
Reviewers' comments:  

Reviewer #1 (Remarks to the Author):  

In this manuscript Bolognesi, Faure, et al. use deep mutational scanning to study the impact of 

protein aggregation on cellular toxicity. They introduce more than fifty thousand mutations in the 

prion-like domain (PrD) of the intrinsically disordered human protein TDP-43 and quantified their 

cytotoxicity in yeast. They find that mutations increasing hydrophobicity and aggregation tend to 

reduce toxicity, consistent with models suggesting that mature protein aggregates are not themselves 

toxic. The authors propose a mechanism in which larger, solid protein aggregates titrate protein away 

from smaller and dynamic liquid-like condensates in the nuclear periphery. Presumably, these liquid-

like protein condensates may interfere with protein transport across the nuclear membrane. The 

mutations with the largest effect on toxicity tend to cluster in a central hotspot withinin the PrD. The 

authors developed a clever computational method based on epistatic interactions that points to the in 

vivo secondary structure of the protein (Nature Genetics, in press) andused it in this study to show 

that this central hotspot, rather than being disordered, is indeed structured inside yeast cells.  

This paper adds significant evidence to the body of work suggesting that protein aggregates 

associated with neurodegenerative diseases, in contrast to prevailing opinion, may ameliorate rather 

than enhance cell toxicity. This is a solid piece of work. The results are very interesting and convincing 

and, in my view the claims made are supported by the evidence. In my view it should be published 

without delay.  

Minor comments:  

1. Some additional introduction of the concept of liquid demixing would be helpful for many readers.  

2. It seems to me that dosage-sensitive proteins may also lead to a fitness cost when concentration 

decreases below threshold. Could the authors comment?  

3. Why do the non-toxic protein variants had higher concentration as quantified by Western?  

4. How can we know that aggregation potential accounts for 4% of the variance on relative toxicity in 

the hotspot from Fig. 2F,G? Is this simply because of the R? It would be good to add a sentence or 

two explaining this.  

5. In my view Panel 2C does not show that “None of them are as predictive as hydrophobicity”  

Reviewer #2 (Remarks to the Author):  

To explore the relationship between TDP-43 aggregation and toxicity, here the authors used deep 

mutagenesis, generating >50,000 mutations comprising of 1266 single and 56, 730 double mutants, 

in the PRD of TDP-43 and quantifying toxicity in yeast. Of these mutants, 18032 were more toxic than 

WT TDP-43 and 16152 less toxic. The authors found that mutations that increased the aggregation 

propensity of TDP-43 correlated with reduced toxicity, whereas those that promoted dynamic, liquid 

condensates correlated with increased toxicity. Interestingly, increasing the hydrophobicity of TDP-43, 

which is associated with reduced toxicity, caused a relocalization of the protein away from the nuclear 

membrane and formation of larger aggregates. Mutational effect was strongest in a 31 aa hotspot at 

residues 312-342 with mutations to charged or polar residues increasing toxicity and to hydrophobic 

aa decreasing toxicity. From these findings, the authors propose that TDP-43 aggregation is 

neuroprotective by titrating from liquid-like states.  



This is an interesting observation. Comm ents are below  

1. What was the finding from disease causing mutations e.g. A315T, M337V etc ?  

2. WT TDP-43 should be included in Fig 3A  

3. Further characterization of the different types of TDP-43 inclusions is required e.g. are the 

aggregates p62 positive, do the droplets co-localize with stress granule markers, nuclear pore 

proteins? 

Reviewer #3 (Remarks to the Author):  

The manuscript by Bolognesi et al. describes deep mutational scanning results of TDP-43 toxicity in 

yeast. This review is focused on the deep mutational scanning approach and data. The authors 

purchased about 150 based synthetic oligos doped with random mutations at a frequency intended to 

yield a ratio of about 1:2:2 of WT: single mutation: double mutation. 2 libraries of mutants were 

cloned into galactose inducible plasmids, introduced into budding yeast, and subject to bulk growth 

competitions under induced conditions. The frequency of each mutant was estimated by paired-end 

sequencing of samples prior to and after competition. The change in frequency of each mutated 

variant was used to estimate impacts on growth rate.  

Many aspects of the mutational scanning data appear to have been done with careful thought. 

However, there are also aspects of the mutational scanning data that are not clearly described or that 

may be potentially misleading and should be addressed prior to publication. The correlation between 

replicates (Fig 1B) is impressive and indicates that stochastic noise to signal is favorable.  

