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Supplementary Figure 1
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Quality control and pre-processing of DMS datasets

a Correlation of mutant variant counts between all input replicates in DMS library 290-331. The Pearson
correlation coefficients (R) are indicated in the upper matrix triangle. Replicate selection 2 was removed
from downstream analyses due to lower than average correlation with other replicates b Correlation of
mutant variant counts between all input replicates in DMS library 332-373. Replicate selection 1 was
removed from downstream analyses due to lower than average correlation with other replicates. ¢
Comparison of relative toxicity of single and double AA mutants and mean input read count for each DMS
library before and after Bayesian correction of double AA mutant toxicity estimates. The vertical dashed line
indicates the minimum mean input read count threshold (10) for variants used in downstream analyses. d
Correlation of toxicity estimates between all retained replicates for single and double amino acid (AA)
mutants from library 290-331. The Pearson correlation coefficients (Corr) are indicated. e Similar to panel d
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except showing results corresponding to retained replicates from library 331-373.
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Fitness distributions Centered fitness distributions Centered and scaled fitness distributions
before normalisation (by weighted mean of single codon synonymous mutants) (by weighted mean of single STOP codon mutants)
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I |Gly295Cys 295 1 van (2012) Hum Mol Genet 21, 3776
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[ I GIn303His 303 1| Lattante (2012) Neurology 79, 66
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1 Ala315Thr 315 3 Gitcho (2008) Ann Neurol 63, 535
| A1a315Glu 315! 1 Fujita (2011) Neurology 77, 1427
1 Ala321Val 321 1|Kirby (2010) Neurogenetics 11, 217
04 T A1a321Gly 321 1|Béaumer (2009) J Neurol Psychiatry 80, 1283
1 Al disease P = 0.005 (32) GIn331Lys 331 1|Sreedharan (2008) Science 319, 1668
o TALS recurrent P= 0.016 (7) Ser332Asn 332 1 Corrado (2009) Hum Mutat 30, 688
QP I ) o Gly335Asp 335 1]Corrado (2009) Hum Mutat 30, 688
N Met337Val 337, 7 Sreedharan (2008) Science 319, 1668
: I ! I GIn343Arg 343 1 Rutherford (2008) PLoS Genet 4, €1000193
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X . Gly348Cys 348 5 4|Kabashi (2008) Nat Genet 40, 572
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Gly348Arg 348 1 Chiang, C. et al., Sci. Rep. 6, 21581, 2016
Asn352Ser 352 8 4[Kiihnlein (2008) Arch Neurol 65, 1185
[Asn352Thr 352 2 Ticozzi (2011) Neurobiol Aging 32(11):2096-9
i H Gly357Ser 357 2|lida (2012) Neurobiol Aging 33, 786
Recurrency (#patients) Disease type a§357Arg 357 1 Chiang (2012) J Hum Genet 57, 316
o 1 o fALS |Met3s9val 359 Borroni (2010) Rejuvenation Res 13(5):509-17
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Arg361Thr 361 2 Chiang (2012) J Hum Genet 57, 316
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Supplementary Figure 2
Inter-library normalisation of DMS datasets and toxicity of human disease mutations

a Toxicity distributions of single codon synonymous (silent) variants (top), single and double mutants
(middle) and single STOP codon variants, shown separately for each library (see colour key) and before
centering and scaling. b As in panel a, but after inter-library normalization by centering on the error-weighted
means of toxicity of single codon synonymous (silent) variants. ¢ As in panel b, but after additionally scaling
such that the error-weighted means of single STOP codon variants coincided. Mean toxicity of variants with
single STOP codon mutation is indicated by dashed vertical line. d Relative toxicities of classified human
disease AA substitution variants (coloured dots; see key) below the relative toxicity distribution of all single
and double AA mutants assayed in this study. Disease variants observed in more than one patient are
classified as recurrent. e Table of all human disease AA substitution mutations in TDP-43 used in panel d.
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Supplementary Figure 3

