝑍𝑘𝐴
𝑖 (𝑟−1)) = (𝑚𝐴

𝑖 𝑍𝑘𝐴
𝑖 +𝑥𝑅

𝑗

) (𝑍𝑘𝐴
𝑖 𝑟−𝑘𝐴

𝑖
) = 𝑚𝐴

𝑖 𝑍𝑘𝐴
𝑖 +𝑥𝑅

𝑗
+𝑘𝐴

𝑖 𝑟−𝑘𝐴
𝑖

= 𝑚𝐴
𝑖 𝑍𝑥𝑅

𝑗
+𝑘𝐴

𝑖 𝑟 

𝐵 performs delegatee layer 1 decryption (Proposition 9): 

𝑐𝐴𝑅→𝑅1

𝑖,𝑗
=

𝑐𝐴𝑅→𝑅
𝑖,𝑗

𝑒 (𝑔𝑟𝑎𝑙𝐴 , 𝑔𝑏𝑘𝐴
𝑖 𝑎𝑙𝐴⁄ )

−𝑏 =
𝑚𝐴

𝑖 𝑍𝑥𝑅
𝑗

+𝑘𝐴
𝑖 𝑟

𝑒(𝑔, 𝑔)𝑟𝑎𝑙𝐴𝑏𝑘𝐴
𝑖 𝑎𝑙𝐴𝑏⁄

=
𝑚𝐴

𝑖 𝑍𝑥𝑅
𝑗

+𝑘𝐴
𝑖 𝑟

𝑍𝑟𝑘𝐴
𝑖

 

              = 𝑚𝐴
𝑖 𝑍𝑥𝑅

𝑗
+𝑘𝐴

𝑖 𝑟−𝑟𝑘𝐴
𝑖

    = 𝑚𝐴𝑍𝑥𝑅
𝑗

 

𝐵 performs delegatee layer 2 decryption (Proposition 9): 

𝑐𝐴𝑅→𝑅1

𝑖,𝑗

𝑒(𝑝𝑘𝑅 , 𝑟𝑘𝐴→𝑅𝐵
𝑖 )

−𝑏

𝑚𝐴
𝑖 𝑍𝑥𝑅

𝑗

𝑒 (𝑔𝑟 , 𝑔𝑏𝑥𝑅
𝑖 𝑟⁄ )

−𝑏 =
𝑚𝐴

𝑖 𝑍𝑥𝑅
𝑗

𝑒(𝑔, 𝑔)𝑟𝑏𝑥𝑅
𝑖 𝑟𝑏⁄

=
𝑚𝐴

𝑖 𝑍𝑥𝑅
𝑗

 

𝑍𝑥𝑅
𝑖 = 𝑚𝐴

𝑖 𝑍𝑥𝑅
𝑗

−𝑥𝑅
𝑖

 ≠ 𝑚𝐴
𝑖  

Thus, even if 𝐵 derives 𝑟𝑘𝐴→𝑅𝐵
𝑖  via Proposition 10, if 𝑅 re-encrypts 𝑐𝐴𝑅

𝑖  to 𝑐𝐴𝑅
𝑖,𝑗

, 𝐵 cannot 

retrieve 𝑚𝐴
𝑖 .                                                                                                                                                      ∎ 



Proposition 12. The removal of 𝑍𝑥𝑅
𝑖

 from 𝑐𝐴𝑅
𝑖  and its subsequent update to 𝑐𝐴𝑅

𝑖,𝑗
 by 𝑅 prior 

to r-encryption, results in a single-layer delegatee decryption process (Proposition 6 
instead of 9) with the same strength as the dual (Proposition 11) 

Proof. Let 𝑐𝐴
𝑖 = 𝑚𝐴

𝑖 𝑍𝑘𝐴
𝑖

, 𝑐𝐴𝑅
𝑖 = 𝑚𝐴

𝑖 𝑍𝑘𝐴
𝑖 +𝑥𝑅

𝑖
, 𝑐𝐴→𝑅

𝑖 = 𝑚𝐴
𝑖 𝑍𝑘𝐴

𝑖 𝑟 , and 𝑥𝑅
𝑖  and 𝑥𝑅

𝑗
 be ephemeral, 

randomly selected values in ℤ𝑞 by 𝑅 for each temporal index such that 𝑥𝑅
𝑖 ≠ 𝑥𝑅

𝑗
. Thus: 

𝑅 removes 𝑍𝑥𝑅
𝑖

: 

𝑐𝐴𝑅
𝑖

𝑍𝑥𝑅
𝑖 =

𝑚𝐴
𝑖 𝑍𝑘𝐴

𝑖 +𝑥𝑅
𝑖
 

𝑍𝑥𝑅
𝑖 = 𝑚𝐴

𝑖 𝑍𝑘𝐴
𝑖 +𝑥𝑅

𝑖 −𝑥𝑅
𝑖

= 𝑚𝐴
𝑖 𝑍𝑘𝐴

𝑖
= 𝑐𝐴

𝑖  

𝑅 re-encrypts following Proposition 5. 

𝑅 updates 𝑐𝐴𝑅
𝑖  to 𝑐𝐴𝑅

𝑖,𝑗
:  

𝑐𝐴𝑅
𝑖,𝑗

= 𝑐𝐴𝑅
𝑖 (

𝑍𝑥𝑅
𝑗

𝑍𝑥𝑅
𝑖 ) = 𝑚𝐴

𝑖 𝑍𝑘𝐴
𝑖 +𝑥𝑅

𝑖
𝑍𝑥𝑅

𝑗
−𝑥𝑅

𝑖
= 𝑚𝐴

𝑖 𝑍𝑘𝐴
𝑖 +𝑥𝑅

𝑖 +𝑥𝑅
𝑗

−𝑥𝑅
𝑖

= 𝑚𝐴
𝑖 𝑍𝑘𝐴

𝑖 +𝑥𝑅
𝑗

 

𝐵 decrypts following Proposition 6. 