Major concerns:  

1. The treatment of biological replicates is unclear. Four biological replicates are mentioned in the 

method section, but two replicates are presented in Fig 1B, and one set of measurements is provided 

in Sup. Table S3. The authors need to clarify how replicates were performed and analyzed. Each 

replicate needs to be reported in a separate Supplementary Table. This is imperative not only for 

judging the merit of the data, but also for potential future analyses to distinguish biological from 

technical variation.  

2. Misreads need to be experimentally examined. Assuming that paired-end reads eliminate mis-reads 

is unwise. Potential misreads should be assessed using a homogenous starting sequence (e.g. wild-

type plasmid) and the same procedure for preparing and sequencing as samples (e.g., the same 

cycles of PCR). Reads that are not wild type should be counted as mistakes and the frequency of these 

reported. 

3. The mean count of 1aa change variants is about 2000 and the mean count of 2aa change variants 

is about 30. This should be discussed. Is it possible that misreads could contribute to this observation. 

The authors should discuss barcoding strategies that can be utilized to reduce the impact of misreads. 

For example, see Nature Methods 2010 7:119-122. The authors should describe why they chose the 

direct sequencing approach that the used compared to barcoding strategies. The authors should 

provide an experimental analyses of misreads (see point 2 above).  

4. According to the mutational strategy, the authors expected about a 1:2:2 ratio of wild-type : single 

mutation : double mutation. The data report about 1000 single mutations and 50,000 double 



mutations. The authors should comment on this discrepancy and the potential reasons for it.  

5. The estimated errors (sigma in Sup. Table 3) seem remarkably small given the read depth. Mean 

reads of ~10 yield errors of ~0.05 in toxicity. The authors should examine and report if the calculated 

errors account for the variation between experimental replicates.  

Minor concerns:  

1. p. 4 – T”he patterns of genetic interactions in double mutants in this region reveal that this 

‘unstructured’ region is actually structured in vivo”  

2. p. 8 – “We have shown recently that the pattern of genetic (epistatic) interactions between 

mutations in a protein can report on the secondary structure of that molecule when it is 8 performing 

the function that is being selected for(51).”  

3. P. 16 – “Reads that contained base calls with Phred scores below 30 (290-331 DMS library) or 

below 25 (332-373 DMS library) were discarded.” What was the reasoning for selecting these cutoffs – 

why do they differ for each library?  

4. The average toxicity of stop codons appears to be about -0.15. Some discussion of what this means 

relative to the observed toxicity would be helpful.  

5. Supplementary Fig 2D seems very interesting – as it gets at the potential disease causing 

properties of mutations. The authors should consider moving this to the main text.  



We thank the referees for their enthusiasm and suggestions. Please see below for the 
responses to each point. 
 
Reviewers' comments: 
 
Reviewer #1 (Remarks to the Author): 
 
In this manuscript Bolognesi, Faure, et al. use deep mutational scanning to study the impact of 
protein aggregation on cellular toxicity. They introduce more than fifty thousand mutations in the 
prion-like domain (PrD) of the intrinsically disordered human protein TDP-43 and quantified their 
cytotoxicity in yeast. They find that mutations increasing hydrophobicity and aggregation tend to 
reduce toxicity, consistent with models suggesting that mature protein aggregates are not 
themselves toxic. The authors propose a mechanism in which larger, solid protein aggregates 
titrate protein away from smaller and dynamic liquid-like condensates in the nuclear periphery. 
Presumably, these liquid-like protein condensates may interfere with protein transport across 
the nuclear membrane. The mutations with the largest effect on toxicity tend to cluster in a 
central hotspot withinin the PrD. The authors developed a clever computational method based 
on epistatic interactions that points to the in vivo secondary structure of the protein (Nature 
Genetics, in press) and used it in this study to show that this central hotspot, rather than being 
disordered, is indeed structured inside yeast cells.  
 
This paper adds significant evidence to the body of work suggesting that protein aggregates 
associated with neurodegenerative diseases, in contrast to prevailing opinion, may ameliorate 
rather than enhance cell toxicity. This is a solid piece of work. The results are very interesting 
and convincing and, in my view the claims made are supported by the evidence. In my view it 
should be published without delay. 
 