Principle components analysis of amino acid physicochemical properties

a Results of PCA of a curated collection of numerical indices representing various physicochemical and
biochemical properties of AAs (see Methods). Biplot matrix indicating variable loadings of the top 5 PCs.
Colours indicate text matches to index descriptions (see colour key). b Screeplot indicating percentage
variance explained by all PCs.
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Supplementary Figure 4

Linear regression models to predict mutant variant toxicity

a Percentage variance of residual relative toxicity (after controlling for hydrophobicity and location) explained
by linear regression models predicting single and double mutant variant toxicity from changes in AA
properties upon mutation (left) and using scores from aggregation/structure algorithms (right). Different
regression models were built for different subsets of the data. Simple linear regression models for all variants
(blue) or only variants inside (red) or outside (yellow) the hotspot region. And a regression model using all
variants and including a binary location variable (inside/outside hotspot) as well as an interaction term
between binary location variable and the indicated AA property feature (green). b Percentage variance of
relative toxicity explained by linear regression models predicting single mutant variant toxicity from changes
in AA properties upon mutation (left) and using scores from aggregation/structure algorithms (right). ¢ Similar
to panel b except showing results using double mutant variants.
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Supplementary Figure 5

Scoring of intracellular phenotypes and expression of toxic and non-toxic mutants

a Scoring of intracellular phenotypes by automated foci counting. Percentage of cells with foci at the nuclear
periphery automatically scored by CellProfiler. Fisher's Exact test. b Immunohistochemistry of toxic and non-
toxic mutants. Expression of different TDP-43 variants after 8h induction of protein expression in Galactose

was measured by Western Blotting. Phosphoglycerate Kinase 1 was used as a Loading Control. Source
data are provided as a Source Data file.
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Supplementary Figure 6

Scoring of intracellular phenotypes for ALS mutants

a Representative fluorescence microscopy Images of yeast cells expressing indicated YFP-tagged TDP-43
variants (green). H4-mCherry marks nuclei (red). b Percentage of cells with foci at the nuclear periphery
(left) or cells with cytoplasmic foci (right). Cells scored: n[disease variants]=403, n[WT]=61. Fisher's exact
test. Scale bar = 5 uM. Source data are provided as a Source Data file.
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Supplementary Figure 7

Co-localization with known IPOD, JUNQ and Nuclear Pore markers

Representative fluorescence microscopy images of yeast cells expressing indicated YFP-tagged TDP-43
variants (green) and mCherry-tagged proteins (red). Markers and regulators of the insoluble protein
compzartment (IPOD) or the juxtanuclear quality control compartment (JSLiI;IQ): Hsp104, Hsp42, Rnq1, Ltn1,
Sti1“ Nuclear pore elements: Nup145, Gsp1, Tho2, Srp1, Nsp1™"” . The human homologues are
highlighted in brackets.
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Supplementary Figure 8

LARKS structure propensities

a Contact matrix based on a minimal side-chain heavy atom distance of 4.5A derived from WT LARKS PDB
structure 5whn. b Contact matrix derived from mutant LARKS PDB structure 5whp. ¢ Contact matrix derived
from mutant LARKS PDB structure 5wkb. d LARKS structure propensities for PDB-structure derived contact
matrices shown in panels a-c (see Methods). The dashed vertical line indicates the start position of the LARKS
(TDP-43 AA residue 312).
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Supplementary Figure 9

Toxicity of variants as a function of hydrophobicity and aggregation propensity

a Toxicity of variants with single (left) or double (right) mutations occurring outside (top), inside (bottom) or in
both locations (1 outside/1 inside) w.r.t. the hotspot region (middle), as a function of hydrophobicity changes
(PC1) induced by mutation. The Pearson correlations (R) before binning are indicated. b Toxicity of variants
with single (left) or double (right) mutations occurring outside (top), inside (bottom) or in both locations (1
outside/1 inside) w.r.t. the hotspot region (middle), as a function of changes in aggregation propensity
(Zyggregator). The Pearson correlations (R) before binning are indicated.
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