Even if 𝐵 calculates a scalar capable of converting 𝑐𝐴𝑅
𝑖  to 𝑐𝐴→𝑅

𝑖  (which 𝐵 can decrypt): 

𝑠𝐴𝑅→(𝐴→𝑅)
𝑖 =

𝑐𝐴→𝑅
𝑖

𝑐𝐴𝑅
𝑖

=
𝑚𝐴

𝑖 𝑍𝑘𝐴
𝑖 𝑟

𝑚𝐴
𝑖 𝑍𝑘𝐴

𝑖 +𝑥𝑅
𝑖

=
𝑍𝑘𝐴

𝑖 𝑟

𝑍𝑘𝐴
𝑖 +𝑥𝑅

𝑖
= 𝑍𝑘𝐴

𝑖 𝑟−𝑘𝐴
𝑖 −𝑥𝑅

𝑖
 

it cannot decrypt 𝑐𝐴𝑅
𝑖,𝑗

, thus exhibiting the same level of security as defined in Proposition 

11: 

   𝑐𝐴𝑅
𝑖,𝑗

𝑠𝐴𝑅→(𝐴→𝑅)
𝑖 = 𝑚𝐴

𝑖 𝑍𝑘𝐴
𝑖 +𝑥𝑅

𝑗

𝑍𝑘𝐴
𝑖 𝑟−𝑘𝐴

𝑖 −𝑥𝑅
𝑖

= 𝑚𝐴
𝑖 𝑍𝑘𝐴

𝑖 +𝑥𝑅
𝑗

+𝑘𝐴
𝑖 𝑟−𝑘𝐴

𝑖 −𝑥𝑅
𝑖

= 𝑚𝐴
𝑖 𝑍𝑥𝑅

𝑗
+𝑘𝐴

𝑖 𝑟−𝑥𝑅
𝑖

≠ 𝑐𝐴→𝑅
𝑖     ∎ 

B2 – Incremental Storage Mode 

Incremental storage mode is an implementation option in which block data are stored in 

individual fragments and maintained incrementally (refer to Proposition 13). Instead of 𝐴’s 
entire record being encrypted as one message, each element (e.g., an observation or 

encounter) is encrypted as an independent fragment. The benefit of this is three-fold. First, 

a logical block (i.e., the union all fragments) is of virtually limitless size. That is, it is no 

longer bound by the size of the structure storing the message (e.g., a byte array), forcing the 

creation of additional blocks. Second, it supports incremental updates, allowing 𝐴 to add 

new and update/remove existing fragments. Thus, instead of re-encrypting and 

transmitting all data (which must then be propagated by 𝑅), only block modifications are 
processed. Lastly, it allows for scalar-based re-encryption. It is good practice to update 

encryption keys when data are re-encrypted, but this generally requires re-encrypting and 

transmitting all data – a prohibitively expensive step in terms of 𝐴’s computation and 



network bandwidth consumption. However, it is possible for 𝐴 to re-encrypt all data via a 

simple scalar directly on 𝑅, avoiding the aforementioned pitfalls of key modification.  

Proposition 14 is the foundation for fragment re-encryption by 𝐴. This new approach, 

however, exposes the encryption values 𝑍𝑘𝐴
𝑗

 and 𝑍𝑘𝐴
𝑗

+𝑥𝑅
𝑖
 after a single decryption by 𝐵 to 𝐵 

(refer to Proposition 15). Proposition 16 modifies the definition of 𝑅’s ephemeral key 𝑥𝑅
𝑖  to 

fragment-based (i.e., 𝑥𝑅
𝑓𝑖 ), which partially solves the problem. Instead of applying to all 

message fragments of temporal index 𝑗, the vulnerability affects only fragment 𝑓. This is 

removed by 𝑅 re-encrypting the fragments after each access (refer to Proposition 17). 

Proposition 13. A message 𝑚𝐴
𝑖  can be encrypted and decrypted as a set of fragments ℱ. 

Proof. Let 𝑚𝐴
𝑓𝑖  be a message fragment at temporal index 𝑖 such that ⋃ 𝑚𝐴

𝑓𝑖
𝑓∈ℱ = 𝑚𝐴

𝑖  and 

⋂ 𝑚𝐴
𝑓𝑖 = ∅𝑓∈ℱ . Thus, encryption and decrypt is as follows. 

Encryption of 𝑚𝐴
𝑓𝑖  to 𝑐𝐴

𝑓𝑖  and 𝑐𝐴𝑅
𝑓𝑖 : 

𝑐𝐴
𝑓𝑖 = 𝑚𝐴

𝑓𝑖𝑍𝑘𝐴
𝑖

 

𝑐𝐴𝑅
𝑓𝑖 = 𝑚𝐴

𝑓𝑖𝑍𝑘𝐴
𝑖

𝑍𝑥𝑅
𝑖

= 𝑚𝐴
𝑓𝑖𝑍𝑘𝐴

𝑖 +𝑥𝑅
𝑖

 

Decryption of 𝑐𝐴
𝑓𝑖  and 𝑐𝐴𝑅

𝑓𝑖  to 𝑚𝐴
𝑓𝑖: 