Minor comments: 
 
1. Some additional introduction of the concept of liquid demixing would be helpful for many 
readers. 
 
We have added the following text: 
“For many proteins, aggregation depends critically on intrinsically disordered regions 
with a low sequence complexity resembling that of infectious yeast prions.  These prion-
like domains (PRDs) are also enriched in proteins that can form liquid-like cellular 
condensates20–22 through liquid-demixing. This is a concentration-dependent process 
through which proteins can separate into two coexisting liquid phases and it has been 
extensively characterized both in vitro and in the cytoplasm23. In several proteins PRDs 
are necessary and sufficient for liquid-demixing demixing23,24.  At least in vitro, insoluble 
aggregates can nucleate from more liquid phases24–26, leading to the suggestion that 
liquid de-mixed states can mature into pathological aggregates19.” 
 
 
 



 
 
2. It seems to me that dosage-sensitive proteins may also lead to a fitness cost when 
concentration decreases below threshold. Could the authors comment? 
 
Correct. We have changed the text to clarify we are specifically referring to proteins that 
are toxic when their expression is increased: “Disordered regions and low complexity 
sequences are also enriched in dosage-sensitive proteins that are toxic when their 
concentration is increased.” 
 
3. Why do the non-toxic protein variants had higher concentration as quantified by 
Western?  
 
This observation is also supported by the measurements of fluorescence intensity in 
figure 3F where the cytoplasmic foci far from the nucleus observed for non-toxic variants 
have brighter fluorescence than foci at the nuclear periphery observed in toxic variants. 
We can speculate that this is due to the non-toxic variants being less prone to 
degradation, possibly because they form more solid aggregates which cannot easily be 
tackled by the degradation machinery. Alternatively, cells expressing toxic variants are 
slow-growing and this may result in  reduced production of TDP-43. 
 
4. How can we know that aggregation potential accounts for 4% of the variance on relative 
toxicity in the hotspot from Fig. 2F,G? Is this simply because of the R? It would be good to add a 
sentence or two explaining this. 
 
The proportion of toxicity variance explained by hydrophobicity in the hotspot is R-
squared = (-0.81)^2 = 66%. We controlled for the effect of hydrophobicity by taking the 
residuals from a linear regression of toxicity on hydrophobicity, were we restricted the 
analysis to variants in the hotspot. Next, we calculated the proportion of variance in 
these residuals explained by aggregation potential i.e. R-squared = (-0.65)^2 = 12%. 
Because the residual toxicity variance (after controlling for hydrophobicity) is only 100-
66 = 34% of the total toxicity variance (before controlling for hydrophobicity), we 
conclude that aggregation potential accounts for an additional 0.12*0.34 = ~4% of toxicity 
variance in the hotspot. This is explained in the legend of Fig. 2.  
 
5. In my view Panel 2C does not show that “None of them are as predictive as 
hydrophobicity” 
 
This has now been corrected as a reference to 2B where the different predictors are 
shown.  
 
Reviewer #2 (Remarks to the Author): 
 



To explore the relationship between TDP-43 aggregation and toxicity, here the authors used 
deep mutagenesis, generating >50,000 mutations comprising of 1266 single and 56, 730 double 
mutants, in the PRD of TDP-43 and quantifying toxicity in yeast. Of these mutants, 18032 were 
more toxic than WT TDP-43 and 16152 less toxic. The authors found that mutations that 
increased the aggregation propensity of TDP-43 correlated with reduced toxicity, whereas those 
that promoted dynamic, liquid condensates correlated with increased toxicity. Interestingly, 
increasing the hydrophobicity of TDP-43, which is associated with reduced toxicity, caused a 
relocalization of the protein away from the nuclear membrane and formation of larger 
aggregates. Mutational effect was strongest in a 31 aa hotspot at residues 312-342 with 
mutations to charged or polar residues increasing toxicity and to hydrophobic aa decreasing 
toxicity. From these findings, the authors propose that TDP-43 aggregation is neuroprotective 
by titrating from liquid-like states. 
 
This is an interesting observation. Comments are below 
 
1. What was the finding from disease causing mutations e.g. A315T, M337V etc ? 
 
This is indeed an important question. As stated in the original text, TDP-43 mutations 
reported in ALS increase toxicity, with a strong bias towards moderate effects (Fig. 1D, 
Supplementary Figure 2D).  In the revised manuscript, we also characterise the 
localisation of four ALS variants (3 sporadic, 1 familial).  These variants also have an 
increased number of small foci at the nuclear periphery, albeit less so than the most 
toxic variants in our assay (Supplementary Figure 6 ). 
 
