**Tang et al,** K63-linked ubiquitination regulates RIPK1 kinase activity to prevent cell death during embryogenesis and inflammation

#### **Supplementary Figures**

| Genotypes/<br>Embryo Stage   | E9.5 | E10.5 | E11.5 | E12.5 | E13.5 | E14.5 |
|------------------------------|------|-------|-------|-------|-------|-------|
| Ripk1 <sup>+/+</sup>         | 2    | 4     | 12    | 10    | 12    | 15    |
| Ripk1 <sup>K376R/+</sup>     | 5    | 8     | 24    | 18    | 22    | 28    |
| Ripk1 <sup>K376R/K376R</sup> | 2    | 5     | 10    | 8     | 4     | 0     |
| Total                        | 9    | 17    | 46    | 36    | 38    | 43    |

Supplementary Figure 1. *Ripk1<sup>K376R/K376R</sup>* mice are embryonic lethal at E13.5

(a) Genotype analysis of offspring from  $Ripk1^{K376R/+}$  intercrosses mice at different embryonic stage.



## Supplementary Figure 2. *Ripk1<sup>K376R/K376R</sup>* mutation sensitizes cells to apoptosis and necroptosis

(a) Western-blotting detection of RIPK1 protein expression in primary MEFs from  $Ripk1^{+/+}$ ,  $Ripk1^{K376R/K376R}$  and  $Ripk1^{-/-}$  mice (\* refers to non-specific band). (b) Western-blotting analysis of immunoprecipitates using anti-Flag beads and total lysates of 293T cells transfected with the plasmids encoding Flag-RIPK1-WT, Flag-RIPK1-truncated and HA-RIPK3. (c) Caspase3 activity of  $Ripk1^{+/+}$ ,  $Ripk1^{K376R/K376R}$  and  $Ripk1^{-/-}$  immortalized MEFs treated with TNF $\alpha$  (40ng/ml) for different time point were measured by DEVD-AMC fluorescence, the error bars

represent mean±s.e.m of data from three independent cell samples for each genotype. (d)  $RipkI^{+/+}$  and  $RipkI^{K376R/K376R}$  immortalized MEFs were treated with TNF $\alpha$  (10ng/ml) /CHX (10ug/ml) with or without pre-treatment of Necrostatin-1 for the indicated time, and the cell lysates were analyzed by western-blotting using the indicated antibodies. Statistical significance was determined using a two-tailed unpaired *t* test, \*\*\*\*P < 0.0001.



Supplementary Figure 3. *Ripk1*<sup>K376R/K376R</sup> mutation increases RIPK1 kinase activity (a) Immunoprecipitation of RIPK1 antibody in *Ripk1*<sup>+/+</sup> and *Ripk1*<sup>K376R/K376R</sup> immortalized MEFs treated for the indicated time with TNF $\alpha$  (20 ng/ml). The immunocomplexes were

