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SI Text

System Hamiltonian for Vibronic Aggregates. For each chro-
mophore j, the electronic ground (|0〉) and first excited (|j〉)
states are coupled to a single intramolecular vibrational mode
(described as a harmonic oscillator) with frequency ωj . The
single chromophore Hamiltonian then reads as:

Ĥj =
[
p̂2
j

2mj
+ mj

2 ω2
j x̂

2
j

]
|0〉 〈0|

+
[
Ej +

p̂2
j

2mj
+ mj

2 ω2
j (x̂j − dj)2

]
|j〉 〈j| .

[S1]

Within the above, x̂j , p̂j , mj , and dj are, respectively, the
coordinate, momentum, mass, and coordinate displacement
in the excited state. After introducing the bosonic creation
(â†j = x̂j

√
mjωj/2~− ip̂j

√
1/2~mjωj) and annihilation (âj =

x̂j
√
mjωj/2~ + ip̂j

√
1/2~mjωj) operators and subsequently

substituting them into Eq. S1, we thus obtain:

Ĥj = ~ωj(â†j âj + 1
2)

+
[
Ej + ~ωj

(
Sj −

√
Sj
(
â†j + âj

))]
F̂ †j F̂j ,

[S2]

where Sj = mjωjd
2
j/2~ is the dimensionless Huang-Rhys fac-

tor. F̂ †j and F̂j are the electronic excitation and deexcitation
operators, defined by F̂ †j |0〉 = |j〉 and F̂j |j〉 = |0〉. Under
the local vibronic basis, the vibronic states associate with
the electronic ground state and the first excited state can be
represented, respectively, by:

|gijj 〉 =
(â†j)

ij√
ij !
|g0〉 , and |e

ij
j 〉 = F̂ †j

(â†j)
ij√
ij !
|g0〉 . [S3]

Where within the above, ij is the vibrational quanta of the jth
chromophore, and |g0〉 is the zero-exciton–vibrational ground
state (the vacuum state).

After including the electronic coupling, Jjl, between chro-
mophores j and l, the system Hamiltonian of vibronic aggre-
gates is expressed as:

ĤV =
∑
j

EjF̂
†
j F̂j +

∑
j 6=l

JjlF̂
†
j F̂l +

∑
j

~ωj
(
â†j âj + 1

2

)
+
∑
j

~ωj
[
Sj −

√
Sj
(
â†j + âj

)]
F̂ †j F̂j . [S4]

When simulating the 2DES via the third order nonlinear re-
sponse function (Eq. S24), one must include the electronic
ground states (|g(i1,i2,··· ,iN )〉 ≡

∏
j
|gijj 〉), singly excited elec-

tronic states (|e(i1,i2,··· ,iN )
m 〉 ≡ |eimm

∏
j 6=m g

ij
j 〉), and doubly

excited electronic states (|f (i1,i2,··· ,iN )
uv 〉 ≡ |eiuu eivv

∏
j 6=u,v g

ij
j 〉).

For convenience, an N -component vector, i = (i1, i2, · · · , iN ),
is introduced and the above basis states now read as |gi〉,|ei

m〉,
and |f i

uv〉 (u < v). The one- and two-exciton eigenstates of ĤV
are |ep〉 =

∑
m

∑
i ψ

m
p,i |ei

m〉 and |fr〉 =
∑

u<v

∑
i Ψuv

r,i |f i
uv〉,

respectively. The electronic contribution of a one-exciton eigen-
state, p, is defined as its total overlap with pure electronic
states:

χp,el = (ψ1
p,{0,0})2 + (ψ2

p,{0,0})2 . [S5]

The final system Hamiltonian, ĤS, used in the calculations
are ĤE for ED and ĤV for VD.

Total Hamiltonian. All the other vibrational modes (from pro-
tein and/or solvent fluctuations) that couple to each chro-
mophore are modeled as an independent phonon bath com-
posed of harmonic oscillators, described by:

ĤB =
N∑
j=1

∑
ξ

p̂2
jξ

2mjξ
+ 1

2mjξω
2
jξx̂

2
jξ , [S6]

where mjξ, ωjξ, x̂jξ, p̂jξ are the mass, the frequency, the
position and the momentum operator of the ξth bath oscillator
associated with the jth chromophore, respectively. For the
system-bath interaction, we assume the system is affected by
the phonon bath through electronic energy fluctuations and
vibrational relaxation, and hence the Hamiltonian has the
form:

ĤSB = ηE

N∑
j=1

∑
ξ

cjξx̂jξF̂
†
j F̂j + ηV√

2

N∑
j=1

∑
ξ

cjξx̂jξ(â†j + âj)

=
N∑
j=1

V̂j
∑
ξ

cjξx̂jξ =
N∑
j=1

V̂jB̂j . [S7]

In the above equation, B̂j =
∑

ξ
cjξx̂jξ is defined as the col-

lective bath operator and V̂j ≡ ηEF̂
†
j F̂j + ηV(â†j + âj)/

√
2

is a system operator, where the first and the second terms
represent the bath-induced electronic energy fluctuations and
vibrational relaxation, respectively. The reorganization energy
that counteracts the shifted equilibrium position of bath oscil-
lators thus has the form of Hreorg =

∑N

j=1

∑
ξ
c2jξV̂

2
j /2mjξω

2
jξ.

One then obtains an effective system Hamiltonian that includes
the above counter term as Ĥeff = ĤS + Ĥreorg, and the total
Hamiltonian becomes Ĥtot = Ĥeff + ĤB + ĤSB.

System Hamiltonian for Linear and 2D Spectra Calculation.
For simulating the 2D electronic spectra (2DES), one needs
to include the electronic ground state, singly excited states,
and doubly excited states of the molecular aggregates. We can
then rearrange the Hamiltonian into a block diagonal matrix
by ascending number of excitons. In the ED case it has the
form:

Ĥ2D
S,ED =

(
Hg 0 0
0 H1ex 0
0 0 H2ex

)
, [S8]

with Hg = E0 |0〉 〈0| = 0, the single exciton manifold is

H1ex =
∑
j

Ej |j〉 〈j|+
∑
j 6=l

Jjl |j〉 〈l| , [S9]
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and the elements in the biexciton manifold read:

〈jl|H2ex |j′l′〉 = δjj′δll′(Ej + El) + δjj′(1− δll′)Jll′
+ δjl′(1− δlj′)Jlj′ + δlj′(1− δjl′)Jjl′
+ δll′(1− δjj′)Jjj′ .

[S10]

The same block diagonal structure also applies to the vi-
bronic case. However, in this case there are vibrational states
associated to the electronic ground state, and the elements in
the electronic ground state Hamiltonian can be written as:

Hgg
i,i′ ≡ 〈g

i| ĤV |gi′〉 =

[∑
j

~ωj
(
ij + 1

2

)]
δii′ , [S11]

where δii′ ≡
∏
l
δili′l

. The singly excited states Hamiltonian is
then given by:

H
(emem̃)
ii′ ≡ 〈ei

m| ĤV |ei′
m̃〉 = δii′ (1− δmm̃) Jmm̃

+ δii′δmm̃

[
Em + ~ωmSm +

∑
j

~ωj
(
i′j + 1

2

)]
− ~ωm

√
Smδmm̃

〈
im, i

′
m

〉 ∏
l,l 6=m

δili′l
,

[S12]

where the vibrational wavefunction integral is defined as:〈
im, i

′
m

〉
≡ 〈gimm |

(
â†m + âm

)
|gi
′
m
m 〉

=
√
imδim−1,i′m +

√
i′mδim+1,i′m .

[S13]

Similarly, the Hamiltonian of doubly excited states reads:

H
(fuvfu′v′ )
ii′ = δii′

[
Eu + Ev +

∑
j

~ωj
(
ij + 1

2

)]
δuu′δvv′

+ δii′ [Juu′ (1− δuu′) δvv′ + Jvu′δuv′

+Juv′δvu′ + Jvv′ (1− δvv′) δuu′ ]

− ~ωu
√
Suδuu′δvv′

〈
iu, i

′
u

〉 ∏
l,l 6=u

δili′l

− ~ωv
√
Svδuu′δvv′

〈
iv, i

′
v

〉 ∏
l,l6=v

δili′l

+ δii′ (~ωuSu + ~ωvSv) δuu′δvv′ ,
[S14]

and therefore the resulting Hamiltonian for simulating 2D
spectra of VD is:

Ĥ2D
S,VD =

(
Hgg 0 0

0 Hee 0
0 0 Hff

)
. [S15]

When simulating linear spectra, only the electronic ground
state and the first excited states are included, so the Hamilto-
nian for ED and VD become:

Ĥ1D
S,ED =

(
Hg 0
0 H1ex

)
, [S16]

and
Ĥ1D

S,VD =
(
Hgg 0

0 Hee

)
, [S17]

respectively.