𝑐𝐴
𝑓𝑖

𝑒 (𝑔𝑎𝑘𝐴
𝑖

, 𝑔)
−𝑎 =

𝑚𝐴
𝑓𝑖 𝑍𝑘𝐴

𝑖

𝑒(𝑔, 𝑔)𝑎𝑘𝐴
𝑖 𝑎⁄

=
𝑚𝐴

𝑓𝑖 𝑍𝑘𝐴
𝑖

𝑍𝑘𝐴
𝑖

= 𝑚𝐴
𝑓𝑖  

𝑐𝐴𝑅
𝑓𝑖

𝑒 (𝑔𝑎𝑘𝐴
𝑖

, 𝑔)
−𝑎

𝑒(𝑔, 𝑔)𝑥𝑅
𝑖

=
𝑚𝐴

𝑓𝑖𝑍𝑘𝐴
𝑖 +𝑥𝑅

𝑖

𝑒(𝑔, 𝑔)𝑎𝑘𝐴
𝑖 𝑎⁄ 𝑍𝑥𝑅

𝑖
=

𝑚𝐴
𝑓𝑖 𝑍𝑘𝐴

𝑖 +𝑥𝑅
𝑖

𝑍𝑘𝐴
𝑖

𝑍𝑥𝑅
𝑖

=
𝑚𝐴

𝑓𝑖𝑍𝑘𝐴
𝑖 +𝑥𝑅

𝑖

𝑍𝑘𝐴
𝑖 +𝑥𝑅

𝑖
= 𝑚𝐴

𝑓𝑖  

Therefore, full encryption of 𝑚𝐴
𝑖  is 𝑐𝐴

𝑖 = ⋃ 𝑐𝐴
𝑓𝑖

𝑓∈ℱ  and 𝑐𝐴𝑅
𝑖 = ⋃ 𝑐𝐴𝑅

𝑓𝑖
𝑓∈ℱ . Full decryption of 𝑐𝐴

𝑖  

is 𝑚𝐴
𝑖 = ⋃

𝑐𝐴

𝑓𝑖

𝑒(𝑔𝑎𝑘𝐴
𝑖

,𝑔)
−𝑎𝑓∈ℱ  and 𝑐𝐴𝑅

𝑖  is 𝑚𝐴
𝑖 = ⋃

𝑐𝐴𝑅

𝑓𝑖

(𝑔𝑎𝑘𝐴
𝑖

,𝑔)
−𝑎

𝑒(𝑔,𝑔)𝑥𝑅
𝑖𝑓∈ℱ .                                                   ∎ 

Proposition 14. The application of re-encryption scalar 𝑠𝐴
𝑖→𝑗

 (computed by 𝐴) by 𝑅 to 𝑐𝐴
𝑓𝑖  

and 𝑐𝐴𝑅
𝑓𝑖  respectively, updates the encryption key associated with 𝑚𝐴

𝑓𝑖  to 𝑐𝐴

𝑓𝑖,𝑗
 and 𝑐𝐴𝑅

𝑓𝑖,𝑗,𝑖
 

respectively. 

Proof. Let 𝑐𝐴
𝑓𝑖 = 𝑚𝐴

𝑓𝑖𝑍𝑘𝐴
𝑖

 (Proposition 13), 𝑐𝐴𝑅
𝑓𝑖 = 𝑚𝐴

𝑓𝑖𝑍𝑘𝐴
𝑖 +𝑥𝑅

𝑖
 (Proposition 13), and scalar 

𝑠𝐴
𝑖→𝑗

= 𝑍𝑘𝐴
𝑗

−𝑘𝐴
𝑖

. Thus, re-encrypted 𝑐𝐴
𝑓𝑖  is 𝑐𝐴

𝑓𝑖,𝑗  and 𝑐𝐴𝑅
𝑓𝑖  is 𝑐𝐴𝑅

𝑓𝑖,𝑗,𝑖: 

𝑐𝐴

𝑓𝑖,𝑗 = 𝑐𝐴
𝑓𝑖𝑠𝐴

𝑖→𝑗
= (𝑚𝐴

𝑓𝑖𝑍𝑘𝐴
𝑖

) 𝑍𝑘𝐴
𝑗

−𝑘𝐴
𝑖

= 𝑚𝐴
𝑓𝑖𝑍𝑘𝐴

𝑖 +𝑘𝐴
𝑗

−𝑘𝐴
𝑖

= 𝑚𝐴
𝑓𝑖 𝑍𝑘𝐴

𝑗

 



                 𝑐𝐴𝑅

𝑓𝑖,𝑗,𝑖 = 𝑐𝐴𝑅
𝑓𝑖 𝑠𝐴

𝑖→𝑗
= (𝑚𝐴

𝑓𝑖 𝑍𝑘𝐴
𝑖 +𝑥𝑅

𝑖
) 𝑍𝑘𝐴

𝑗
−𝑘𝐴

𝑖
= 𝑚𝐴

𝑓𝑖 𝑍𝑘𝐴
𝑖 +𝑥𝑅

𝑖 +𝑘𝐴
𝑗

−𝑘𝐴
𝑖

= 𝑚𝐴
𝑓𝑖𝑍𝑘𝐴

𝑗
+𝑥𝑅

𝑖
                ∎ 

Proposition 15. Re-encrypting message fragments exposes 𝑍𝑘𝐴
𝑗

 and 𝑍𝑘𝐴
𝑗

+𝑥𝑅
𝑖

 if 𝑚𝐴
𝑓𝑖  is 

known, allowing for any message fragment 𝑚𝐴
∗  to be decrypted. 