analyzed by western-blotting with antibody against K63-linked ubiquitination chains. (b) Immortalized  $Ripkl^{+/+}$ ,  $Ripkl^{K376R/K376R}$  and  $Ripkl^{-/-}$  MEFs were treated for the indicated time with TNFa (20 ng/ml). The M1-ubiquitylated proteins were isolated by M1-TUBEs and analyzed by western-blotting. (c) RT-PCR analysis of NF-kB-targeting genes expression in  $Ripkl^{+/+}$  or  $Ripkl^{K376R/K376R}$  MEFs treated with TNFa (20 ng/ml) for the indicated time, the error bars represent mean±s.e.m of data from three independent cell samples for each genotype. (d) Nuclear extracts were collected from  $Ripk1^{+/+}$  and  $Ripk1^{K376R/K376R}$  MEFs treated with TNFa (20 ng/ml) at indicated time with or without stably expressed Flag-tagged IkBa-SR and analyzed by western-blotting with antibodies against p65 and PCNA. (e)  $Ripkl^{+/+}$  and *Ripk1<sup>K376R/K376R</sup>* immortalized MEFs that stably expressed with the Flag-tagged I $\kappa$ B $\alpha$ -SR were stimulated with TNFa (40 ng/ml) for different periods of time. The cell lysates were analyzed by western-blotting with indicated antibodies. (f,j,k)  $Ripkl^{+/+}$  and  $Ripkl^{K376R/K376R}$ immortalized MEFs that expressed with the Flag-tagged TAK1(f), Flag-tagged MK2(j) or Flag-IKK $\beta$ -CA(k) were stimulated with TNF $\alpha$  (20 ng/ml) plus zVAD.fmk (10  $\mu$ M) for different periods of time. The cell lysates were analyzed by western-blotting with indicated antibodies. (g-i)  $Ripkl^{+/+}$  and  $Ripkl^{K376R/K376R}$  immortalized MEFs were stimulated with TNF $\alpha$ (20 ng/ml) plus zVAD.fmk (10 µM) for different periods of time with or without pre-treatment of TAK1 inhibitor(**g**), IKK inhibitor(**h**), MK2 inhibitor(**i**), The cell lysates wered analyzed by western-blotting with indicated antibodies. (I) Immunoprecipitation of RIPK1 antibody in  $Ripk1^{+/+}$  and  $Ripk1^{K376R/K376R}$  immortalized MEFs treated for the indicated time with TNFa (20) ng/ml). The immunocomplexes were analyzed by western-blotting with antibody against TAK1. (m) Immortalized  $Ripkl^{+/+}$ ,  $Ripkl^{K376R/K376R}$  and  $Ripkl^{-/-}$  MEFs were treated for the indicated time with TNFa (20 ng/ml). The cell lysates were analyzed by western-blotting with indicated antibodies. Statistical significance was determined using a two-tailed unpaired t test, ns P > t0.05, \*P < 0.05, \*\*P < 0.01, \*\*\*\*P < 0.0001.



# Supplementary Figure 4. TNFR1 deficiency partially delay the lethality of *Ripk1*<sup>K376R/K376R</sup> mice

(a) Statistical analysis of the expected and observed offspring mice (11-days-old) from the intercrosses of  $RipkI^{K376R/+}TnfrI^{-/-}$  mice. (b) Representative macroscopic images of organs with

indicated genotypes at P11. (c) Immunohistochemical staining of CD3 and Ly6G in skin sections of *Ripk1<sup>K376R/K376R</sup>Tnfr1<sup>-/-</sup>* and *Ripk1<sup>K376R/+</sup>Tnfr1<sup>-/-</sup>* littermate mice at P11(scale bar,50  $\mu$ m). (d) Representative macroscopic images of  $Ripkl^{K376R/+}TnfrI^{-/-}$ ,  $Ripkl^{K376R/K376R}TnfrI^{-/-}$ and Ripk1<sup>-/-</sup>Tnfr1<sup>-/-</sup> mice at P11. (e) H&E staining of liver and skin sections of  $RipkI^{K376R/+}TnfrI^{-/-}$ ,  $RipkI^{K376R/K376R}TnfrI^{-/-}$  and  $RipkI^{-/-}TnfrI^{-/-}$  mice at P11(scale bar, 50 µm), and microscopic quantification of the epidermal thickness from H&E results  $(RipkI^{K376R/+}TnfrI^{-/-}mice: n=6; RipkI^{K376R/K376R}TnfrI^{-/-}mice: n=6; RipkI^{-/-}TnfrI^{-/-}mice: n=6).$ (f-g) Immunofluorescence staining of Loricrin and K10 (scale bar,100 µm) (f) or immunohistochemical staining of F4/80, CD11b, and cleaved Caspase3(scale bar, 50 µm) (g) in skin sections of  $Ripkl^{K376R/+}Tnfrl^{-/-}$ ,  $Ripkl^{K376R/K376R}Tnfrl^{-/-}$  and  $Ripkl^{-/-}Tnfrl^{-/-}$  mice at P11. (h) Cytokines in lung homogenates were determined with the indicated genotypes at P11( $Ripkl^{K376R/+}Tnfrl^{-/-}$  mice: n=4;  $Ripkl^{K376R/K376R}Tnfrl^{-/-}$  mice: n=4). (i) Flow cytometry and statistical results of CD4<sup>+</sup>, CD8<sup>+</sup> T cells and CD19<sup>+</sup>B220<sup>+</sup> B cells in spleen from  $Ripkl^{K376R/K376R}Tnfrl^{-/-}$  and  $Ripkl^{K376R/+}Tnfrl^{-/-}$  littermate mice at P11 ( $Ripkl^{K376R/+}Tnfrl^{-/-}$  mice: n=6;  $Ripkl^{K376R/K376R} Tnfr1^{-/-}$  mice: n=6). In (e, h, i), data are mean± s.e.m. Statistical significance was determined using a two-tailed unpaired t test, ns P > 0.05, \*P < 0.05, \*\*P < 0.05, \*P < 0.050.01, \*\*\*\*P < 0.0001.