2. WT TDP-43 should be included in Fig 3A 
 
Images for YFP-tagged WT TDP-43 are included in Fig 3A. 
 
3. Further characterization of the different types of TDP-43 inclusions is required e.g. are 
the aggregates p62 positive, do the droplets co-localize with stress granule markers, nuclear 
pore proteins?  
 
We tested for co-localization of toxic and non-toxic TDP-43 variants with the 10 proteins  
listed in the table below in order to understand if the different foci we observe 
correspond to previously described compartments and if toxic variants can specifically 
interact with nuclear pore proteins.  Co-localization was only observed for both types of  
TDP-43 variants with the Hsp104 chaperone. The results of these additional experiments 
are reported in Fig. S9 and referred to from the Results. 
 
 

Protein Localization/ Reasons 
for testing 

Reference Co-localization with 
TDP variants 

Rnq1 Ipod Kaganovich 2008 no 



Hsp104 Junq / Ipod Kaganovich 2008 yes 

Hsp42 Ipod Hill 2017 no 

Tho2 Mislocalized when 
TDP-43 forms foci in 
HEK293T cells upon 
stress 

Woerner 2016 no 

Rkr1 (ltn1) Ipod Hill 2017 no 

Sti1 Regulates Junq 
formation 

Hill 2017 no 

Nsp1 (nup62) Co-localizes with 
cytoplasmic TDP-43 
foci in neurons 
upon stress 

Gasset-Rosa 2019 no 

Gsp1 (ran) Mislocalized when 
TDP-43 forms foci in 
neurons upon 
stress 

Gasset-Rosa 2019 no 

Srp1 (importin 
alpha) 

Co-localizes with 
cytoplasmic TDP-43 
foci in neurons 
upon stress 

Gasset-Rosa 2019 no 

Nup145 (nup98) Co-localizes with 
WT TDP 43 in N2a 
cells 

Chou 2018 no 

 
 
Reviewer #3 (Remarks to the Author): 
 
The manuscript by Bolognesi et al. describes deep mutational scanning results of TDP-43 
toxicity in yeast. This review is focused on the deep mutational scanning approach and data. 
The authors purchased about 150 based synthetic oligos doped with random mutations at a 
frequency intended to yield a ratio of about 1:2:2 of WT: single mutation: double mutation. 2 
libraries of mutants were cloned into galactose inducible plasmids, introduced into budding 
yeast, and subject to bulk growth competitions under induced conditions. The frequency of each 
mutant was estimated by paired-end sequencing of samples prior to and after competition. The 
change in frequency of each mutated variant was used to estimate impacts on growth rate.  
 
Many aspects of the mutational scanning data appear to have been done with careful thought. 
However, there are also aspects of the mutational scanning data that are not clearly described 
or that may be potentially misleading and should be addressed prior to publication. The 



correlation between replicates (Fig 1B) is impressive and indicates that stochastic noise to 
signal is favorable.  
 
Major concerns: 
 
1. The treatment of biological replicates is unclear. Four biological replicates are mentioned 
in the method section, but two replicates are presented in Fig 1B, and one set of measurements 
is provided in Sup. Table S3. The authors need to clarify how replicates were performed and 
analyzed. Each replicate needs to be reported in a separate Supplementary Table. This is 
imperative not only for judging the merit of the data, but also for potential future analyses to 
distinguish biological from technical variation. 
 
Four independent replicate experiments (starting from independent yeast 
transformations) were performed for each library.  The input counts of all variants in all 
replicates are compared in Supplementary figure 1 A and B. For both libraries, before 
downstream analysis, one replicate was excluded on the basis of considerably lower 
correlation of variant input counts with the other replicates, as highlighted in 
Supplementary figure 1 A and B. This is stated in the Methods (Sequencing data pre-
processing).  The toxicity scores for all single and double mutants in the remaining three 
replicates are compared in Supplementary figure 1 D and E.  All figures in the paper rely 
on toxicity estimates corresponding to the error-weighted mean across the remaining 
three replicate selections (Variant toxicity and Error Estimates).   We have added the 
replicate toxicity scores to Supplementary Table 3 as requested. 
 
2. Misreads need to be experimentally examined. Assuming that paired-end reads 
eliminate mis-reads is unwise. Potential misreads should be assessed using a homogenous 
starting sequence (e.g. wild-type plasmid) and the same procedure for preparing and 
sequencing as samples (e.g., the same cycles of PCR). Reads that are not wild type should be 
counted as mistakes and the frequency of these reported. 
 