Proof. Let 𝑐𝐴

𝑓𝑖,𝑗 = 𝑚𝐴
𝑓𝑖𝑍𝑘𝐴

𝑗

  and 𝑐𝐴𝑅

𝑓𝑖,𝑗,𝑖 = 𝑚𝐴
𝑓𝑖𝑍𝑘𝐴

𝑗
+𝑥𝑅

𝑖
 per Proposition 14. Once in possession of 

𝑚𝐴
𝑓𝑖  via Proposition 13, 𝑍𝑘𝐴

𝑗

 and 𝑍𝑘𝐴
𝑗

+𝑥𝑅
𝑖
 can be computed as follows: 

𝑐𝐴

𝑓𝑖,𝑗

𝑚𝐴

𝑓𝑖
=

𝑚𝐴
𝑓𝑖 𝑍𝑘𝐴

𝑗

𝑚𝐴

𝑓𝑖
= 𝑍𝑘𝐴

𝑗

 

𝑐𝐴𝑅

𝑓𝑖,𝑗,𝑖

𝑚𝐴

𝑓𝑖
=

𝑚𝐴
𝑓𝑖𝑍𝑘𝐴

𝑗
+𝑥𝑅

𝑖

𝑚𝐴

𝑓𝑖
= 𝑍𝑘𝐴

𝑗
+𝑥𝑅

𝑖
 

Thus, any message fragment at any temporal index encrypted under 𝑗 (i.e., 𝑚𝐴
∗ ) can be 

decrypted:   

𝑐𝐴

∗∗,𝑗

𝑍𝑘𝐴
𝑗 =

𝑚𝐴
∗ 𝑍𝑘𝐴

𝑗

𝑍𝑘𝐴
𝑗 = 𝑚𝐴

∗  

                                                              
𝑐𝐴𝑅

∗∗,𝑗,𝑖

𝑍𝑘𝐴
𝑗

+𝑥𝑅
𝑖

=
𝑚𝐴

∗ 𝑍𝑘𝐴
𝑗

+𝑥𝑅
𝑖

𝑍𝑘𝐴
𝑗

+𝑥𝑅
𝑖

= 𝑚𝐴
∗                                                              ∎ 

Proposition 16. In a fragmented environment, assigning the ephemeral value to each 

fragment (i.e., 𝑥𝑅
𝑓∗ ), prevents the negative outcome in Proposition 15 – i.e., the decryption of 

any message fragment at any temporal index encrypted under 𝑗. 

Proof. Let 𝑐𝐴𝑅

𝑓𝑖,𝑗,𝑖 = 𝑚𝐴
𝑓𝑖 𝑍𝑘𝐴

𝑗
+𝑥𝑅

𝑓𝑖
. Once in possession of 𝑚𝐴

𝑓𝑖  via Proposition 13, 𝑍𝑘𝐴
𝑗

+𝑥𝑅

𝑓𝑖
 can be 

computed as follows: 

𝑐𝐴𝑅

𝑓𝑖,𝑗,𝑖

𝑚𝐴

𝑓𝑖
=

𝑚𝐴
𝑓𝑖𝑍𝑘𝐴

𝑗
+𝑥𝑅

𝑓𝑖

𝑚𝐴

𝑓𝑖
= 𝑍𝑘𝐴

𝑗
+𝑥𝑅

𝑓𝑖
 

While this allows for the decryption of 𝑚𝐴
𝑓∗  at any temporal index: 

𝑐𝐴𝑅

𝑓∗,𝑗,𝑖

𝑍𝑘𝐴
𝑗

+𝑥𝑅

𝑓𝑖
=

𝑚𝐴
𝑓∗𝑍𝑘𝐴

𝑗
+𝑥𝑅

𝑓𝑖

𝑍𝑘𝐴
𝑗

+𝑥𝑅

𝑓𝑖
= 𝑚𝐴

𝑓∗  

it does not allow for the decryption of any other fragment 𝑚𝐴
𝑡∗ , where 𝑡 ≠ 𝑓:   

                         
𝑐𝐴𝑅

𝑡∗,𝑗,𝑖

𝑍𝑘𝐴
𝑗

+𝑥𝑅

𝑓𝑖
=

𝑚𝐴
𝑡∗𝑍𝑘𝐴

𝑗
+𝑥

𝑅

𝑡𝑖

𝑍𝑘𝐴
𝑗

+𝑥𝑅

𝑓𝑖
= 𝑚𝐴

𝑡∗𝑍𝑘𝐴
𝑗

+𝑥𝑅

𝑡𝑖−𝑘𝐴
𝑗

−𝑥𝑅

𝑓𝑖
= 𝑚𝐴

𝑡∗𝑍𝑥𝑅

𝑡𝑖−𝑥𝑅

𝑓𝑖
≠ 𝑚𝐴

𝑡∗                           ∎ 



Proposition 17. Re-encrypting 𝑐𝐴𝑅

𝑓𝑖,𝑗,𝑖 to 𝑐𝐴𝑅

𝑓𝑖,𝑗,𝑗 prevents the computation of 𝑚𝐴
𝑓∗  from 

Proposition 16. 

Proof. Let 𝑐𝐴𝑅

𝑓𝑖,𝑗,𝑖 = 𝑚𝐴
𝑓𝑖 𝑍𝑘𝐴

𝑗
+𝑥𝑅

𝑓𝑖
, 𝑠𝑅

𝑖→𝑗
= 𝑍𝑥𝑅

𝑓𝑗
−𝑥𝑅

𝑓𝑖
, and 𝑍𝑘𝐴

𝑗
+𝑥𝑅

𝑓𝑖
 be the decryption value 

computed in Proposition 16. Thus: 