#### Supplementary Figure 5. Other signaling such as IFNs also contributes to lethality of *Ripk1<sup>K376R/K376R</sup>* mice

(**a**-d)  $Ripk1^{+/+}$ ,  $Ripk1^{K376R/K376R}$  and  $Ripk1^{-/-}$  immortalized MEFs were treated with LPS (100 ng/ml) (**a**), IFN $\gamma$ /zVAD (IFN $\gamma$ : 10 µg/ml; zVAD.fmk: 20 µM) (**b**), TRAIL/CHX

(TRAIL:150ng/ml; CHX:10 ug/ml) (c) and FasL/CHX (FasL: 0.5ug/ml; CHX:10ug/ml) (d) for the indicated time. The cell lysates were analyzed by western-blotting using the indicated antibodies. (e) Cell death of  $RipkI^{+/+}$  and  $RipkI^{K376R/K376R}$  immortalized MEFs treated for 12h with different stimulators were measured by SytoxGreen positivity. FasL: 0.5ug/ml; TRAIL:150ng/ml; C: CHX (10ug/ml), the error bars represent mean±s.e.m of data from three independent cell samples for each genotype. Statistical significance was determined using a two-tailed unpaired *t* test, \*\*P < 0.01, \*\*\*P < 0.01, \*\*\*P < 0.001.



### Supplementary Figure 6. Co-deletion of RIPK3 and Caspase8 fully rescue the phenotype of *Ripk1*<sup>K376R/K376R</sup> mice

(a) Immunohistochemical staining of CD11b, CD45 and CD3 staining in skin sections of  $Ripk1^{K376R/K376R}Ripk3^{-/-}Caspase8^{-/-}$  and  $Ripk1^{K376R/+}Ripk3^{-/-}Caspase8^{-/-}$ littermate mice at P40(scale bar,50 µm). (b) Flow cytometry and statistical results of CD4<sup>+</sup>, CD8<sup>+</sup> T cells and CD19<sup>+</sup>B220<sup>+</sup> B cells in spleen from  $Ripk1^{K376R/K376R}Ripk3^{-/-}Caspase8^{-/-}$  and  $Ripk1^{K376R/+}Ripk3^{-/-}Caspase8^{-/-}$  mice: n=4;  $Ripk1^{K376R/K376R}Ripk3^{-/-}Caspase8^{-/-}$  mice: n=4). (c) Statistical analysis of the expected and observed offspring mice (11-days-old) from the intercrosses of  $Ripk1^{K376R/+}Ripk3^{-/-}$  mice. In (b), data are mean± s.e.m. Statistical significance was determined using a two-tailed unpaired *t* test, ns P > 0.05.



Supplementary Figure 7. *Ripk1<sup>K376R/-</sup>* mice develops spontaneous inflammation
(a) Statistical analysis of the expected and observed offspring mice (21-days-old) from the

(a) Statistical analysis of the expected and observed offspring fince (21-days-old) from the intercrosses of  $Ripkl^{K376R/+}$  and  $Ripkl^{K''}$  mice. (b) Representative macroscopic images of  $Ripkl^{K376R/-}$  and  $Ripkl^{K376R/+}$  littermate mice at P25. (c) Representative macroscopic images of organs with indicated genotypes at P150. (d) Statistical analysis of body weight of  $Ripkl^{K376R/+}$  and  $Ripkl^{K376R/-}$  littermate mice at P25 and P150 ( $Ripkl^{K376R/+}$  mice: n=4;  $Ripkl^{K376R/-}$  mice: n=4). (e) Immunohistochemical staining of CD45, CD3 and Ly6G in skin sections of  $Ripkl^{K376R/-}$  and