As in Diss & Lehner, 2018, we examined misreads (sequencing errors) by measuring the 
per base error probability in the ‘constant’ regions, i.e. 10bp upstream and 10bp 
downstream of the ‘variable’ (doped) regions of TDP-43, that were used as primer 
annealing sites for library amplification. The sequences in the constant regions should 
be identical to the wild type and any differences are likely sequencing errors. We 
estimate the frequency of an incorrect base call to be 0.0001 (sd = 6e-5) and 0.0004 (sd = 
4e-4) for the 290-331 and 332-373 DMS libraries respectively. Differences in error 
frequencies between the two DMS libraries are most likely caused by different Phred 
cutoffs used (see reply to Minor Concern 3), but little variability is observed in error 
frequencies between individual sequencing libraries (3 input replicates and 2x3 output 
replicates) from the two DMS libraries. Moreover there is little variability between error 
probabilities depending on the wild-type base ([4e-5,2e-4] for the 290-331 DMS library and 
[1e-4,1.5e-3] for the 332-373 DMS library).  This is now presented in the methods (Variant 
toxicity and error estimates) 



 
3. The mean count of 1aa change variants is about 2000 and the mean count of 2aa 
change variants is about 30. This should be discussed. Is it possible that misreads could 
contribute to this observation. The authors should discuss barcoding strategies that can be 
utilized to reduce the impact of misreads. For example, see Nature Methods 2010 7:119-122. 
The authors should describe why they chose the direct sequencing approach that the used 
compared to barcoding strategies. The authors should provide an experimental analyses of 
misreads (see point 2 above). 
 
The difference in counts for single and double AA variants is to be expected (based on 
the random mutagenesis) and is related to the difference in the total number of possible 
variants of each type i.e. 1,596 single and 621,642 double mutants respectively. 
 
With a per base misread frequency of 0.0001 (as derived above), the probability of 
observing at least one base call error per read is 126bp*0.0001 = 0.0126. The total number 
of reads associated with single nucleotide substitution variants is ~2e6 for a typical input 
sample from the 290-331 DMS library. However, we estimate that these observed single 
nucleotide variants represent only 1-0.0126 = 98.74% of ‘true’ single nucleotide variants. 
Therefore we expect an additional 0.0126/0.9874*2e6 = 2.6e4 ‘misread’ counts originating 
from single nucleotide variants. 
 
For the sake of this example we will assume that all misreads originating from single 
nucleotide variants were attributed (mistakenly) to double nucleotide variants. Indeed, 
the most likely origin of ‘misread’ double nucleotide variants is a single nucleotide 
variant with an additional misread base. 
 
For a nucleotide sequence of length 126bp (doped region) there are (126 choose 2) = 
7875 possible pairs of base positions that can each be mutated to one of three possible 
nucleotides. Therefore there exist a total of 7875*3*3 = ~7e4 possible double nucleotide  
variants. Even in the scenario where all counts from ‘misread’ single nucleotide variants 
are distributed equally among all possible double nucleotide variants, we expect only 
2.6e4/7e4 = ~0.5 an additional count per double nucleotide variant attributable to 
sequencing errors (i.e. ~1% based on the observed mean count for double nucleotide 
variants of ~37). Even considering the higher misread frequency in the 332-383 DMS 
library (0.0004), we still expect <2 additional counts per double nucleotide variant 
attributable to sequencing errors. 
 
These calculations, which we have added to the methods (Variant toxicity and error 
estimates), demonstrate that double AA variant counts are not dominated by misreads.  
However, we agree with this reviewer that barcoding strategies could further reduce the 
impact of misreads. We now mention this potential improvement in the  Methods . 
 
4. According to the mutational strategy, the authors expected about a 1:2:2 ratio of wild-
type : single mutation : double mutation. The data report about 1000 single mutations and 



50,000 double mutations. The authors should comment on this discrepancy and the potential 
reasons for it.  
 
As mentioned in a related comment above, the observed difference in the total number of 
unique single and double AA variants is to be expected (based on the random 
mutagenesis) and is related to the difference in the total number of possible variants of 
each type i.e. 1,596 and 621,642 respectively. 
 