𝑐𝐴𝑅

𝑓𝑖,𝑗,𝑗 = 𝑐𝐴𝑅

𝑓𝑖,𝑗.𝑖𝑠𝑅
𝑖→𝑗

= (𝑚𝐴
𝑓𝑖𝑍𝑘𝐴

𝑗
+𝑥𝑅

𝑓𝑖
) 𝑍𝑥𝑅

𝑓𝑗
−𝑥𝑅

𝑓𝑖
= 𝑚𝐴

𝑓𝑖𝑍𝑘𝐴
𝑗

+𝑥𝑅

𝑓𝑖+𝑥𝑅

𝑓𝑗
−𝑥𝑅

𝑓𝑖
= 𝑚𝐴

𝑓𝑖𝑍𝑘𝐴
𝑗

+𝑥𝑅

𝑓𝑗

 

This cannot be decrypted by the computed scalar in Proposition 16:   

                        
𝑐𝐴𝑅

𝑓𝑖,𝑗,𝑗

𝑍𝑘𝐴
𝑗

+𝑥𝑅

𝑓𝑖
=

𝑚𝐴
𝑓𝑖𝑍𝑘𝐴

𝑗
+𝑥𝑅

𝑓𝑗

𝑍𝑘𝐴
𝑗

+𝑥𝑅

𝑓𝑖
= 𝑚𝐴

𝑓𝑖𝑍𝑘𝐴
𝑗

+𝑥𝑅

𝑓𝑗
−𝑘𝐴

𝑗
−𝑥𝑅

𝑓𝑖
= 𝑚𝐴

𝑡∗𝑍𝑥𝑅

𝑓𝑗
−𝑥𝑅

𝑓𝑖
≠ 𝑚𝐴

𝑓𝑖                         ∎ 

C – Sign-Verify Scheme 
The sign and verify process ensures the integrity and origins of a message. Signing makes 
use of a value reasonably considered to be known only to the signee. Verification, on the 

other hand, is done using publicly held information on the signee. In proxy re-encryption, 

this corresponds to secret and public keys via encryption and decryption respectively. The 

logic behind this process is as follows. If the verifier can verify the message using the 

signee’s public key and a hash of the message, then it must have originated with the signee 

– as only it has access to the secret key necessary to produce the signed message – and the 

message has not been altered. 

The proposed scheme is effectively a digital signature algorithm. Digital signatures provide 

for message integrity (protects against message alteration), authentication (signed by the 

signee), and non-repudiation (the signee cannot claim the message was forged) through 

hashing and asymmetric primitives. The implemented process is as follows.  

Given a message 𝑚𝐴
𝑖 , 𝐴 generates the signed output 𝑚𝐴

𝜓𝑖 = 𝑚𝐴
𝑖 𝑍𝑥𝐴

𝑖
 (where 𝑥𝐴

𝑖  is an 

ephemeral, random number in ℤ𝑞 such that 𝑥𝐴
𝑖 ≠ 𝑎, 𝑘𝐴

𝑖 , 𝑙𝐴), a hash 𝐻(𝑚𝐴
𝑖 ) = 𝑚𝐴

𝜏𝑖  of the 

message using any one-way cryptographic hashing function 𝐻(∙) mapped to ℤ𝑞, and a 

public verification parameter 𝑔
𝑥𝐴

𝑖 (𝑠𝑘𝐴+𝐻(𝑚𝐴
𝑖 )) ⁄

= 𝑔𝑥𝐴
𝑖 (𝑎+𝑚𝐴

𝜏𝑖) ⁄ . Signing with 𝑠𝑘𝐴 alone is 

insufficient as is incorporating the hash via the power of its inverse as opposed to addition 

(see Proposition 18 for the former and Propositions 19 and 20 for the latter). 

Any user in 𝒰 can verify 𝑚𝐴
𝜓𝑖  by first computing the decryption parameter using 𝐴’s public 

key and the message hash, 𝑝𝑘𝐴𝑔𝑚𝐴

𝜏𝑖  = 𝑔𝑎𝑔𝑚𝐴

𝜏𝑖  = 𝑔𝑎+𝑚𝐴

𝜏𝑖  , solving 
𝑚𝐴

𝑖 𝑍𝑥𝐴
𝑖

𝑒(𝑔
𝑥𝐴

𝑖 (𝑎+𝑚
𝐴
𝜏𝑖) ⁄

,𝑔
𝑎+𝑚

𝐴
𝜏𝑖 

)

= 𝑚𝐴
𝑖 , 

then hashing the derived message and comparing it to the given hash. If they match, the 

message if verified. The verification process is formalized in Proposition 21.  



Proposition 18. If 𝐴’s signature is 𝑍𝑠𝑘𝐴, given only 𝑝𝑘𝐴, any user in 𝒰 can trivially compute 
𝑍𝑎 and forge messages as if 𝐴. 

Proof. Let 𝐴’s signature be 𝑍𝑠𝑘𝐴 = 𝑍𝑎. Thus, any user (e.g., forger 𝐹 ∈ 𝒰 ≠ 𝐴) can compute 

𝑍𝑠𝑘𝐴 = 𝑍𝑎: 

𝑒(𝑝𝑘𝐴, 𝑔) = 𝑒(𝑔𝑎, 𝑔) = 𝑒(𝑔, 𝑔)𝑎 = 𝑍𝑎 

Hence, 𝐹 can sign any message 𝑚𝐹
∗  as if 𝐴 (𝑚𝐹

𝜓∗ = 𝑚𝐹
∗ 𝑍𝑎  and 𝐻(𝑚𝐹

∗ ) = 𝑚𝐹
𝜏∗), which will 

verify as if originating with 𝐴: 

𝑚𝐹
𝜓∗

𝑒(𝑝𝑘𝐴, 𝑔)
=

𝑚𝐹
∗ 𝑍𝑎

𝑒(𝑔𝑎, 𝑔)
=

𝑚𝐹
∗ 𝑍𝑎

𝑒(𝑔, 𝑔)𝑎
=

𝑚𝐹
∗ 𝑍𝑎

𝑍𝑎
= 𝑚𝐹

∗  

As 𝐻(𝑚𝐹
∗ ) computed from the derived message is 𝑚𝐹

𝜏∗ , the message verifies as if from 𝐴.     ∎ 

Proposition 19. If 𝐴’s public verification parameter incorporates 𝑚𝐴
𝜏𝑖  using the power of its 

inverse, any user in 𝒰 can trivially compute 𝑍𝑥𝐴
𝑖

 and 𝑔𝑥𝐴
𝑖 𝑎⁄  (if in possession of a signed 

message from 𝐴) and forge messages as if 𝐴. 