*Ripk1*<sup>K376R/+</sup> littermate mice at P150(scale bar,50 µm). (**f**) AST in blood and cytokines in liver homogenates were determined with the indicated genotypes at P150(*Ripk1*<sup>K376R/+</sup> mice: n=4; *Ripk1*<sup>K376R/-</sup> mice: n=4). (**g**) Flow cytometry and statistical results of CD4<sup>+</sup>, CD8<sup>+</sup> T cells and CD19<sup>+</sup>B220<sup>+</sup> B cells in spleen from *Ripk1*<sup>K376R/+</sup> and *Ripk1*<sup>K376R/-</sup> littermate mice at P150(*Ripk1*<sup>K376R/+</sup> mice: n=4; *Ripk1*<sup>K376R/-</sup> mice: n=4). (**h**) Caspase3 activity of *Ripk1*<sup>+/+</sup>, *Ripk1*<sup>K376R/-</sup> and *Ripk1*<sup>K376R/K376R</sup> immortalized MEFs treated with TNFa/CHX (TNFa:20 ng/ml; CHX: 10 µg/ml) for the indicated time was measured by DEVD-AMC fluorescence, the error bars represent mean±s.e.m of data from three independent cell samples for each genotype. (**ij**) *Ripk1*<sup>+/+</sup>, *Ripk1*<sup>K376R/+</sup>, *Ripk1*<sup>K376R/K376R</sup>, *Ripk1*<sup>-/-</sup> and *Ripk1*<sup>K376R/-</sup> immortalized MEFs were treated with TNFa (20 ng/ml)/CHX (10 ug/ml) (**i**) and TNFa (20 ng/ml)/zVAD.fmk (10 µM) (**j**) for the indicated time, and the cell lysates were analyzed by western-blotting using the indicated antibodies. In (**d-h**), data are mean± s.e.m. Statistical significance was determined using a two-tailed unpaired *t* test, ns P > 0.05, \*\*P < 0.01, \*\*\*P < 0.001, \*\*\*\*P < 0.0001.



#### Supplementary Figure 8. *KD-Ripk1<sup>K376R/-</sup>* mice develops spontaneous inflammation

(a) Schematic overview of domain structure of  $Ripk1^{K376R/K376R}$  and KD- $Ripk1^{-/-}$  mice. KD, kinase domain; ID, intermediate domain; DD, death domain; RHIM, RIP homotypic interaction motif. (b) Western-blotting detection of RIPK1 protein expression in primary MEFs from

*Ripk1*<sup>+/+</sup> and *KD-Ripk1*<sup>-/-</sup> mice (\*refers to non-specific band). (c) Representative macroscopic images of *Ripk1*<sup>K376R/+</sup> and *KD-Ripk1*<sup>K376R/-</sup> littermate mice at P120. (d) H&E staining of liver and skin sections of *Ripk1*<sup>K376R/+</sup> and *KD-Ripk1*<sup>K376R/-</sup> littermate mice at P120 (scale bar,50 µm), and microscopic quantification of the epidermal thickness from H&E results (*Ripk1*<sup>K376R/+</sup> mice: n=4; *KD-Ripk1*<sup>K376R/-</sup> mice: n=4). (e-f) Immunofluorescence staining of Loricrin and K10 (scale bar,100 µm) (e) or immunohistochemical staining of F4/80, CD11b, and cleaved Caspase3(scale bar,50 µm) (f) in skin sections of *Ripk1*<sup>K376R/+</sup> and *KD-Ripk1*<sup>K376R/+</sup> littermate mice at P120. In (d), data are mean± s.e.m. Statistical significance was determined using a two-tailed unpaired *t* test, \*\*\*\*P < 0.0001.