Hierarchical Equations of Motion. Here we assume that each
chromophore is independently coupled to a heat bath. The
correlation function of the collective bath operator can be
written as:

C(t) = Cj(t) =
TrB

{
e−βHBeiHBt/~B̂je

−iHBt/~B̂j
}

TrB {e−βHB}

= ~

∞∫
−∞

dωJ(ω) e−iωt

1− e−β~ω ,

[S18]

where the spectral distribution function is given by J(ω) =
Jj(ω) =

∑
ξ

[
c2jξ/2mjξωjξ

]
δ (ω − ωjξ). The phonon bath

is modeled as a series of overdamped harmonic oscillators,
and thus we employ the Drude spectral density J(ω) =
2λγω/π(ω2 +γ2) to describe each phonon bath, where γ is the
Drude decay constant and λ is the reorganization energy. In
the current study we used ~γ = 125 cm−1 and λ = 150 cm−1,
which are reasonable values for dye molecules in a methanol
environment (1–3).

After applying the Drude spectral density, the correlation
function becomes a sum of multiple exponential functions
C(t > 0) =

∑∞
k=0 cke

−νkt, where ν0 = γ and for k > 1,
νk = 2kπ/β~ are known as the Matsubara frequencies. The
constants, ck, are given by:

c0 = ~λγ
[
cot
(
β~γ

2

)
− i
]
,

ck = 4λγ
β

νk
ν2
k − γ2 , for k > 1 .

[S19]

We implemented the HEOM scheme developed by Shi et al.,
which is a scaled version of HEOM that improves convergence
with respect to the number of Matsubara frequencies included
in the bath correlation function (4). The detailed form of the
scaled HEOM reads as:

d

dt
ρ̃n = − i

~
[
Ĥeff , ρ̃n

]
−

(
N∑
j=1

K∑
k=0

njkνk

)
ρ̃n

− 1
~2

∞∑
k=K+1

(
ck
νk

) N∑
j=1

[
V̂j ,
[
V̂j , ρ̃n

]]
− i

~

N∑
j=1

K∑
k=0

√
(njk + 1)|ck|

[
V̂j , ρ̃n

+
jk

]

− i

~

N∑
j=1

K∑
k=0

√
njk
|ck|

(
ckV̂j ρ̃n

−
jk

− c∗kρ̃n
−
jk

V̂j

)
,

[S20]

with the Ishizaki-Tanimura truncating scheme νke−νkt ' δ(t)
applied to the k > K Matsubara frequencies (5, 6).

Within Eq. S20, n ≡ {n1,n2, · · · ,nN} =
{{n10, n11, · · · , n1K}, · · · , {nN0, nN1, · · · , nNK}}, where
njk are non-negative integers. n±

jk refers to the change
in value of njk to njk ± 1 in the globally indexed site n.
The density operator with all zero indices is the system’s
reduced density operator (RDO), while all other operators
are auxiliary density operators (ADOs). The hierarchical
level of density operators is truncated to NC ; defined by
NC = max

∑
j,k
njk, which limits the total number of density

operators to CNC+N
NC

. However, if one uses nv vibrational
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states for each chromophore, this will generate NnNv single
excited states and N(N − 1)nNv /2 double excited states.
Because the dimensions of the system Hamiltonian increase
exponentially with nv, we limit the total number of vibrational
quanta in the system to NV = max

∑
j
ij = 3. The highest

truncation level for the simulations is NC = 4. In this study,
one single exponential term c0e

−γt is enough to describe the
bath correlation function, and therefore K = 0 is used.

Optical Response Functions. The effects of weak electromag-
netic fields upon electric dipoles can be simulated by using
optical response functions. These response functions describe
how a weakly-perturbed system behavior deviates from the
behavior of its equilibrium counterpart. The linear absorption
spectra can be calculated by the dipole autocorrelation func-
tion, 〈µ̂(t)µ̂〉, that constitutes the first-order optical response
function (7):

R(1)(t) = i

~
〈[µ̂(t), µ̂]〉 , [S21]

where µ̂(t) ≡ eiĤtot/~µ̂e−iĤtott/~ is the dipole operator within
the Heisenberg picture, and 〈· · · 〉 ≡ Tr {· · · ρ̂eq}. ρ̂eq is the
density operator of the total system at its thermal equilibrium.
In the case of ED we assume the total system is initially in
a factorized state ρ̂eq = |0〉 〈0| ⊗ e−βĤB/TrB{e−βĤB}, where
β = 1/kBT is the inverse temperature. For VD, because of
the possible thermal vibrational excitations, ρ̂eq is obtained
by equilibrating the total system with the initial factorized
state using HEOM (Eq. S20).