5. The estimated errors (sigma in Sup. Table 3) seem remarkably small given the read depth. 
Mean reads of ~10 yield errors of ~0.05 in toxicity. The authors should examine and report if the 
calculated errors account for the variation between experimental replicates.  
 

a) Indeed, the Poissonian error for a toxicity estimate derived from ~10 reads would 
be ~33% relative error (error ~ 1/sqrt(10 reads)). However, the toxicity estimates 
are subsequently normalized for #generations of the selection experiment (on 
average ~6 generations) and merged across replicate selections (in ideal cases 
leading to a 1/sqrt(3) reduction of errors). This therefore explains the ~0.05 errors 
in reported toxicity estimates of low count variants. (note that reported errors are 
absolute errors on natural logarithm scale that toxicity estimates are reported in) 

b) The calculated errors do indeed reflect the variation between experimental 
replicates. As explained in the Methods (Variant toxicity and error estimates 
Section), under minimal assumptions, errors are a combination of Poissonian 
errors due to finite sequencing counts and variability between replicates, with 

variances of these two processes being additive, i.e. ߳࢏૛ = ૛࢏,࢙࢚࢔࢛࢕ࢉࣕ + ૛࢖ࢋ࢘ࣕ as the 

error for variant i. Here, ߳࢏,࢙࢚࢔࢛࢕ࢉ૛ depends on the number of sequencing counts for 

variant i (and the wild-type variant used for normalization) in input and output 
replicate, which therefore increases for low count variants. ߳࢖ࢋ࢘૛ , the variability 

added due to differences between replicate selections, instead is a constant and 
the same for all variants. Consistently, we find that variants with high variation 
between replicates (y-axis in figure below) are well explained by purely count-
based error estimates (x-axis in figure below), while variants with low variation 
between replicates approach a lower bound of variation, the replicate error ߳࢖ࢋ࢘૛ . 

Indeed, a nonparametric estimate of the average of y given x (red line) closely 
follows the expectation given the full error formula (blue line, i.e. replicate + count 
based error). Note that the variability in standard deviation of toxicity estimates of 
individual variants having the same count-based error estimates inadvertently 
arises from the low  number (3) of replicates used to estimate the standard 
deviation. 



 
Per variant comparison of purely count-based toxicity error estimates (average across 
counts in three biological replicates) versus standard deviation of toxicity estimates 

across three biological replicates in the 290-332 DMS library. 
 
Minor concerns: 
1. p. 4 – T”he patterns of genetic interactions in double mutants in this region reveal that this 
‘unstructured’ region is actually structured in vivo” 
 
No suggested edit noted.  Please clarify the suggestion. 
 
2. p. 8 – “We have shown recently that the pattern of genetic (epistatic) interactions between 
mutations in a protein can report on the secondary structure of that molecule when it is 8 
performing the function that is being selected for(51).” 
 
No suggested edit noted. Please clarify the suggestion. 
 
3. P. 16 – “Reads that contained base calls with Phred scores below 30 (290-331 DMS library) 
or below 25 (332-373 DMS library) were discarded.” What was the reasoning for selecting these 
cutoffs – why do they differ for each library? 
 
The quality scores of reads in the 332-373 library were overall slightly lower than in the 
290-331 library. In order to retain comparable numbers of variants in both libraries, we 
chose a more lenient Phred score threshold for the former. The chosen thresholds 



explain the observed frequency of incorrect base calls (see above): Phred 30 -> error 
probability 10-3; Phred 25 -> error probability 10-2.5 ~ 0.003 
 
4. The average toxicity of stop codons appears to be about -0.15. Some discussion of what this 
means relative to the observed toxicity would be helpful. 
 
In our selection experiment cells expressing stop codon variants grow faster than cells 
expressing WT TDP-43, with a very similar effect to non-toxic variants (as highlighted in 
Fig. 1D). This means the introduction of stop-codons in this region relieves almost all the 
toxicity induced by expression of WT TDP-43, consistent with previous observations by 
Johnson et al. (PNAS, 2008) showing no toxicity to yeast cells upon expression of  
residues 1-306 of TDP-43.  
 
5. Supplementary Fig 2D seems very interesting – as it gets at the potential disease causing 
properties of mutations. The authors should consider moving this to the main text.  
 
We have now added a boxplot depicting the toxicity distribution of human disease 
mutations to Fig. 1D.  
 
 
 

 



REVIEWERS' COMMENTS:  

Reviewer #1 (Remarks to the Author):  

In my view the authors have done an excellent job responding to my comments and those of the 

other reviewers. I recommend that this exciting work be published without delay.  

Reviewer #3 (Remarks to the Author):  

The authors have addressed my concerns.  