Supplementary Figure 9. TNFR1 deficiency suppress inflammation in *Ripk1<sup>K376R/-</sup>* mice (a) Statistical analysis of body weight of *Ripk1<sup>K376R/-</sup>Tnfr1<sup>-/-</sup>* and *Ripk1<sup>K376R/+</sup>Tnfr1<sup>-/-</sup>* littermate mice at P40 (*Ripk1<sup>K376R/+</sup>Tnfr1<sup>-/-</sup>* mice: n=4; *Ripk1<sup>K376R/-</sup>Tnfr1<sup>-/-</sup>* mice: n=4). (b) Immunohistochemical staining of CD3 and Ly6G in skin sections of *Ripk1<sup>K376R/-</sup>Tnfr1<sup>-/-</sup>* and *Ripk1<sup>K376R/+</sup>Tnfr1<sup>-/-</sup>* 

littermate mice at P40(scale bar,50 µm). (c) Immunofluorescence staining of Loricrin, K10, and K14 in skin sections of *Ripk1<sup>K376R/-</sup>Tnfr1<sup>-/-</sup>* and *Ripk1<sup>K376R/+</sup>Tnfr1<sup>-/-</sup>* littermate mice at P40(scale bar,100 µm). (d) AST and ALT in blood were determined with the indicated genotypes at P40(*Ripk1<sup>K376R/+</sup>Tnfr1<sup>-/-</sup>* mice: n=4; *Ripk1<sup>K376R/-</sup>Tnfr1<sup>-/-</sup>* mice: n=4). (e) Flow cytometry and statistical results of CD4<sup>+</sup>, CD8<sup>+</sup> T cells and CD19<sup>+</sup>B220<sup>+</sup> B cells in spleen from *Ripk1<sup>K376R/-</sup>Tnfr1<sup>-/-</sup>* mice: n=4; *Ripk1<sup>K376R/-</sup>Tnfr1<sup>-/-</sup>* littermate mice at P150(*Ripk1<sup>K376R/-</sup>Tnfr1<sup>-/-</sup>* mice: n=4; *Ripk1<sup>K376R/-</sup>Tnfr1<sup>-/-</sup>* mice: n=4). In (**a**, **d**, **e**), data are mean± s.e.m. Statistical significance was determined using a two-tailed unpaired *t* test, ns P > 0.05, \*P < 0.05, \*P < 0.01, \*\*\*\*P < 0.001.



Supplementary Figure 10. Co-deletion of RIPK3 and Caspase8 suppress inflammation in *Ripk1<sup>K376R/-</sup>* mice

(a) Representative macroscopic images of organs with indicated genotypes at P40. (b) Immunohistochemical staining of cleaved Caspase3, CD11b, CD3, Ly6G, F4/80 and CD45 in skin sections of *Ripk1<sup>K376R/-</sup>Ripk3<sup>-/-</sup> Caspase8<sup>-/-</sup>* and *Ripk1<sup>K376R/+</sup>Ripk3<sup>-/-</sup> Caspase8<sup>-/-</sup>* littermate mice at P40(scale bar, 50 µm). (c) Immunofluorescence staining of Loricrin, K10, and K14 in skin sections of *Ripk1<sup>K376R/-</sup>Ripk3<sup>-/-</sup> Caspase8<sup>-/-</sup>* and *Ripk1<sup>K376R/+</sup>Ripk3<sup>-/-</sup> Caspase8<sup>-/-</sup>* littermate mice at P40(scale bar, 100 µm). (d) Cytokines in liver homogenates were determined with the indicated genotypes at P40 (*Ripk1<sup>K376R/+</sup>Ripk3<sup>-/-</sup> Caspase8<sup>-/-</sup>* mice: n=4; *Ripk1<sup>K376R/-</sup>Ripk3<sup>-/-</sup> Caspase8<sup>-/-</sup>* mice: n=4). (e) AST and ALT in blood were determined with the indicated genotypes at P40(*Ripk1<sup>K376R/+</sup>Ripk3<sup>-/-</sup> Caspase8<sup>-/-</sup>* mice: n=4; *Ripk1<sup>K376R/-</sup>Ripk3<sup>-/-</sup> Caspase8<sup>-/-</sup>* mice: n=4). (f) Flow cytometry and statistical results of CD4<sup>+</sup>, CD8<sup>+</sup> T cells and CD19<sup>+</sup>B220<sup>+</sup> B cells in spleen from *Ripk1<sup>K376R/+</sup>Ripk3<sup>-/-</sup> Caspase8<sup>-/-</sup>* and *Ripk1<sup>K376R/+</sup>Ripk3<sup>-/-</sup> Caspase8<sup>-/-</sup>* littermate mice at P40(*Ripk1<sup>K376R/+</sup>Ripk3<sup>-/-</sup> Caspase8<sup>-/-</sup>* mice: n=4; *Ripk1<sup>K376R/-</sup>Ripk3<sup>-/-</sup> Caspase8<sup>-/-</sup>* mice: n=4). (f) Flow cytometry and statistical results of CD4<sup>+</sup>, CD8<sup>+</sup> T cells and CD19<sup>+</sup>B220<sup>+</sup> B cells in spleen from *Ripk1<sup>K376R/+</sup>Ripk3<sup>-/-</sup> Caspase8<sup>-/-</sup>* mice: n=4; *Ripk1<sup>K376R/+</sup>Ripk3<sup>-/-</sup> Caspase8<sup>-/-</sup>* mice: n=4). In (d, e, f), data are mean± s.e.m. Statistical significance was determined using a two-tailed unpaired *t* test, ns P > 0.05.