In Eq. S21, the total dipole operator is defined by µ̂ =
µ̂+ + µ̂− =

∑
j
µj(F̂ †j + F̂j), where µ̂+ =

∑
j
µjF̂

†
j and µ̂− =∑

j
µjF̂j . The transition dipole moment of chromophore j is

calculated by µj = dj · l, where dj is the transition dipole
vector and l is the laser polarization vector, while the quantity
|µj |2 is the oscillator strength. The dipole autocorrelation
function can then be obtained by:

〈µ̂(t)µ̂〉 = TrS{µ̂TrB [e−iĤtottµ̂ρ̂eqe
iĤtott]} , [S22]

where the term TrB [e−iĤtottµ̂ρ̂eqe
iĤtott] is the RDO at time

t with ρ̂tot(0) = µ̂ρ̂eq assigned as the initial density matrix
for time evolution using HEOM approach. Once 〈µ̂(t)µ̂〉 is
obtained, the linear absorption spectra, I(ω), can be calculated
by:

I(ω) ∝ Im
∫ ∞

0
dt eiωtR(1)(t) . [S23]

To account for random orientations of individual chro-
mophores within the sample during the spectral measurements,
the rotational average is considered. Instead of sampling over
the whole unit sphere, the rotational average can be obtained
by averaging over the signals from three orthogonal laser po-
larizations (8).

2D rephasing spectra are generated by sequential interac-
tion of three broadband laser pulses (with wave vectors k1,
k2, and k3) inside a sample to create a third-order polariza-
tion. The four-wave mixing field is then generated in the
kRP = −k1 + k2 + k3 direction and heterodyne-detected after
superposing a fourth (local oscillator) k4 = kRP pulse. This

generates a three-dimensional signal described by a third order
nonlinear response function:

R
(3)
RP(t3, t2, t1) = − i

~3 Tr
{
µ̂−Ĝ(t3)µ̂×+Ĝ(t2)µ̂×+Ĝ(t1)µ̂×−ρ̂eq

}
,

[S24]
where ti(i = 1, 2, 3) are the time delays between sequential
pulses ki and ki+1 in the pulse sequence, and the super-
operator notation Â×B̂ = ÂB̂ − B̂Â is introduced for any
operators. The evolution superoperator is defined through
G(t)ρ = e−iĤtott/~ρeiĤtott/~, and the time evolution is calcu-
lated by the HEOM method. After a double Fourier transform
on Eq. S24, the 2D rephasing spectra at waiting time t2 is
obtained by:

S
(3)
RP(ω3, t2, ω1) = Im

∫ ∞
0

dt1e
−iω1t1

∫ ∞
0

dt3e
iω3t3

·R(3)
RP(t3, t2, t1) .

[S25]

The rotational average of the above equation is calculated
by averaging the signal generated by ten laser polarization
vectors aligning with the vertices of a dodecahedron in half of
the coordinate space. It has been shown that the difference
between the signal average generated through this method
and the result obtained from 104 random polarization vectors
provided by the Monte-Carlo method are within 1% (8).

Fourier Maps from Residual 2D Spectra . For the identification
of the origins associated with oscillating spectroscopic features
at specific beating frequencies, Fourier maps are generated
by fitting all the t2-evolving data points in the 2D spectra to
exponentially decaying functions and subsequently performing
a Fourier transform of the residual signal over t2:

A(ω1, ω2, ω3) =
∫ ∞

0
dt2e

−iω2t2Sres(ω1, t2, ω3) . [S26]

The technical details behind obtaining the residual spectra,
Sres(ω1, t2, ω3), are introduced in ref. (9). After generating the
Fourier maps, the largest amplitude of the map at each specific
ω2 is collected through Amax(ω2) = max |A(ω1, ω2, ω3)| to
assist in characterization of important oscillation frequencies.
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Fig. S1. The room-temperature rephasing 2DES at waiting time t2 = 0 fs of ED (A), VD1 (B), and VD2 (C). The horizontal axis is the excitation energy ~ω1, and the vertical
axis is the detection energy ~ω3. The eigenstates correspond to the diagonal peaks in the 2D spectra are labeled alongside. The normalized amplitude of the 2D spectra is
indicated by color with evenly spaced contour lines. The crosses mark the cross-peaks CP+− (A), CP31 (B), and CP21 (C), respectively.