Proof. Let 𝑠𝑘𝐴 = 𝑎 be the secret key for 𝐴 ∈ 𝒰;  𝑥𝐴
𝑖  an ephemeral key in ℤ𝑞 such that 𝑥𝐴

𝑖 ≠

𝑎, 𝑘𝐴
𝑖 , 𝑙𝐴; 𝑚𝐴

𝜓𝑖 = 𝑚𝐴
𝑖 𝑍𝑥𝐴

𝑖
 the signed message; 𝑝𝑘𝐴 = 𝑔𝑎 the public key for 𝐴; 𝐻(𝑚𝐴

𝑖 ) = 𝑚𝐴
𝜏𝑖  the 

message hash; and (𝑔𝑥𝐴
𝑖 𝑠𝑘𝐴⁄ )

−𝑚𝐴

𝜏𝑖

= 𝑔𝑥𝐴
𝑖 𝑎𝑚𝐴

𝜏𝑖⁄  (which incorporates the hash using the power 

of its inverse) the public verification parameter. Thus, any user (e.g., forger 𝐹 ∈ 𝒰 ≠ 𝐴) can 

compute 𝑍𝑥𝐴
𝑖

 and 𝑔𝑥𝐴
𝑖 𝑎⁄  if in possession of a signed message from 𝐴: 

𝑒 (𝑔𝑥𝐴
𝑖 𝑎𝑚𝐴

𝜏𝑖⁄ , 𝑝𝑘𝐴

𝑚𝐴

𝜏𝑖

) = 𝑒 (𝑔𝑥𝐴
𝑖 𝑎𝑚𝐴

𝜏𝑖⁄ , 𝑔𝑎𝑚𝐴

𝜏𝑖
) = 𝑒(𝑔, 𝑔)𝑥𝐴

𝑖 𝑎𝑚𝐴

𝜏𝑖 𝑎𝑚𝐴

𝜏𝑖⁄ = 𝑍𝑥𝐴
𝑖

 

𝐹 then removes the message binding from the public verification parameter: 

(𝑔𝑥𝐴
𝑖 𝑎𝑚𝐴

𝜏𝑖⁄ )
𝑚

𝐴

𝜏𝑖

= 𝑔𝑥𝐴
𝑖 𝑚𝐴

𝜏𝑖 𝑎𝑚𝐴

𝜏𝑖⁄ = 𝑔𝑥𝐴
𝑖 𝑎⁄  

𝐹 can now forge any message 𝑚𝐹
∗  as if 𝐴 (𝑚𝐹

𝜓∗ = 𝑚𝐹
∗ 𝑍𝑥𝐴

𝑖
, 𝐻(𝑚𝐹

∗ ) = 𝑚𝐹
𝜏∗ , and (𝑔𝑥𝐴

𝑖 𝑎⁄ )
−𝑚𝐹

𝜏∗

=

𝑔𝑥𝐴
𝑖 𝑎𝑚𝐹

𝜏∗⁄ ), which will verify as if originating with 𝐴: 

𝑚𝐹
𝜓∗

𝑒 (𝑔𝑥𝐴
𝑖 𝑎𝑚𝐹

𝜏∗⁄ , 𝑝𝑘𝐴

𝑚𝐹
𝜏∗

)
=

𝑚𝐹
∗ 𝑍𝑥𝐴

𝑖
 

𝑒 (𝑔𝑥𝐴
𝑖 𝑎𝑚𝐹

𝜏∗⁄ , 𝑔𝑎𝑚𝐹
𝜏∗

)
=

𝑚𝐹
∗ 𝑍𝑥𝐴

𝑖
 

𝑒(𝑔, 𝑔)𝑥𝐴
𝑖 𝑎𝑚𝐹

𝜏∗ 𝑎𝑚𝐹
𝜏∗⁄

𝑚𝐹
∗ 𝑍𝑥𝐴

𝑖

𝑍𝑥𝐴
𝑖

= 𝑚𝐹
∗  

As 𝐻(𝑚𝐹
∗ ) computed from the derived message is 𝑚𝐹

𝜏∗ , the message verifies as if from 𝐴.     ∎ 

 



Proposition 20. Incorporating the hash using the sum of 𝑠𝑘𝐴 and 𝑚𝐴
𝜏𝑖 , (resulting in 

𝑔𝑥𝐴
𝑖 (𝑎+𝑚𝐴

𝜏𝑖)⁄ ), prevents forging of message signatures without knowledge of 𝑠𝑘𝐴 and 𝑥𝐴
𝑖 . 