Supplementary Figure 11. RIPK3 deletion suppress inflammation in *Ripk1<sup>K376R/-</sup>* mice (a) H&E staining of liver and skin sections of *Ripk1<sup>K376R/-</sup>Ripk3<sup>-/-</sup>* and *Ripk1<sup>K376R/+</sup>Ripk3<sup>-/-</sup>* littermate mice at P40(scale bar,50  $\mu$ m), and microscopic quantification of the epidermal

thickness from H&E results ( $Ripk1^{K376R/+}Ripk3^{-/-}$  mice: n=4;  $Ripk1^{K376R/-}Ripk3^{-/-}$  mice: n=4). (b) Immunohistochemical staining of CD11b and F4/80 in skin sections of  $Ripk1^{K376R/-}Ripk3^{-/-}$  and  $Ripk1^{K376R/+}Ripk3^{-/-}$  littermate mice at P40(scale bar,50 µm). (c) Flow cytometry and statistical results of splenocytes stained with Ly6G and CD11b from  $Ripk1^{K376R/-}Ripk3^{-/-}$  and  $Ripk1^{K376R/+}Ripk3^{-/-}$  littermate mice at P40 ( $Ripk1^{K376R/+}Ripk3^{-/-}$  mice: n=4;  $Ripk1^{K376R/-}Ripk3^{-/-}$  mice: n=4). CD11b<sup>+</sup>Ly6G<sup>+</sup> cells were identified as neutrophils. (d) Flow cytometry and statistical results of CD4<sup>+</sup>, CD8<sup>+</sup> T cells and CD19<sup>+</sup>B220<sup>+</sup> B cells in spleen from  $Ripk1^{K376R/-}Ripk3^{-/-}$  and  $Ripk1^{K376R/+}Ripk3^{-/-}$  littermate mice at P40( $Ripk1^{K376R/+}Ripk3^{-/-}$  mice: n=4;  $Ripk1^{K376R/-}Ripk3^{-/-}$  mice: n=4). In (**a**, **c**, **d**), data are mean± s.e.m. Statistical significance was determined using a twotailed unpaired *t* test, ns P > 0.05.



### Supplementary Figure 12. Proposed model that K63-linked ubiquitination of RIPK1 on K376 regulating TNFα-induced signaling

(a) In normal condition, K63-linked ubiquitination of RIPK1 on K376 can recruit TAK1/IKK to suppress RIPK1 kinase activity, and also recruit IKK complex to promote NF- $\kappa$ B activation. These two signaling can both contribute to survival of *Ripk*1<sup>+/+</sup> mice. (b) Deficiency of RIPK1 can induce RIPK1-independent cell death, resulting in perinatally lethal of *Ripk*1<sup>-/-</sup> mice. (c) K376R mutation can enhance RIPK1 kinase activity to promote RIPK1-dependent cell death, resulting in embryonic lethality of *Ripk*1<sup>K376R/K376R</sup> mice at E13.5. (d) In *Ripk*1<sup>K376R/-</sup> cells,

RIPK1 kinase activity is relatively decreased comparing to  $Ripk1^{K376R/K376R}$  cells, resulting in reduced RIPK1-denpendent cell death, and  $Ripk1^{K376R/-}$  could survive but develop severe systemic inflammation.



