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Supporting Information Text11

Theory and Model12

Adiabatic Born-Oppenheimer Approximation. Here we discuss the Born-Oppenheimer approximation, the adiabatic case, and13

its application to the time-dependent Hamiltonain Ĥ(t) constructed previously. For a particular nuclear configuration, the14

time-independent Schrödinger equation for the molecular wavefunction can be written as15

H(R, r)Ψ(α)(R, r) = EαΨ(α)(R, r), [1]16

where n indexes the molecular eigenstate, and the Hamiltonian is divided into electronic kinetic, nuclear kinetic, and interaction17

potential terms H(R, r) = Tel(r) + Tnu({R}) + V (R, r). We can separate the molecular wavefunction into electronic and18

nuclear parts such that19

Ψ(α)(R, r) =
∑
n,m

b(α)
n,mψn(R; r)χn,m(R), [2]20

where ψn(R; r) is the n-th electronic eigenstate parametrized by the nuclear configuration {R}, and χn,m(R) is a nuclear21

wavefunction. Note that no approximation has been used here, the functions ψn(R; r) form an eigenbasis for the electronic22

degrees of freedom, and they independently satisfy the time-independent Schrödinger equation for the electron kinetic and23

interaction potential terms:24

(Te(r) + V (R, r))ψn(R; r) = En({R})ψn(R; r). [3]25

We note that the function En({R}) maps out an adiabatic potential energy surface for different nuclear configurations {R}.26

There are N potential energy surfaces, where N is the number of atoms per unit cell. Sometimes adjacent potential energy27

surfaces touch at a conical intersection, or they nearly touch at an avoided crossing. At these points, the character of the28

associated wavefunctions are known to change rapidly (1, 2), and this phenomenon will be increasingly important in the29

time-dependent simulation.30

Discarding terms that depend on spatial derivatives of the electronic wavefunction, the electronic basis states labeled31

by n become independent, making n and m “good” quantum numbers. The ABO molecular wavefunction Ψ(α)(R, r) is32

labeled Ψ(α)(R, r) 7→ Ψ(n,m)(R, r) = ψn(R; r)χn,m(R). We focus on the electronic part ψn(R; r), which, within the ABO33

approximation, is a stationary state. We write the Hamiltonian operator in the equation 3 as Ĥ(t), where the matrix elements34

are given by the tight-binding formulation.35

Bands fold into the Brillouin zone when a supercell is used for calculating band structure; clustering of the bands is a36

result of degeneracy breaking due to the inclusion of vibrations in the classical model of the nuclear degrees of freedom. In37

principle, the supercell size could increase indefinitely—or to the size of the very large sample—causing the bands to fold into38

an increasingly smaller Brillouin zone. Our results indicate that adiabatic electronic states beginning in a cluster decay very39

quickly, regardless of supercell size. Diabatic electronic states beginning in a cluster experience a decaying autocorrelation over40

the course of several vibrational periods. For graphene, which has many peaks in its density of states (and hence many band41

clusters regardless of supercell size), the ABO approximation provides an poor picture of electronic time evolution. Rather, all42

indications are that a diabatic description where the electronic wavefunction changes little as the nuclei move is much superior.43
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Fig. S1. Time-dependent energy spectrum E,ke (t) near the K point. On the abscissa, we have plotted time in terms the number of cycles of the shortest vibrational mode,
where the shortest vibrational period in our N = 32 atom simulation is 190.679 ~/Ryd.
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Fig. S2. The overlap probability P,ke (t) (top) and magnitude squared of the autocorrelation A,ke (t) for the electronic state starting in the ABO band n = 18, showing the
dramatically better persistence of a diabatic-like autocorrelation over an adiabatic one (bottom). Note the six-fold expansion of the time range (abcissa) on the bottom. On the
abscissa, we have plotted time in terms the number of cycles of the shortest vibrational mode, where the shortest vibrational period in our N = 32 atom simulation is 190.679
~/Ryd.
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(N = 50) Eigenenergies at k = (0,0)
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Fig. S3. Time-dependent energy spectrum En(t) at the Γ point, where k = (0, 0): (left) the full spectrum and (right) the cluster containing band n = 27. On the abscissa,
we have plotted time in terms the number of cycles of the shortest vibrational mode, where the shortest vibrational period in our N = 50 atom simulation is 202.755 ~/Ryd.
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(N = 50) Diabatic Autocorrelation at k = (0,0)

Fig. S4. The overlap probability P,ke (t) (top) and magnitude squared of the autocorrelation A,ke (t) for the electronic state starting in the ABO band n = 27, showing the
dramatically better persistence of a diabatic-like autocorrelation over an adiabatic one (bottom). Note the six-fold expansion of the time range (abcissa) on the bottom. On the
abscissa, we have plotted time in terms the number of cycles of the shortest vibrational mode, where the shortest vibrational period in our N = 50 atom simulation is 202.755
~/Ryd.
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