Fig. S2. Maximum of the Fourier map indicating t2 oscillations in the 2DES of ED (A). Single oscillation frequency is found at 1339 cm−1. The corresponding Fourier map is
shown in (B).

Fig. S3. The Fourier map of ~ω2 = 1635 cm−1 in VD2, shown for completeness with reference to Fig. 3 of the main text.
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Fig. S4. Maximum of the Fourier map indicating t2 oscillations in the 2DES of VD1 (A). Three major oscillation frequencies are found, from left to right they represent the e2-e3
transition, vibrational mode, and the e1-e3 transition, respectively. The corresponding Fourier maps are shown in subfigures (B), (C) and (D).
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Fig. S5. The double sided Feynman diagrams for the ground state bleaching (GSB) contribution in the 2D rephasing spectra of VD2, only the major contributions are shown
here, where subfigures (A), (B), (C) and (D) correspond to the features in Fig. 3D of the main text marked by square, triangle, circle, and cross, respectively. Here g0 ≡ g(0,0)

represents the vacuum state, and g∗ = g(0,1) (or g(1,0)) represents the one-phonon states in the zero-exciton manifold.
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Fig. S6. For all the above subfigures, we examine a vibronic heterodimer model that features the bacteriochlorophylls 3 and 4 in the FMO complex of Chlorobaculum tepidum.
In the left column, the four lowest eigenenergies in the one-exciton manifold with color representing oscillator strengths (A), electronic state character χel (B), and anticorrelated
vibrational character χv− (C) are calculated with E1 = 12350 cm−1, E2 = 12500 cm−1, J = −50 cm−1, S = 0.025, and the angle between the two transition dipoles
are set to 90◦. The energy gap ∆E = [(E2 − E1)2 + 4J2]1/2 is set to 180.28 cm−1. The black dash lines indicate the excitonic energy gap. A similar character-mixing
feature is identified comparing to the homodimer model discussed in the main text. In the right column, the coherence dynamics between states e1 and e3 at 77 K are shown
under near-resonant (D) and off-resonant (E) conditions, using a superposition state (|e1〉 + |e3〉)/

√
2 as an initial state. λ = 35 cm−1, (ηE, ηV) = (1, 0.25), and

bath relaxation time γ−1 of 100 fs are used for the time evolution calculations. At off-resonant condition (∆E/~ω0 = 1.1), the coherence lifetimes obtained from fitting
to two exponentially decaying sinusoidal functions are τ21 = 3.29 ps and τ31 = 106.8 fs, with amplitudes of 0.026 and 0.508, respectively. Although possessing a small
amplitude, the coherence between states e1 and e2 can be observed in the dynamics due to the phonon-induced energy relaxation from e3 to e2. At near-resonant condition
(∆E/~ω0 = 0.9), the lifetimes obtained are τ21 = 112.25 fs and τ31 = 3.74 ps, with amplitudes of 0.337 and 0.191, respectively. Under near-resonant conditions, the
e1-e3 coherence lifetime is enhanced due to electronic-vibrational mixing and an amplitude increase of ps-long oscillation is observed. Additionally, the larger amplitude
associated with the e1-e2 coherence suggests a faster energy relaxation. For reference, the vibrational coherence lifetimes at near- and off-resonant conditions are 6.86 ps and
5.71 ps, respectively.

Fig. S7. Correlated vibrational contribution χv+ (color) of the four lowest-energy eigenstates in the one-exciton manifold of VD. χv+ is calculated as 〈g1
+|TrEρ(t)|g1

+〉,
where ρ(t) is the system density matrix and |g1

+〉 ≡ (|g(1,0)〉+ |g(0,1)〉)/
√

2 stands for the one-phonon state of the correlated vibrational mode. Almost all the correlated
vibrational character is solely in state ev , and thus this feature does not involve in the redistribution of oscillator strength by the mixing of electronic and vibrational degrees of
freedom.
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