Proof. Let 𝑠𝑘𝐴 = 𝑎 be the secret key for 𝐴 ∈ 𝒰;  𝑥𝐴
𝑖  an ephemeral key in ℤ𝑞 such that 𝑥𝐴

𝑖 ≠

𝑎, 𝑘𝐴
𝑖 , 𝑙𝐴; 𝑚𝐴

𝜓𝑖 = 𝑚𝐴
𝑖 𝑍𝑥𝐴

𝑖
 the signed message; 𝑝𝑘𝐴 = 𝑔𝑎 the public key for 𝐴; 𝐻(𝑚𝐴

𝑖 ) = 𝑚𝐴
𝜏𝑖  the 

message hash; 𝑔 a public parameter; and 𝑔
𝑥𝐴

𝑖 (𝑠𝑘𝐴+𝐻(𝑚𝐴
𝑖 ))⁄

= 𝑔𝑥𝐴
𝑖 (𝑎+𝑚𝐴

𝜏𝑖)⁄   (which 

incorporates the hash using the sum of 𝑠𝑘𝐴 and 𝑚𝐴
𝜏𝑖) the public verification parameter. 

Thus, only users with knowledge of 𝑠𝑘𝐴 and 𝑥𝐴
𝑖  can sign messages as 𝐴: 

(𝑔𝑥𝐴
𝑖

)
−(𝑠𝑘𝐴+𝐻(𝑚𝐴

𝑖 ))
= (𝑔𝑥𝐴

𝑖
)

−(𝑎+𝑚𝐴

𝜏𝑖)
= 𝑔𝑥𝐴

𝑖 (𝑎+𝑚𝐴

𝜏𝑖)⁄  

Even though any user (e.g., forger 𝐹 ∈ 𝒰 ≠ 𝐴) can compute 𝑍𝑥𝐴
𝑖

, which is used to encrypt 

the forged message 𝑚𝐹
∗  (𝑚𝐹

∗ 𝑍𝑥𝐴
𝑖

): 

𝑒 (𝑔𝑥𝐴
𝑖 (𝑎+𝑚𝐴

𝜏𝑖)⁄ , 𝑝𝑘𝐴𝑔𝑚𝐴

𝜏𝑖
) = 𝑒 (𝑔𝑥𝐴

𝑖 (𝑎+𝑚𝐴

𝜏𝑖)⁄ , 𝑔𝑎𝑔𝑚𝐴

𝜏𝑖
) = 𝑒 (𝑔𝑥𝐴

𝑖 (𝑎+𝑚𝐴

𝜏𝑖)⁄ , 𝑔𝑎+𝑚𝐴

𝜏𝑖
)

                                                                   = 𝑒(𝑔, 𝑔)𝑥𝐴
𝑖 (𝑎+𝑚𝐴

𝜏𝑖) (𝑎+𝑚𝐴

𝜏𝑖)⁄ = 𝑍𝑥𝐴
𝑖

                                                       

 

𝐹 does not possess 𝑠𝑘𝐴 or 𝑥𝐴
𝑖  and therefore cannot generate a valid public verification 

parameter. Hence, signed messages cannot be forged using the sum approach.                       ∎ 

Proposition 21. The signed message 𝑚𝐴
𝜓𝑖  is verifiable to any user in 𝒰 given 𝑝𝑘𝐴, a 

message hash 𝑚𝐴
𝜏𝑖 , and a public verification parameter 𝑔𝑥𝐴

𝑖 (𝑎+𝑚𝐴

𝜏𝑖)⁄ ; the output of which is 

the verification set 𝑚𝐴
𝜐𝑖 . 

Proof. Let 𝑠𝑘𝐴 = 𝑎 be the secret key for 𝐴 ∈ 𝒰; 𝑥𝐴
𝑖  an ephemeral key in ℤ𝑞 such that 𝑥𝐴

𝑖 ≠

𝑎, 𝑘𝐴
𝑖 , 𝑙𝐴; 𝑚𝐴

𝜓𝑖 = 𝑚𝐴
𝑖 𝑍𝑥𝐴

𝑖
 the signed message; 𝑝𝑘𝐴 = 𝑔𝑎 the public key for 𝐴; 𝐻(𝑚𝐴

𝑖 ) = 𝑚𝐴
𝜏𝑖  the 

message hash; 𝑔 a public parameter; and 𝑔
𝑥𝐴

𝑖 (𝑠𝑘𝐴+𝐻(𝑚𝐴
𝑖 ))⁄

= 𝑔
𝑥𝐴

𝑖 (𝑎+𝑚𝐴

𝜏𝑖)⁄
 the public 

verification parameter. Thus: 

  

𝑚𝐴
𝜓𝑖

𝑒 (𝑔𝑥𝐴
𝑖 (𝑠𝑘𝐴+𝐻(𝑚𝐴

𝑖 ))⁄ , 𝑝𝑘𝐴𝑔𝑚
𝐴

𝜏𝑖
)

=
𝑚𝐴

𝑖 𝑍𝑥𝐴
𝑖

 

𝑒 (𝑔𝑥𝐴
𝑖 (𝑎+𝑚𝐴

𝜏𝑖)⁄ , 𝑔𝑎𝑔𝑚
𝐴

𝜏𝑖
)

=
𝑚𝐴

𝑖 𝑍𝑥𝐴
𝑖

 

𝑒 (𝑔𝑥𝐴
𝑖 (𝑎+𝑚𝐴

𝜏𝑖)⁄ , 𝑔𝑎+𝑚
𝐴

𝜏𝑖
)

                                                       =
𝑚𝐴

𝑖 𝑍𝑥𝐴
𝑖

 

𝑒(𝑔, 𝑔)𝑥𝐴
𝑖 (𝑎+𝑚𝐴

𝜏𝑖) (𝑎+𝑚𝐴

𝜏𝑖)⁄
=

𝑚𝐴
𝑖 𝑍𝑥𝐴

𝑖
 

𝑍𝑥𝐴
𝑖

= 𝑚𝐴
𝑖                         

                                                  𝑚𝐴
𝜐𝑖 = {

{valid, 𝑚𝐴
𝑖 },     if 𝐻(𝑚𝐴

𝑖 ) = 𝑚𝐴
𝜏𝑖  

{invalid, ∅},    if 𝐻(𝑚𝐴
𝑖 ) ≠ 𝑚𝐴

𝜏𝑖  
                                                ∎

 

This is trivially extended to an incremental storage configuration. 