Supplementary Figure 13. Hematopoietic gating strategy

(a) For characterization of spleen neutrophils, the living cell fractions gated from preliminary FSC/SSC gates could be further divided into CD45+CD11b+Ly6G+ neutrophils. The

antibodies and fluorochrome used described as "Antibodies and reagents" in the methods. (b) For characterization of spleen T cells, B cells, the living cell fractions gated from preliminary FSC/SSC gates could be further divided into three cell types: CD45+CD4+ T cells, CD45+CD8+ T cells, CD45+CD19+B220+ B cells. The antibodies and fluorochrome used described as "Antibodies and reagents" in the methods.

#### **Supplementary Table**

**Table 1.** Primer sequences for generation of  $Ripk1^{K376R/K376R}$  and KD- $Ripk1^{-/-}$  mice.

| sgRNA( <i>Ripk1<sup>K376R/K376R</sup></i> )  | tgtgcaggctaagctgcaag                                                   |  |
|----------------------------------------------|------------------------------------------------------------------------|--|
| Donor( <i>Rink 1<sup>K376R/K376R</sup></i> ) | gtcctggttttcttcctccccagagtacccacaggacgagaatgatcgcagtgtgcaggccagactacag |  |
| Donor(Ripwi )                                | gaagaagccagctatcatgcttttggaatatttgcagagaaacagacaaa                     |  |
| sgRNA( <i>KD-Ripk1<sup>-/-</sup></i> )       | gccctgtgtatacttttttc                                                   |  |

|          | TT1 | •      |        | C         | · ·       | DOD    |
|----------|-----|--------|--------|-----------|-----------|--------|
| Table 2. | Ine | primer | sequen | ces for g | enotyping | g-PCK. |

| Gene           | Forward Primer (5'3')    | Reverse Primer (5'3') |
|----------------|--------------------------|-----------------------|
|                | Primer sequences         | s for genotyping-PCR  |
| RIPK1 K376R WT | tgcaggctaagctgcaagag     | gtgctgggatcagaatgacc  |
| RIPK1 K376R KI | tgcaggccagactacaggaa     | gtgctgggatcagaatgacc  |
| RIPK1 ID-KO    | ttcctccccagagtacccac     | gtgctgggatcagaatgacc  |
| RIPK1 KD-KO    | gtggagtacaagctagcctcagac | ctgtgtttagccacacagatg |

Table 3. The primer sequences for qRT-PCR.

| Gene  | Forward Primer (5'3')        | Reverse Primer (5'3')  |  |
|-------|------------------------------|------------------------|--|
|       | Primer sequences for qRT-PCR |                        |  |
| GAPDH | AACAGCAACTCCCACTCTTC         | CCTGTTGCTGTAGCCGTATT   |  |
| IL6   | TCCATCCAGTTGCCTTCTTG         | GGTCTGTTGGGAGTGGTATC   |  |
| ΤΝΓα  | CTACCTTGTTGCCTCCTCTTT        | GAGCAGAGGTTCAGTGATGTAG |  |
| ΙκΒα  | TGAAGGACGAGGAGTACGAGC        | TTCGTGGATGATTGCCAAGTG  |  |
| CXCL1 | CTGGGATTCACCTCAAGAACATC      | CAGGGTCAAGGCAAGCCTC    |  |

| CXCL2 | CCAACCACCAGGCTACAGG     | GCGTCACACTCAAGCTCTG    |
|-------|-------------------------|------------------------|
| IFNβ  | CAGCTCCAAGAAAGGACGAAC   | GGCAGTGTAACTCTTCTGCAT  |
| IFNγ  | CTTTGGACCCTCTGACTTGAG   | TCAATGACTGTGCCGTGG     |
| A20   | ACAGTGGACCTGGTAAGAAAACA | CCTCCGTGACTGATGACAAGAT |