D – Encrypt-Sign and Decrypt-Verify Scheme 

The sign-verify allows any user to verify the signed message 𝑚𝐴
𝜓𝑖 . This limits it use to public 

messages only, as one cannot designate a recipient of 𝑚𝐴
𝜓𝑖  for verification. Consider the 

following example. 𝐴 would like to send 𝐵 a private message and 𝐵 wants confirmation it is 

indeed from 𝐴. 𝐴 can sign the message and send it to 𝐵, but anyone able to intercept 𝑚𝐴
𝜓𝑖  

can retrieve 𝑚𝐴
𝑖 ; hence, 𝑚𝐴

𝑖  is not secured. The solution is for 𝐴 to encrypt the signed 

message using 𝑝𝑘𝐵. As only the holder of 𝑠𝑘𝐵 can decrypt the resulting cipher, 𝐴 is 

relatively certain 𝐵 alone has access to the message. 𝐵 can then verify the authenticity of 
the message. The encrypt-sign and decrypt-verify processes can be achieved 

simultaneously with a simple modification to the sign-verify functions. 

To encrypt-sign a message, 𝐴 incorporates 𝑝𝑘𝐵  into the computation of the public 

verification parameter: 𝑝𝑘𝐵

𝑥𝐴
𝑖 (𝑠𝑘𝐴+𝐻(𝑚𝐴

𝑖 ))⁄
= 𝑔

𝑏𝑥𝐴
𝑖 (𝑎+𝑚

𝐴

𝜏𝑖)⁄
. The verification of the encrypt-

signed cipher 𝑐𝐴
𝜓𝑖 = 𝑚𝐴

𝑖 𝑍𝑥𝐴
𝑖

  requires 𝑠𝑘𝐵  in addition to 𝑝𝑘𝐴 (refer to Proposition 22). As 

such, this configuration ensures only 𝐵 can decrypt the message and it must have 
originated with 𝐴.  

Proposition 22. The encrypt-signed message 𝑐𝐴
𝜓𝑖 can only be decrypt-verified by 𝐵 if 

signed by 𝐴; the output of which is the decrypt-verified set 𝑚𝐴
𝜐𝑖 . 

Proof. Let 𝑠𝑘𝐵 = 𝑏 be the secret key for 𝐵 ∈ 𝒰, 𝑥𝐴
𝑖  an ephemeral key in ℤ𝑞 such that 𝑥𝐴

𝑖 ≠

𝑎, 𝑘𝐴
𝑖 , 𝑙𝐴, 𝑐𝐴

𝜓𝑖 = 𝑚𝐴
𝑖 𝑍𝑥𝐴

𝑖
 the encrypt-signed cipher, 𝑝𝑘𝐴 = 𝑔𝑎 the public key for 𝐴, 𝑝𝑘𝐵 = 𝑔𝑏  

the public key for 𝐵, 𝐻(𝑚𝐴
𝑖 ) = 𝑚𝐴

𝜏𝑖  the message hash, 𝑔 a public parameter, and 

𝑔
𝑝𝑘𝐵𝑥𝐴

𝑖 (𝑠𝑘𝐴+𝐻(𝑚𝐴
𝑖 ))⁄

= 𝑔𝑏𝑥𝐴
𝑖 (𝑎+𝑚𝐴

𝜏𝑖)⁄  the public verification parameter. Thus: 

𝑐𝐴
𝜓𝑖

𝑒 (𝑔
𝑝𝑘𝐵𝑥𝐴

𝑖 (𝑠𝑘𝐴+𝐻(𝑚𝐴
𝑖 ))⁄

, 𝑝𝑘𝐴𝑔𝑚𝐴

𝜏𝑖
)

−𝑠𝑘𝐵
=

𝑚𝐴
𝑖 𝑍𝑥𝐴

𝑖
 

𝑒 (𝑔
𝑏𝑥𝐴

𝑖 (𝑎+𝑚
𝐴

𝜏𝑖)⁄
, 𝑔𝑎𝑔𝑚𝐴

𝜏𝑖
)

−𝑏               

                              =
𝑚𝐴

𝑖 𝑍𝑥𝐴
𝑖

 

𝑒 (𝑔𝑏𝑥𝐴
𝑖 (𝑎+𝑚𝐴

𝜏𝑖)⁄ , 𝑔𝑎+𝑚𝐴

𝜏𝑖
)

−𝑏 =
𝑚𝐴

𝑖 𝑍𝑥𝐴
𝑖

 

𝑒(𝑔, 𝑔)𝑏𝑥𝐴
𝑖 (𝑎+𝑚𝐴

𝜏𝑖) 𝑏(𝑎+𝑚𝐴

𝜏𝑖)⁄
=

𝑚𝐴
𝑖 𝑍𝑥𝐴

𝑖
 

𝑍𝑥𝐴
𝑖

= 𝑚𝐴
𝑖  

                                                 𝑚𝐴
𝜐𝑖 = {

{valid, 𝑚𝐴
𝑖 },    if 𝐻(𝑚𝐴

𝑖 ) = 𝑚𝐴
𝜏𝑖  

{invalid, ∅},    if 𝐻(𝑚𝐴
𝑖 ) ≠ 𝑚𝐴

𝜏𝑖  
                                                   ∎

 

This is trivially extended to an incremental storage configuration. 
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